usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

High-Performance Transaction Processing in
Journaling File Systems

Yongseok Son, Sunggon Kim, and Heon Young Yeom, Seoul National University;
Hyuck Han, Dongduk Women'’s University

https://www.usenix.org/conference/fast18/presentation/son

This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.
February 12-15, 2018 » Oakland, CA, USA

ISBN 978-1-931971-42-3

Open access to the Proceedings of

the 16th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

https://www.usenix.org/conference/fast18/presentation/son

High-Performance Transaction Processing in Journaling File Systems

Yongseok Son, Sunggon Kim, Heon Young Yeom, and Hyuck Hanf
Seoul National University, Dongduk Women’s University

Abstract

Journaling file systems provide crash-consistency to ap-
plications by keeping track of uncommitted changes
in the journal area (journaling) and writing committed
changes to their original area at a certain point (check-
pointing). They generally use coarse-grained locking to
access shared data structures and perform I/O operations
by a single thread. For these reasons, journaling file sys-
tems often face the problem of lock contention and un-
derutilization of I/O bandwidth on multi-cores with high-
performance storage. To address these issues, we de-
sign journaling and checkpointing schemes that enable
concurrent updates on data structures and parallelize I/O
operations. We implement our schemes in EXT4/JBD2
and evaluate them on a 72-core machine with a high-
performance NVMe SSD. The experimental results show
that our optimized file system improves the performance
by up to about 2.2x and 1.5x compared to the existing
EXT4 file system and a recent scalable file system, re-
spectively.

1 Introduction

A transaction in file systems is a group of file system
modifications that must be atomic and durable [6, 12,
23]. To support transaction processing, many file sys-
tems have adopted a journaling technique to guaran-
tee the atomicity and durability. Journaling logs modi-
fied metadata and data to the journal area in a transac-
tion before updating the original area. After the trans-
action is committed, the committed transaction is writ-
ten into the original area by checkpointing (write-ahead
logging). With journaling, the file systems can provide
crash-consistency to applications by recovering the com-
mitted transactions in case of crashes [5, 23, 24].

Although crash-consistency is supported using jour-
naling file systems [20, 26, 29, 31], journaling can
face a performance bottleneck on multi-cores and high-
performance storage [15, 16, 21]. The performance bot-
tleneck mainly arises from (1) data structures for transac-
tion processing protected by non-scalable locks and (2)
serialized I/O operations by a single thread. For example,
in EXT4/JBD2, multiple application threads insert their
own buffer into the running transaction by using coarse-
grained locking which can negatively affect scalability
on multi-cores. In addition, a single application thread
performs checkpoint I/O operations which can underuti-
lize high-performance storage.

To handle these issues, previous studies [16, 21] in-
vestigated the locking and I/O operations of file systems.
SpanFS [16] consists of a collection of micro file system
services called domains. It distributes files and directo-
ries among the domains and delegates an I/O operation to
the corresponding domain to reduce the lock contention
and exploit the device parallelism. Min et al. [21] ob-
served that file systems are hidden scalability bottlenecks
in many I/O-intensive applications. They designed and
implemented a benchmark to evaluate the scalability of
file systems and found unexpected scalability behaviors.
Our study is in line with these approaches [16, 21] in
terms of investigating the locking and I/O operations of
file systems. In contrast, we focus on internal operations
of shared data structures and I/O processing in transac-
tion processing.

In this paper, we propose a transaction processing with
two main schemes to achieve high-performance I/O as
follows: (1) We use lock-free data structures and opera-
tions to reduce the lock contention. This scheme allows
multiple threads to access the data structures (e.g., linked
lists) concurrently. (2) We propose a parallel I/O scheme
that performs I/O operations by multiple threads in a par-
allel and cooperative manner. This scheme allows multi-
ple threads to cooperate in I/O processing and issue/com-
plete the I/Os in parallel while not sacrificing the consis-
tency of the file system. We apply and implement the
techniques to transaction processing (i.e., running, com-
mitting, checkpointing, and recovery) on EXT4/JBD2 in
Linux kernel 4.9.1.

We evaluate the existing and our optimized file sys-
tems on a 72-core machine with an Intel P3700 NVMe
SSD [14] using metadata and data-intensive workloads in
the ordered and data journaling modes. The experimen-
tal results show that the optimized file system improves
the performance by up to about 2.2x and 2.1x in the or-
dered mode and the data journaling mode, respectively,
compared to the existing file system. Also, the optimized
file system improves the performance by up to about 1.5x
compared to SpanFS, a recently developed file system for
multi-core scalability.

The contributions of our work are as follows:

e We analyze the locking and I/O operations in trans-
action processing of EXT4/JBD2 in terms of its pro-
cedures.

e We design and implement a transaction processing
with concurrent lock-free updates on data structures

USENIX Association

16th USENIX Conference on File and Storage Technologies 227

—#=Tokubench =—e=Varmail

D

1 2 4 8 18 36 54 72
The number of cores

—#=Sysbench =e=Fileserver

a
2 g
S 3

400

Bandwidth (MiB/s)
8 &
S <

Bandwidth (MiB/s)
w =
H S

e

1 2 4 8 18 36 54 72
The number of cores

(a) Ordered mode (b) Data journaling mode

Figure 1: Motivational evaluation (the number of threads
is the same as that of the cores, and the detailed experi-
mental environment is described in Section 4.)

and parallel I/O processing in a cooperative manner.

e We demonstrate that our optimized file system im-
proves the performance compared to the existing
file system and a recent scalable file system.

The rest of this paper is organized as follows: Sec-
tion 2 describes the background and motivation. Sec-
tion 3 presents the design and implementation of the pro-
posed schemes. Section 4 shows the experimental re-
sults. Section 5 discusses the related works. Section 6
concludes this paper.

2 Background and Motivation

This paper focuses on the EXT4 journaling mechanism
since EXT4 is the most widely used file system in
Linux and more general than other file systems [16, 17].
EXT4 uses a fork of the journaling block device (JBD)
called JBD2 [32] which performs transaction processing
by using a variant of write-ahead logging (WAL) [11].
JBD is a file system-independent interface that can also
be attached to other file systems, such as EXT3 and
OCFS2 [10]. EXT4/JBD2 provides three journaling
modes: write-back, ordered, and data journaling. The de-
tailed description of each journaling mode can be found
in previous studies [2, 16, 23, 25].

JBD2 adopts a single compound transaction. There
is only one running transaction that absorbs all updates
and one committing transaction at any time. An appli-
cation thread starts a running transaction for each update
and associates the update with the transaction. The run-
ning transaction has a linked list, which has the pointers
to the modified blocks. When a periodic commit opera-
tion is invoked or an fsync () is called, a journal thread
changes the state of the transaction to committing, and
writes the blocks associated with the transaction into the
journal area. After the transaction commits, the transac-
tion is marked as checkpoint. The committed blocks are
written back to the original area by an application thread
during the checkpoint operation. Then, the journal area
is reclaimed via the checkpoint operation.

We focus on the locking and I/O operations in trans-
action processing. Figure 1 shows a motivational eval-
uation using metadata and data-intensive workloads in
the ordered and data journaling modes, respectively. As

'] .

T, ‘ jh L__.l jh ':l jh ‘:‘ jh ':‘ jh transaction
T i\ head J‘11 N2 JN13 JN14 J;s (Tl)
T3>, T, transaction buffer list
Tz//") e
T4 ‘ jhe L__.l jhz L__.l jhe }:_.‘ jhe ':‘ jh1o ‘transaction

T 3 (TxID: n-1)
transaction buffer list
T3 j j j heck

AW transaction
T, —»ﬂ—» /T: checkpoint list (TxID: n-2)

ATy
Tt ¥

10

(b) checkpointing transaction

Figure 2: Examples of existing locking and I/O op-
erations (T: thread, TxID: transaction ID, jh: jour-
nal_head, S: spin lock (j-list_lock), M: mutex lock
(j-_checkpoint _mutex))

shown in the figure, the performance does not scale well
or decreases as the number of cores grows. Based on
our analysis and other studies [15, 16], it is due to the
lock contention on shared data structures and the serial-
ization of I/O operations. For example, as shown in Fig-
ure 2(a) and 2(b), a spin lock (j-1ist_lock) is used to
ensure the correct list operations for journal heads (jhs)!
in the journaling lists (transaction buffer and checkpoint
lists) [16], which are circular doubly linked lists. How-
ever, in multi-cores, this locking can incur contention on
the shared data structures and limit the scalability. In
addition, only a single thread performs the journal and
checkpoint I/Os. For example, as shown in Figure 2(b),
T3 performs I/0 operations for checkpointing by acquir-
ing a mutex lock (j_checkpoint_mutex). Such serial-
ized I/O operations can limit the I/O parallelism on high-
performance storage. We will explain the transaction
processing in terms of locking and I/O operations.
Running transaction. When application threads per-
form some file operations (e.g., create()), they start a
transaction to handle the modifications. To process the
transaction, the threads first check if a running trans-
action is available or not. If a running transaction is
available, the threads join the running transaction by in-
creasing the number of updates (t _updates) in the trans-
action under the state lock (j_state_lock) which is a
read-write lock; the t_updates variable indicates the
number of current threads that join the transaction. Oth-
erwise, a new transaction is created, or the threads are
blocked if the transaction cannot be newly created. When
a running transaction needs to be committed while a pre-
vious transaction is committing, the threads which try

Ijournal head (jh) is a structure that associates the buffer
(buffer_head (bh)) with the respective transaction [13]. The operations
on the bh are protected by a spin lock (jbd_-lock_bh_state) per bh.

228 16th USENIX Conference on File and Storage Technologies

USENIX Association

to get a running transaction are blocked until the run-
ning transaction is available. It is because there are only
one running transaction and one committing transaction
at any time in the compound transaction scheme [16, 23].

After getting the running transaction, the threads mod-
ify their own buffer and then try to insert it into a trans-
action buffer list by using the jh of the buffer (bh).
To insert the jh, the threads try to acquire a list lock
(j-1list_lock) which is a spin lock. A thread, which
acquires the list lock, associates the jh with the running
transaction and inserts the jh into the tail of the list.
Then, the thread releases the list lock and finishes the
insert operation. Finally, the thread completes its own
transaction processing by decreasing the number of up-
dates.

When application threads perform some file opera-
tions, such as truncate(), the threads can invalidate
buffers that are already associated with a transaction. In
this case, by acquiring the state lock and the list lock,
a thread removes the jh from the transaction buffer or
checkpoint lists and disassociates the jh from the run-
ning or checkpoint transactions if it is associated with
the running or checkpoint transactions, respectively. If
the jh is associated with a committing transaction, the
thread sets the jh as freed; both the jh and its buffer will
be freed later during the commit procedure. As discussed
above, EXT4/JIBD2 ensures correct updates on the trans-
action state and the transaction buffer list by the state
lock and the list lock, respectively.

Committing transaction. To commit a transaction, a
journal thread wakes up and processes a commit proce-
dure. The journal thread changes the running transaction
to a committing transaction and its state to committing by
acquiring the state lock. Then, the journal thread waits
for other application threads to complete their transaction
processing by checking the t_updates variable. If the
jh is already associated with a running transaction, the
jh must be moved to a committing transaction. Mean-
while, the committing transaction does not accept any
new modifications, and the next modification triggers the
creation of a new running transaction. With the commit-
ting transaction, the journal thread prepares for journal
I/Os by creating a wait list, which is used to wait for the
completion of I/Os. Then, the journal thread fetches the
jh from the head (t_buffers) of the transaction buffer
list and creates a copy of its buffer called frozen buffer
(frozen_bh) to preserve the contents of the buffer. The
journal thread removes the jh from the list by updating
the head of the list to the next of the head and inserts the
jh into the shadow list under the list lock. The shadow
list (t_shadow) includes the frozen buffers.

To perform a batched journal I/O, the journal thread
aggregates the frozen buffer by inserting it into a write
buffer (wbuf) and the wait list. If the number of inserted

buffers (bufs) is higher than the pre-defined threshold,
the journal thread issues 1/Os to the journal area by call-
ing submit_bh() and prepares for the next I/Os. Af-
ter issuing all the I/O requests for journaling, the journal
thread waits for the completion of I/Os. And then re-
moves the jh from the shadow list and inserts it into the
forget list under the list lock. The forget list (t _forget)
includes both the frozen buffers from the shadow list and
buffers to be freed. After all the I/Os are completed, the
journal thread writes the commit block for the transac-
tion atomicity; if a crash occurs, the file system can re-
play or discard the transaction according to the existence
of the commit block of the transaction. Then, the jour-
nal thread makes a checkpoint list with the buffers that
are not freed and still dirty in the forget list under the list
lock. Finally, the committed transaction is inserted into
the tail of a checkpoint transaction list for checkpointing
by acquiring the state and list locks.

Checkpointing transaction. When a transaction
needs to be checkpointed, application threads try to ac-
quire a checkpoint mutex lock (j_checkpoint mutex)
and perform a batched I/O operation. A winner thread,
which acquires the mutex lock, performs the checkpoint
I/0O operations while other threads are blocked until the
I/O operations are completed. Then, the thread tries to
acquire the list lock to get the transaction and access its
checkpoint list. The list lock is used since other threads
can access the checkpoint list to remove the jhs when
they free the buffers of the jhs, which do not need to be
checkpointed.

Under the mutex and list locks, the winner thread ag-
gregates the buffers by fetching the jhs from the check-
point list and inserting the fetched buffers into a check-
point buffer (j_chkpt_bhs) to issue the I/Os in a batched
manner. Similar to the commit procedure, the jh is re-
moved and re-inserted into a checkpoint io list, which is
used for I/O completion. If the number of aggregated
buffers (batch_count) is higher than the pre-defined
threshold, the thread releases the list lock and issues the
I/Os. Then, the thread prepares for the next I/Os by ac-
quiring the list lock. After issuing all the I/Os, the thread
completes them one by one by fetching the jh from the
checkpoint io list. When fetching the jh, the thread uses
the list lock. After then, the thread sets the next trans-
action to be checkpointed in the checkpoint transaction
list under the list lock. Finally, the checkpointed trans-
action is freed, which denotes the end of a life cycle of
the transaction, and the list lock and the mutex lock are
released.

3 Design and Implementation

To achieve higher I/O performance on multi-cores with
high-performance storage, we aim to reduce the lock
contention and maximize I/O parallelism in transaction

USENIX Association

16th USENIX Conference on File and Storage Technologies 229

— application thread —— journal thread

C) transaction buffer list (:) checkpoint list

§ creat() write() write() : write() creat() : creat() write() write()
1[JGT0 L) I

gl Js0 JsOJs(I| Jlog Jiog Jiog | JW() J\L() JW()

Z . . v (1 | _ v - i i _ | \4 v

@ |Liht [—{ih [jhs 1 [j—{iha [ihs | =] ih: —{ih2 [ihs | || ‘ [ih+ - ih2 j@J

= ! sub() sub() sub() ! sup() sub() sup(

A \ y k2 : y— v v

: ||E9 E3 E3 | | 3 £3 cn ch ch

k] journal area original area : journal area original area : journal area original area
TxID: 1 (running) | TxID: 1 (committing) | TxID: 1 (checkpointing) >

Time
Figure 3: Overall architecture (app: application, jh: journal_head, bh: buffer_head, TxID: transac-

tion ID, JS(): jbd2_journal_start(), JCT():
jbd2_log_wait_for_space(), sub(): submit_bh())

processing. To do this, we propose a transaction pro-
cessing with two main schemes that enable concurrent
updates on shared data structures and cooperatively par-
allelize I/O operations. We apply these schemes to the
transaction processing in EXT4/JBD2.

We maintain the compound transaction scheme of
EXT4/IBD2 to exploit its advantages [23]. For example,
it provides a better performance when the same meta-
data or data is frequently updated within a short period
of time. With this advantage, we implement our schemes
in the compound transaction. We also preserve the exist-
ing ordering of write operations and transactions, such as
the ordering of journal blocks and a commit block, com-
mitting and checkpointing, and checkpoints. Therefore,
our schemes do not sacrifice the consistency of the file
system.

Furthermore, we do not optimize all locking opera-
tions in transaction processing but focus on the list lock
for management of journal heads and the checkpoint mu-
tex lock for serialized I/O operations. Compared to the
list lock and the mutex lock, other locks (e.g., state lock)
do not incur a significant overhead according to our eval-
uation, as well as other works [16]. However, such locks
can be a performance bottleneck in a massive number of
cores, which is beyond this paper; therefore, we leave the
latent performance issue as a future work.

3.1 Design

Figure 3 shows an overall architecture of proposed
schemes. When application threads update the meta-
data and data by calling system calls, such as creat ()
and write(), they start a transaction (i.e., TxID: 1)
by calling jbd2_journal_start(). They insert their
own modified buffer into the transaction buffer list
concurrently. When the transaction needs to commit,
the journal thread begins the commit process by call-
ing jbd2_journal_commit_transaction() and starts
journal I/Os. Application threads, which cannot cre-
ate nor join a running transaction, join and perform

jbd2_journal_commit_transaction(), JIO():

journal_io_start(), JW():

the journal I/Os with the journal thread by calling
journal_io_start(). They fetch the buffers in the
transaction buffer list concurrently and write them to the
journal area in parallel by calling submit_bh(). Then,
the threads concurrently insert the committed buffers into
the checkpoint list. When the space for journaling is not
enough, application threads start to perform the check-
point I/Os by calling jbd2_log wait_for_space().
They fetch the committed buffers in the checkpoint list
concurrently and write them to the original area in paral-
lel by calling submit_bh().

3.1.1 Concurrent updates on data structures

We manage the linked lists for transaction processing in
a lock-free manner as shown in Figure 4. To this end, in-
stead of the existing circular doubly linked lists, we use
non-circular doubly linked lists and add the tail to the
lists to enable lock-free operations. In the circular dou-
bly linked list, when an item is inserted into the list, the
multiple pointers that link the item, head, and tail are up-
dated, which makes the atomic insert operation difficult.
Instead, we add the tail and set the tail’s next item as a
constant NULL variable [1], which allows us to identify
the last element of the list and insert the item into the tail
atomically.

INSERT. We provide a concurrent insert operation to
add an item to a list. In the existing transaction process-
ing, the items are inserted into the tail of the list in the
incoming order. Similar to the existing scheme but with-
out locking, we concurrently update the tail by the in-
coming items using an atomic set instruction. In an ex-
ample shown in Figure 4(a), before jhs is inserted into
a journaling list (e.g., transaction buffer list or check-
point list), the journaling list consists of four jhs, and the
tail points jhs which is inserted by 77. When 7, inserts
Jjhs, the thread atomically updates the tail and the jhs’s
previous item by jhs and jh4, respectively, by executing
the atomic set operation. By updating the previous item
(jhg) of jhs atomically, the next item of jh4 is decided as

230

16th USENIX Conference on File and Storage Technologies

USENIX Association

(s BN o o

atomic set atomic set atomic set
head (remove) (insert) (insert)
. ; next,| . next,[| next.| .
\—p{ Jh’l L_E" Jh2 ’:‘ jh3 ‘_‘ jh4 o Jhs
prev prev prev pre
set removed I e
insert GC list tai]

(logically remove)

(a) Insert and remove operations in a lock-free manner (T: thread)

<safe point>
physical

logical /0
remove

—— i
remove | processing

journaling list : journaling list

| |

| |

| |

| | ;

D Tnser 'YV Y v v | e

| . | o 110 110 10 | 6C rist

IGC list | | is ‘
.) time

| Djh .removed jh |

(b) Two-phase removal (GC: garbage collection)

fetch : atomic compare and swap —):

(c) Fetch operations in a lock-free manner

Figure 4: Concurrent updates on data structures (jh: jour-
nal_head)

Jjhs. This insert operation allows multiple threads to add
their item concurrently by updating the tail and linking
atomically.

REMOVE. We provide a concurrent remove opera-
tion to delete an item from a list. When items are re-
moved from the list concurrently without locking, the
invalid reference problem [22] can occur. To address
this issue, we propose a two-phase remove operation that
marks an item as “removed” (logical remove) and then
frees the item (physical remove) at a safe point when no
other threads hold any references to the transaction and
logically removed items. This scheme ensures safe ac-
cess to the items of the list, and thus, threads can per-
form appropriate operations for the items. For the safe
garbage collection (GC) of the logically removed items,
we additionally maintain a GC list per transaction.

For example, as shown in Figure 4(a), when a thread
(1) tries to remove the jh (jhy), the thread marks the
jh as removed atomically by executing the atomic set in-
struction. Then, the thread inserts the jh into the GC list
using our concurrent insert operation as shown in Fig-
ure 4(b). And then, the threads perform I/O for the valid
jh or bypass the I/O for the logically removed jh while
traversing the list safely. When the transaction arrives
at the safe point, all items in the GC list are reclaimed.
The safe point is the point when a transaction is check-
pointed. At this point, no other threads reference the

logically removed jhs in the transaction nor insert any
logically removed jhs into the GC list of the transaction
since all the transaction processing is over. Therefore,
we can free all the logically “removed” jhs at the safe
point.

FETCH. Finally, we provide a concurrent fetch op-
eration to get an item while traversing a list. In the
existing transaction processing, the list traversal occurs
when no threads insert any items into the list (e.g., jour-
nal and checkpoint I/O processing). This ensures that all
threads see a consistent view of the list, including valid
next pointers of all items. Under this condition, we can
simply enable the concurrent fetch operation by using an
atomic compare and swap (CAS) instruction. In the ex-
ample shown in Figure 4(c), a thread first fetches the cur-
rent head (jh;). Then, the thread compares the fetched
jhy with the current head and changes the head to jh;’s
next item by using the CAS operation. If the thread fails
the CAS operation, it repeats the procedure above. This
fetch operation allows multiple threads to extract individ-
ual items concurrently by updating the head atomically.
Consequently, through our concurrent update scheme,
multiple threads can insert/remove/fetch their items in
the lists concurrently and safely without the existing list
lock.

3.1.2 Parallel I/O in a cooperative manner

We provide a parallel I/O in a cooperative manner to
maximize the I/O parallelism. In the existing transaction
processing, application threads can be blocked while the
serialized I/O operations (e.g., journal and checkpoint
1/0) are performed. On the other hand, in our scheme,
we allow the application threads to perform the I/O oper-
ations by not blocking but joining them to the I/O opera-
tions. For example, in the case of journal I/O, we allow
the threads that cannot get a running transaction to join
the I/Os by not blocking them. In the case of checkpoint
I/0, we allow the threads to join the I/Os by eliminating
the mutex lock. By joining the multiple threads to the I/O
processing, they fetch buffers from the shared linked lists
(e.g., journaling lists), issue the I/Os of the buffers, and
complete them in parallel. For better parallelism, we use
our concurrent fetch operation and per-thread wait list,
which is a linked list used to wait for the I/O completion
in parallel.

As shown in Figure 5, each thread fetches the jh
concurrently by executing the atomic CAS instruction.
Then, each thread issues the I/O of the buffer (i.e., bh)
associated with the jh and inserts the buffer into its own
wait list. After all the I/Os are issued, each thread com-
pletes its own I/O using its own wait list. Meanwhile,
if the fetched jh was removed logically, the thread (7>)
does not perform the I/O for the jh but fetches the next
jh. Using this scheme, multiple threads can cooperate

USENIX Association

16th USENIX Conference on File and Storage Technologies 231

atomlc atomlc atomlc
CAS CAS CAS

atomic
CAS

atomic

shared i - next next . i
linked list 1§ ihs '-:" J4 ':‘ Jh5 EX
Iist)}': prev prev H

v R N removed 1 _____________________ j
issue I/0 bypass I/0 issue l/O |ssue 110 |ssue [}

1 ! I [[!

perthread | | bhy |1 | bhs ‘ 11| bhg ‘ 11| bhs |1
linked list | ! ! i i |
(wait list) iinsert bhy to} unsert bh;tn: ||nse|1 hh;to} |msert bh5to'

| To's wait list

Figure 5: Parallel I/O in a cooperative manner (T: thread,
jh: journal_head, bh: buffer_head)

in I/O processing by issuing/completing I/Os in paral-
lel. This can make a commit and checkpoint procedure
faster by increasing the I/O parallelism and minimizing
the blocking time. We note that our parallel I/O opera-
tions can change the I/0 ordering between buffers inside
a transaction. However, such a change does not sacri-
fice the atomicity since we write the commit block after
all journal blocks are written, which will be described in
Section 3.2.2.

The optimized file system with our two schemes pre-
serves the consistency of the file system by satisfying the
following properties: (1) Every block associated with a
transaction is written to the journal area at a commit pro-
cedure. (2) A transaction is committed or uncommitted
(atomicity) according to the commit block. (3) Commit-
ted transaction N-1 is checkpointed prior to committed
transaction N. We will explain how to apply our schemes
to transaction processing and how to satisfy the proper-
ties in detail.

3.2 Implementation
3.2.1 Running transaction

We enable multiple application threads to insert/remove
the journal heads into/from the transaction buffer list
concurrently. Similar to the existing procedure, when
the threads start a transaction, they get a running trans-
action and increase the number of updates in the transac-
tion (Procedure 1, lines 3-4 and 31-39). Meanwhile, in
our running procedure, we allow the application threads
to cooperate in I/O processing for journal I/Os by call-
ing journal_io_start() (lines 32-33), which will be
described in Section 3.2.2.

Alter getting the running transaction, we insert the jh
into the transaction buffer list by using our concurrent
insert operation (lines 5-6 and 44-51)2. First, the threads
associate their jh with the running transaction. Then,
they update the tail (t_buffers_tail) by their jh and
the jh’s previous item by the old tail by executing the

2The jh is inserted into a transaction buffer list or
checkpoint list by wusing the prev/next/transaction or
cpprev/cpnext/cp_transaction fields of the jh, respectively.

PROCEDURE 1 C-like pseudo-code of our running
transaction

1: create(dir, ...){
2: /* create a new file */
: handle = jbd2_journal_start(journal, ...);

3
4 transaction = handle->transaction;

5: add_buffer(bh->jh, transaction,

6: transaction->t_buffers, transaction->t_buffers_tail):
7 jbd2_journal_stop(handle);

8

9

!

. truncate(dentry, ...){
10: /* truncate a file */
11: journal_unmap_buffer(journal, bh);
12: }
13: journal_unmap_buffer(journal, bh){
14: /* invalidate a buffer */
15: write_lock(journal->j_state_lock);
16: transaction = bh->jh->transaction;
17: if(!bh->jh->cp_transaction){
18: head = jh->cp_transaction->gc_head;
19: tail = jh->cp_transaction->gc_tail;
20: del_buffer(jh, transaction, head, tail);
21: }else if(transaction == journal->j_committing_transaction){
22: set_buffer_free(bh);
23: atomic_set(jh->removed, removed);
24: }else if(transaction == journal->j_running_transaction){
25: head = journal->j_running_transaction->gc_head:
26: tail = journal->j_running_transaction->gc._tail;
27: del_buffer(jh, transaction, head, tail);
28:
29: write_unlock(journal->j_state_lock);
30: }
31: jbd2_journal_start(journal, ...){
32: if(j_running_transaction is not available)
33: [*create a new transaction or call journal_io_start(journal)*/
34: read_lock(journal->j_state_lock);
35: handle->transaction = journal->j_running_transaction;
36: atomic_add(transaction->t_updates, 1);
37: read_unlock(journal->j_state_lock);
38: return handle;
39: }
40: jbd2_journal_stop(handle){
41: /% complete a transaction */
42: atomic_sub(handle->transaction->t_updates, 1);
43: }

44: add_buffer(jh, transaction, head, tail) {
45: jh->transaction = transaction;
46: jh->prev = atomic_set(tail, jh);

47: if(jh->prev == NULL)
48: head = jh;

49: else

50: jh->prev->next = jh;
51:

52: del_buffer(jh, transaction, head. tail) {
53: atomic_set(jh->removed, removed);
54: jh->gc_prev = atomic_set(tail. jh);

55: if(jh->gc_prev == NULL)

56: head = jh;

57: else

58: jh->gc_prev->gc_next = jh;

59: bh->jh = jh->bh = NULL; /* unlink the bh from the jh */
60: jh->transaction = NULL;

atomic_set instruction’. This instruction updates the

tail and returns the old tail atomically. Then, the threads

3__sync_lock_test_and_set(type *ptr, type value): This built-in
function performs an atomic exchange operation. It writes the value
into *ptr and returns the previous contents of *ptr [28].

232 16th USENIX Conference on File and Storage Technologies

USENIX Association

check whether the old tail exists or not. If it does not
exist, the head (t_buffers) of the list is updated by the
inserted jh, which becomes the first item in the list. Oth-
erwise, the next item of the old tail is updated by the
inserted jh.

For remove operations, we use our two-phase remove
operation. When the threads remove their jh, they get
the GC list of the transaction if the jh is associated
with running or checkpoint transactions (lines 17-20 and
24-27). For the logical remove operation (lines 52-61),
the thread marks the jh as removed by executing the
atomic_set instruction and inserts the jh into the GC
list atomically by using gc_prev/next fields of the jh.
Then, the bh is unlinked from the removed jh (line 59),
and the jh’s transaction or cp_transaction field is
set to NULL in the case of running or checkpointing trans-
action, respectively (line 60). This means that the jh is
not associated with the bh and the transaction any longer.
Thus, the jh becomes an obsolete structure, and the bh
gets freed at this point. This operation on the bh is per-
formed safely since the operation is protected by a spin
lock (jbd_lock_bh_state) per bh as same as the exist-
ing scheme. Meanwhile, in the case of committing trans-
action, the thread only marks the jh as removed (line
23), and both bh and jh will be freed during the commit
procedure.

3.2.2 Committing transaction

During the existing commit procedure, the journal thread
updates the lists under the list lock and performs journal
I/O operations by a single thread. On the other hand,
in our commit procedure, we update the lists by using
our concurrent update operations and parallelize the I/O
operations in a cooperative manner.

To commit a transaction, the journal thread gets a
committing transaction similar to the existing procedure
(Procedure 2, lines 3-9). Then, the journal thread starts
the parallel I/O by setting the journal_io variable (line
10). This informs application threads that the I/O pro-
cessing is initiated. Note that in the existing procedure,
application threads are blocked when a running transac-
tion is not available and cannot be newly created. In-
stead of blocking the threads, we enable the threads to
perform the I/O processing along with the journal thread
by calling journal_io_start () (Procedure 1, line 33,
Procedure 2, line 11, and Procedure 3, line 2). Thus, the
threads can join the I/O processing if it is initiated by the
journal thread (Procedure 3, lines 5-6).

To handle the joined threads, we record the number
of threads by executing atomic_add/sub instructions*

4 __sync_add/sub_and_fetch(type *ptr, type val): These built-in
functions atomically add/subtract the value of val to/from the variable
that *ptr points to. The functions return the new value of the variable
that *ptr points to [28].

PROCEDURE 2 C-like pseudo-code of our committing
transaction (1)

1: /*the journal thread commits a transaction®/
2: jbd2_journal_commit_transaction(journal){
: commit_transaction = journal->j_running_transaction;
4 write_lock(journal->j_state_lock);
5 journal->j_committing_transaction = commit_transaction;
6: journal->j_running_transaction = NULL;
7: while(atomic_read(transaction->t_updates)){... }
8 .
9

write_unlock(journal->j_state_lock);
transaction = journal->j_committing_transaction;

10: atomic_set(transaction->journal-io, start);

11: journal_io_start(journal);

12: while(atomic_read(transaction->num-io_threads) !=0);

13: <issue and complete a commit block >

14: write_lock(journal->j_state_lock);

15: <insert the committed transaction into a checkpoint transaction list
16: (journal->j_checkpoint_transactions) using our concurrent insert>
17: write_unlock(journal->j_state_lock);

18: atomic_set(transaction->cp_io, start);

19: }

PROCEDURE 3 C-like pseudo-code of our committing
transaction (2)

1: /*the journal thread performs journal I/Os with application threads*/
2: journal_io_start(journal){
: if((transaction = journal->j_committing_transaction) == NULL)
return;
if(atomic_read(transaction->journal_io) == stop)

3
4
S:
6: return;
7
8
9

atomic_add(transaction->num_io-threads, 1);
create_wait_list(local_wait_list); // create a local wait list per thread
while((jh = transaction->t_buffers) != NULL){

10: if(atomic_cas(transaction->t_buffers, jh, jh->next) != jh)
11: continue;

12: if(atomic_read(jh->removed) == removed)

13: continue;

14: < make a frozen buffer (frozen_bh)>

15: submit_bh(WRITE, jh->frozen_bh);

16: add_wait_list(local_wait_list, jh->frozen_bh);

17:

18: atomic_set(transaction->journal-io, stop);

19: wait_journal_io(wait_list);

20: atomic_sub(transaction->num_io_threads, 1);

21: }

22: wait_journal_io(local_wait_list) {

23: while(!wait_list_empty(local wait_list){

24: frozen_bh = list_entry(local _wait_list.next, ...);

25: wait-on_buffer(frozen_bh);

26: jh = frozen_bh->bh->jh;

27: jh->transaction = NULL;

28: if(atomic_read(jh->removed) != removed && jbddirty(jh->bh))
29: add_buffer(jh, transaction, transaction->t_checkpoint_list,
30: transaction->t_checkpoint_list_tail);

31:

32: }

(Procedure 3, lines 7 and 20) and create the per-thread
wait list for the parallel I/O completion (line 8). Then,
we allow each thread to fetch the jh from the transaction
buffer list by using our concurrent fetch operation, which
executes the atomic_cas instruction® (lines 9-17). If the
fetched jh was logically removed, the thread bypasses
and retries to fetch the next jh. Otherwise, each thread

5__sync_val_compare_and_swap(type *ptr, type oldval, type new-
val): This built-in function performs an atomic compare and swap op-
eration. If the current value of *ptr is oldval, then write newval into
*ptr. Otherwise, no operation is performed. The function returns the
contents of *ptr before the operation [28].

USENIX Association

16th USENIX Conference on File and Storage Technologies 233

creates a frozen buffer, submits the I/O of the buffer to
the journal area, and inserts the buffer into its own wait
list in parallel.

After all the I/Os are issued, we stop new upcoming
threads from joining the I/O processing by unsetting the
journal_io variable (line 18). Then, the joined threads
complete the I/O by using their own wait list (lines 19
and 22-32). Through the procedure above, the parallel
I/0 is completed by writing all the buffers to the journal
area. This procedure satisfies the following property.

Property 1. Every block associated with a transaction
is written to the journal area at a commit procedure.

Every application thread increases t_update before
inserting its jh (Procedure 1, line 36) and decreases
t_update after inserting its jh (Procedure 1, line 42).
Before the journal thread starts the parallel 1/0 process-
ing by setting journal_io (Procedure 2, line 10), the
thread waits until t_update becomes 0 (Procedure 2,
line 7). This prevents application threads from starting
and finishing the 1/0 processing before all the jhs are
inserted into the transaction buffer list. Thus, it ensures
that all the buffers associated with the transaction are
written to the journal area even if the parallel I/O is en-

abled. O

While completing the I/Os (Procedure 3, lines 22-32),
the threads insert the jhs into a checkpoint list if the jhs
are not removed logically and their buffers are still dirty.
In this processing, for simplicity and efficiency, we make
the checkpoint list while completing the I/Os before the
commit block is written. However, the list is not used for
checkpointing until the commit procedure is finished to
preserve the ordering of committing and checkpointing.

In addition, we use the wait lists instead of the shadow
list and include all the frozen buffers in the wait lists.
Instead of the forget list, we use the GC list and insert
the jhs which are associated with buffers to be freed to
the GC list. After completing all the I/Os, the journal
thread waits until all the journal I/Os are finished by us-
ing the number of joined threads before writing the com-
mit block (Procedure 2, lines 12-13). This procedure sat-
isfies the following property.

Property 2. A transaction is committed or uncommitted
(atomicity) according to the commit block.

Every application thread that joins the I/O processing
increases num_io_threads before issuing I/O (Proce-
dure 3, line 7) and decreases num_io_threads after
completing 1/O (Procedure 3, line 20). The journal
thread waits until num_io_threads becomes 0 before
the journal thread writes the commit block (Procedure 2,
line 12). This means that all the journal blocks are writ-
ten before the commit block is written to the journal area.

Thus, it ensures the atomicity of the transaction by pre-
serving the ordering between the journal blocks and the
commit block. O

Finally, the journal thread inserts the committed trans-
action into the checkpoint transaction list by using the
state lock (j_state_lock) and our concurrent insert op-
eration, and sets the cp_io variable to start the check-
point I/O (lines 14-18).

3.2.3 Checkpointing transaction

In the existing procedure, when a transaction needs to
be checkpointed, an application thread performs check-
point I/O operations by acquiring a checkpoint mutex
lock (j_checkpoint_mutex). Meanwhile, other appli-
cation threads, which fail to acquire the lock, are blocked
until the checkpoint is finished, which can underutilize
the I/O parallelism.

To enable a parallel checkpoint I/O, we allow the
threads to join the I/O processing instead of using the
mutex lock and the checkpoint buffer. However, even
with the parallel I/O, the I/O issue/complete operations
are still inefficient since the list lock is used to fetch/in-
sert the jhs from/into the checkpoint/checkpoint io lists.
Thus, we fetch the jhs by using our concurrent fetch op-
eration, issue the I/Os, and complete the I/Os by using
the per-thread wait list in parallel instead of the global
checkpoint io list.

When a checkpoint is triggered, application threads
get a transaction to be checkpointed if the transaction
is available (Procedure 4, lines 2-3). Then, the threads
check whether the transaction can be checkpointed or
not by using the cp_io variable (lines 4-5). Similar to
our commit procedure, we record the number of joined
threads, and each thread creates its own wait list (lines 6-
7). For the concurrent and parallel I/O issue, each thread
concurrently fetches the jh from the checkpoint list, sub-
mits the I/O of the buffer associated with the jh to the
original area, and inserts the buffer into the wait list of
each thread in parallel (lines 8-15). If the fetched jh was
removed logically, the thread retries to fetch the next jh.
After issuing all the I/Os, we stop new upcoming threads
from joining the I/O processing by unsetting the cp_io
variable (line 16). Then, the joined threads disassociate
the jhs from the transaction while completing the I/Os
(lines 17 and 28-34).

After completing all the I/Os, we find the last remain-
ing thread by decreasing the number of joined threads
(line 18). The last thread sets the next transaction to
be checkpointed by updating the head of the checkpoint
transaction list to the next of the head using the atomic
CAS operation (lines 19-20). This procedure satisfies the
following property.

Property 3. Committed transaction N-1 is checkpointed
prior to committed transaction N.

234 16th USENIX Conference on File and Storage Technologies

USENIX Association

PROCEDURE 4 C-like pseudo-code of our checkpoint-
ing transaction

1: jbd2_log-wait_for_space(journal){
: if((transaction = journal->j_checkpoint_transactions) == NULL)

3 return;

4 if(atomic_read(transaction->cp-io) == stop)

5: return;

6: atomic_add(transaction->cp_num_.io_threads, 1);

7: create_wait_list(local_wait_list); // create a local wait list per thread

8 while((jh = transaction->t_checkpoint_list) != NULL){

9 if(atomic_cas(transaction->t_checkpoint_list, jh, jh->next) != jh))
10: continue;

11: if(atomic_read(jh->removed) == removed)
12: continue;

13: submit_bh(WRITE, jh->bh);

14: add_wait_list(local_wait_list, jh->bh);

15:

16: atomic_set(transaction->cp_io, stop);

17: wait_cp_io(local_wait_list);

18: if(atomic_sub(transaction->cp_num_io_threads, 1) == 0){
19: <set the next transaction to be checkpointed
20: in the checkpoint transaction list using atomic_cas>
21: while((jh = transaction->gc_head) != NULL){
22: transaction->gc_head = jh->gc_next;

23: free(jh);

24:

25: free(transaction);

26: }

27: }

28: wait_cp_io(local_wait_list){

29: while(!wait_list_empty(local -wait_list){

30: bh = list_entry(local_wait_list.next, ...);

31: wait_on_buffer(bh);

32: bh->jh->cp_transaction = NULL;

33:

34: }

A committed transaction is inserted into the tail of the
checkpoint transaction list in the committed order (Pro-
cedure 2, lines 15-16). The last thread sets the next trans-
action to be checkpointed in the checkpoint transaction
list in the committed order (Procedure 4, lines 19-20).
This means that if transaction N-1 is committed prior to
transaction N, transaction N is not checkpointed prior
to transaction N-1. Thus, it ensures that all the buffers
in the transaction are written to the original area in the
committed order. Consequently, our optimized file system
preserves the consistency of the file system by satisfying
Property 1, 2, and 3. O

Then, the last thread physically removes all the obso-
lete jhs in the GC list of the transaction (lines 21-24). At
this point, we can reclaim the jhs safely. It is because all
the transaction processing is ended: (1) No other threads
reference the logically removed jhs in the transaction
since all the I/O processing is ended. (2) No other threads
insert any logically removed jhs into the GC list of the
transaction since all the jhs in the transaction are dis-
associated from the transaction. Finally, the last thread
frees the checkpointed transaction (line 25).

3.24 Recovery

In the existing recovery procedure, a single-threaded pro-
cess (i.e., mount process) performs the recovery opera-

tion. To optimize the recovery procedure, we create mul-
tiple threads to perform scan and replay I/O operations in
parallel and do not use any additional lock. When mul-
tiple threads start the scan operation, each thread makes
a local wait list to complete the I/Os in parallel. Then,
it atomically gets its own offset which is the logical po-
sition in the journal area by executing the atomic_add
instruction. Each thread gets its own buffer based on the
offset, issues the read request for the buffer in parallel,
and inserts the buffer into own wait list. This process is
repeated for all the buffers which need to be scanned. Af-
ter the threads complete the I/Os for the scan operation
in parallel, they concurrently insert the buffers included
in their own wait list into a global list for the replay op-
eration.

In the case of the replay operation, each thread makes
a local wait list similar to the case of the scan operation
and concurrently fetches the buffers to be replayed from
the list. Then, it issues the write request in parallel and
inserts the buffer into its own wait list. After issuing all
the I/Os for the replay operation, the threads complete
the I/Os in parallel. This recovery scheme makes the re-
covery procedure faster and more efficient.

4 Evaluation

4.1 Experimental setup

We perform all of the experiments on a 72-core machine
with four Intel Xeon E7-8870 processors (without hy-
perthreading), 16 GiB DRAM, and PCI 3.0 interface.
For storage, the machine has an 800 GiB Intel P3700
NVMe SSD [14], which has 18 channels. The machine
runs Ubuntu 16.04.1 LTS distribution with a Linux ker-
nel 4.9.1. We evaluate the existing EXT4 and fully opti-
mized EXT4 (O-EXT4) file systems in the ordered (de-
fault) and data journaling modes. To present a perfor-
mance breakdown, we also evaluate an optimized EXT4
with our parallel I/O scheme (P-EXT4). In P-EXT4, we
allow the application threads to perform the I/O oper-
ations by not blocking but joining them to the journal
and checkpoint I/Os in a parallel and cooperative man-
ner. However, we still update the data structures us-
ing j_list_lock. Through this evaluation, we compare
the performance of our two schemes. We run metadata
and data-intensive workloads, such as tokubench [9],
sysbench [18], and filebench [34] with the parameters
shown in Table 1. We vary the number of cores from
1 to 72, and the number of threads is equal to that of the
cores. We run each test ten times and report the average.

4.2 Performance results
4.2.1 Ordered mode

We present the performance results in the ordered mode
as shown in Figure 6. In the case of tokubench as

USENIX Association

16th USENIX Conference on File and Storage Technologies 235

[Benchmarks [

Descriptions

[Parameters |

Tokubench (micro benchmark)

Metadata-intensive workload (file creation)

Files: 30,000,000, I/O sizes: 4KiB

Sysbench (micro benchmark)

Data-intensive workload (random write)

Files: 72, Each file size: 1GiB, I/O sizes: 4KiB

Filebench Varmail (macro benchmark)

Metadata-intensive workload (read/write ratio = 1:1)

Files: 300,000, Directory width: 10,000

Filebench Fileserver (macro benchmark)

Data-intensive workload (read/write ratio = 1:2)

Files: 1,000,000, Directory width: 10,000

Table 1: Workload descriptions and parameters

OEXT4 OP-EXT4 B O-EXT4
5 250 o 2000 = 1000 2 2000
2 2 2 2
2 200 2 1500 2 800 2 1600
2 150 2 £ 600 2 1200
£ < 1000] =
< 100 H_I H_I = = 400 < 800
z =500 S z
Z 50 H H'IH] Z 200 H1 I‘]] £ 400 H]
= =
g 0 E 0 g 0 m fE o T H]
1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores The number of cores The number of cores
(a) Tokubench (b) Sysbench (¢) Varmail (d) Fileserver
Figure 6: Ordered mode
OEXT4 OP-EXT4 B O-EXT4
2 2 2 600 5 70 2 1200
2 200 £ 500 g 600 £ 1000
2 15 < 400 = 2 800
= = 300 = 5 = 600
Z 100 2 2w g T 400
5 H S
2ol i s = mfl
g 0 g0 g 0 g 0
1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores The number of cores The number of cores
(a) Tokubench (b) Sysbench (¢) Varmail (d) Fileserver

Figure 7: Data journaling mode

shown in Figure 6(a), the performance growth of EXT4
is not noticeable as the number of cores increases. P-
EXT4 improves the performance by 1.9x compared to
EXT4. However, compared to full optimization, this
result shows the limitation of our parallel I/O scheme,
which does not handle the lock contention. Through
full optimization, O-EXT4 improves the performance by
2.2x at 72 cores compared to EXT4. Meanwhile, the per-
formance of O-EXT4 is almost the same beyond 18 cores
since the bandwidth is saturated due to the limited write
bandwidth and the channels of the SSD. In the case of
sysbench as shown in Figure 6(b), P-EXT4 and O-EXT4
improve the performance by 13.8% and 16.3%, respec-
tively, compared to EXT4 at 72 cores. The performance
improvement is lower than that of tokubench since sys-
bench as a data-intensive workload generates far fewer
journal I/Os for metadata.

Under the varmail workload as shown in Figure 6(c),
P-EXT4 and O-EXT4 scale well compared to the case
of tokubench and outperform EXT4 by 1.92x and 2.03x
at 72 cores, respectively. O-EXT4 achieves up to 914.3
MiB/s. Since the workload generates a mixture of read-
/write operations unlike tokubench, the available band-
width increases, and therefore, the performance gradu-
ally scales at all cores. Meanwhile, the performance of
EXT4 decreases beyond 54 cores due to the lock con-
tention. Under the fileserver workload as shown in Fig-
ure 6(d), P-EXT4 and O-EXT4 outperform EXT4 by
4.3% and 9.6% at 72 cores, respectively. All the file
systems scale in a similar trend at each core, and the

=+SpanFS --0-EXT4

2 "o £ oo

2800 g

2 6w Tt 2w

s & = 600

g 40 & 2

Z 20 Z 200

S 0 5 0

= 1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores
(a) Varmail (b) Fileserver

Figure 8: Comparison with SpanFS

performance gap is not noticeable. The reason is that,
similar to the case of sysbench, the fileserver workload
is data-intensive, which generates a low number of meta-
data I/Os. Consequently, our optimized file system im-
proves the performance in the ordered mode by reducing
the lock contention and parallelizing the I/O operations,
especially for metadata-intensive workloads.

4.2.2 Data journaling mode

We present the performance results in the data journaling
mode as shown in Figure 7. In the case of tokubench as
shown in Figure 7(a), P-EXT4 and O-EXT4 outperform
EXT4 by 73% and 88.2% at 72 cores, respectively. The
results show that the overall aspect of the performance
is similar to that in the ordered mode. In the case of
sysbench as shown in Figure 7(b), P-EXT4 and O-EXT4
show 1.17x and 2.1x faster performance than EXT4 at
72 cores, respectively. The performance improvement is
higher than that in the ordered mode since the workload
generates many journal I/Os for data. Also, the results
show that the improvement by our parallel I/O scheme is
low due to the list lock contention.

236

16th USENIX Conference on File and Storage Technologies

USENIX Association

[File systems [Device-level bandwidth [Write time | j_checkpointmutex | j-list_lock | j_state_lock | Others |
EXT4 692 MiB/s 52220 s (100%) 17946 s (34.4%) 61325 (11.7%) 102 5 (0.2%) 28040 s (53.7%)
P-EXT4 805 MiB/s 45124 s (100%) 0 4890 s (10.8%) 87 5 (0.2%) 40147 s (89%)
O-EXT4 1426 MiB/s 25078 5 (100%) 0 0 1825 (0.7%) | 24896 s (99.3%)

Table 2: Device-level bandwidth and total execution time of main locks and write operations

Modes Ordered Data journaling
Operations scan replay | other scan replay | other
EXT4 331 ms 62 ms 7 ms 311 ms 81 ms 5 ms
O-EXT4 125 ms 34 ms 9 ms 117 ms 37 ms 4 ms

Table 3: Recovery performance

Under the varmail workload as shown in Figure 7(c),
P-EXT4 and O-EXT4 outperform EXT4 by 31.3% and
39.3% at 72 cores, respectively. Unlike the case of the or-
dered mode, the performance is saturated and sustained
beyond 18 cores since writing both the metadata and the
data makes the performance reach the full bandwidth
faster. Meanwhile, the performance of EXT4 decreases
due to the lock contention. In the case of fileserver as
shown in Figure 7(d), P-EXT4 and O-EXT4 outperform
EXT4 by 1.17x and 2.01x at 72 cores, respectively. O-
EXT4 achieves up to 1064.6 MiB/s. The performance of
P-EXT4 and EXT4 decreases beyond 36 cores, which
demonstrates the need for both concurrent updates on
data structures and parallel I/O. Meanwhile, O-EXT4
scales well to 18 cores and increases the performance
until 72 cores. Beyond 36 cores, the rate of bandwidth
growth is reduced due to the bandwidth limit of the SSD.
Consequently, our optimized file system achieves higher
performance in the data journaling mode, and the benefit
becomes larger in data-intensive workloads.

4.2.3 Comparison with a scalable file system

We compare our optimized file system with SpanFS [16],
a scalable file system. We use the varmail and fileserver
workloads in the ordered and data journaling modes, re-
spectively. We set the number of domains in SpanFS as
same as that of the cores. As shown in Figure 8, both file
systems scale well until the performance is saturated in
both workloads. Meanwhile, O-EXT4 generally shows
better performance and improves the performance by up
to 1.45x and 1.51x in the varmail and fileserver work-
loads, respectively, compared to SpanFS. Especially, in
the case of the varmail workload, the performance of
O-EXT4 is similar or slower than that of SpanFS at a
small number of cores while O-EXT4 shows better per-
formance than SpanFS as the number of cores increases.
The results show that our scheme can deliver better per-
formance than the scheme that distributes file services.

4.3 Experimental analysis

Table 2 shows the total execution time for the main locks
and the device-level bandwidth at 72 cores in the case
of the sysbench workload in the data journaling mode.
For this experiment, we measured the execution time by

using a time function (getrawmonotonic()) for lower
overhead and more correctness. As shown in the table,
in EXT4, the execution time of the checkpoint mutex
and list locks take a large portion of the total write time.
In P-EXT4, the bandwidth increases by 16.3%, and the
write time decreases by 15.7% compared to EXT4, re-
spectively. As the total write time decreases, the time of
the list and state locks decreases while the list lock still
takes up 10.8% of the total write time. This demonstrates
that the list lock contention can be a performance bottle-
neck in our parallel I/O scheme. In O-EXT4, the band-
width increases by 2.06x, and the write time decreases
by 2.08x compared to EXT4. This is achieved by re-
moving the list lock contention via our concurrent update
scheme. Meanwhile, the contention on the state lock in-
creases due to the removal of the list lock but the portion
is still small. Consequently, this result demonstrates that
O-EXT4 achieves high-performance transaction process-
ing by enabling both concurrent updates and parallel I/O.

4.4 Recovery performance

To evaluate the recovery performance, we used
tokubench and fileserver workloads in the ordered and
data journaling modes, respectively. While running the
benchmarks, we randomly cut the power of the machine,
and both existing and optimized file systems are recov-
ered to a consistent state after more than 30 crashes. Ta-
ble 3 shows the recovery performance of the ordered and
data journaling modes in the file systems. The scan and
replay operations occupy the main part of the total recov-
ery time in all cases. Through parallelizing scan and re-
play I/O operations, O-EXT4 improves the recovery per-
formance by 2.38x and 2.51x compared to EXT4 in the
ordered and data journaling modes, respectively. This re-
sult demonstrates that our schemes can also be applied to
the recovery procedure to provide faster recovery time.

5 Related Work

Lock-free data structures. Valois [33] provides lock-
free data structures and algorithms for implementing a
shared singly-linked list, allowing concurrent traversal,
insertion, and deletion. Zhang et al. [35] introduce new
lock-free and wait-free unordered linked list algorithms.
They provide the first practical implementation of the un-
ordered linked list that supports wait-free insert, remove,
and lookup operations. Our study is inspired by these
works [33, 35], and we use a variant of these implemen-
tations and apply it to transaction processing in a jour-
naling file system.

USENIX Association

16th USENIX Conference on File and Storage Technologies 237

Scalable database systems. Silo [30] is an in-
memory database system designed for multi-core ma-
chines. Silo implements a variant of optimistic concur-
rency control in which transactions write their updates
to shared memory only at commit time and uses a de-
centralized timestamp based technique to validate trans-
actions at commit time. SiloR [37] adds additional fea-
tures, such as logging, checkpointing, and recovery to
Silo. It uses concurrency in all parts of the system. For
example, the log is written concurrently to several disks,
and a checkpoint is taken by several concurrent threads
that also write to multiple disks. Our study is in line with
these works [30, 37] in terms of investigating the multi-
core scalability but we focus on the transaction process-
ing in the file system.

Scalable kernels. Cerberus [27] mitigates contention
on many shared data structures within OS kernels by
clustering multiple commodity operating systems atop a
virtual machine monitor. Boyd-Wickizer et al. [4] ana-
lyze the scalability of seven system applications running
on Linux. They find that all applications trigger scala-
bility bottlenecks inside a Linux kernel. RadixVM [7]
presents a scalable virtual memory address space for
non-overlapping operations. It avoids cache line con-
tention using three techniques, which are radix trees, Re-
fcache, and targeted TLB shootdowns. Our study is in-
spired by these works [27, 4, 7] and in line with them
in terms of investigating the scalability of OS kernels on
multi-cores. In contrast, we focus on transaction process-
ing in file systems on high-performance storage.

Scalable storage stacks. Zheng et al. [36] present
a storage system for arrays of commodity SSDs. They
create dedicated I/O threads for each SSD and deploy
a set-associative parallel page cache, which divides the
global page cache into small and independent sets to
reduce lock contention. MultiLanes [15] is a virtual-
ized storage system for OS-level virtualization on many
cores. It builds an isolated I/O stack on top of a virtu-
alized storage device to eliminate contention on shared
kernel data structures and locks. Our study is in line with
these works [36, 15] in terms of mitigating the contention
on shared resources. In contrast, we focus on updating
the data structures concurrently in a lock-free manner in
journaling file systems.

Scalable file systems. IceFS [19] partitions the on-
disk resources among a new container abstraction called
cubes to provide isolated I/O stacks for localized reaction
to faults, fast recovery, and concurrent file system up-
dates. Thus, the data and I/O within each cube are disen-
tangled from the data and I/O outside of it. SpanFS [16]
is a scalable file system that consists of a collection of
micro file system services called domains. It distributes
the files and directories among the domains and provides
a global file system view on top of the domains to main-

tain consistency. Each domain performs its file system
service, such as data allocation and journaling, indepen-
dently. Curtis-Maury et al. [8] present a data partition-
ing mode to parallelize the majority of file system opera-
tions. They also provide a fine-grained lock-based multi-
processor model for incremental advances in parallelism.

Min et al. [21] analyze the many-core scalability of
five file systems by using their open source benchmark
suite (i.e., FxMark). They observe that file systems are
hidden scalability bottlenecks in many I/O-intensive ap-
plications. iJournaling [23] improves the performance
of an £sync () call. It journals only the corresponding
file-level transaction to the ijournal area for an fsync call
while exploiting the advantage of the compound trans-
action scheme. iJournaling also handles multiple fsync
calls simultaneously by allowing each core to have its
own ijournal area to improve the scalability. ScaleFS [3]
decouples the in-memory file system from the on-disk
file system using per-core operation logs to improve
many-core scalability. ScaleFS delays propagating up-
dates to the disk until an fsync call, which merges the
per-core logs and applies the operations to disk. In con-
trast with our scheme, ScaleFS uses the per-core log to
avoid the lock contention and timestamp to sort the op-
erations in the log. Our study is in line with these ap-
proaches [19, 16, 8, 21, 23, 3] in terms of investigating
the scalability and parallelism of the file systems. In con-
trast, we enable concurrent updates on data structures in
alock-free manner and parallelize I/O operations cooper-
atively in transaction processing by focusing its internal
operations.

6 Conclusion and Future Work

In this paper, we investigate the locking and I/O opera-
tions in transaction processing of the journaling file sys-
tem. We find that the lock contention on shared data
structures and I/O operations by a single thread can be
performance bottlenecks on a multi-core platform incor-
porating high-performance storage. To handle this issue,
we present a transaction processing with concurrent up-
dates on data structures and parallel I/O operations. Ex-
periments show that our optimized file system achieves
higher performance and scales better than the existing
file system. In future work, we will design and imple-
ment lock-free mechanisms to handle the locks for other
shared resources, such as file, page cache, etc., and eval-
uate them in different storage environments.

7 Acknowledgments

We thank our shepherd, Dushyanth Narayanan, and
anonymous reviewers for valuable comments that
greatly improved our paper. This research was sup-
ported by National Research Foundation of Korea
(NRF) (2015M3C4A7065645, 2015M3C4A7065646,
2016R1D1A1B03934393).

238 16th USENIX Conference on File and Storage Technologies

USENIX Association

References

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

APT, K., DE BOER, F. S., AND OLDEROG, E.-R. Verification of
sequential and concurrent programs. Springer Science & Busi-
ness Media, 2010.

ARPACI-DUSSEAU, A. C. Model-based failure analysis of jour-
naling file systems. In Proceedings of the 2005 International
Conference on Dependable Systems and Networks (Washington,
DC, USA, 2005), DSN ’05, IEEE Computer Society, pp. 802—
811.

BHAT, S. S., EQBAL, R., CLEMENTS, A. T., KAASHOEK,
M. F., AND ZELDOVICH, N. Scaling a file system to many cores
using an operation log. In Proceedings of the 26th Symposium on
Operating Systems Principles (2017), ACM, pp. 69-86.

BoYD-WICKIZER, S., CLEMENTS, A. T., Mao, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., ZELDOVICH,
N., ET AL. An analysis of linux scalability to many cores. In
OSDI (2010), vol. 10, pp. 86-93.

CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2013), SOSP *13,
ACM, pp. 228-243.

CHUTANI, S., ANDERSON, O. T., KAZAR, M. L., LEVERETT,
B. W., MASON, W. A., SIDEBOTHAM, R. N., ET AL. The
episode file system. In Proceedings of the USENIX Winter 1992
Technical Conference (1992), San Fransisco, CA, USA, pp. 43—
60.

CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.
Radixvm: Scalable address spaces for multithreaded applica-
tions. In Proceedings of the 8th ACM European Conference on
Computer Systems (2013), ACM, pp. 211-224.

CURTIS-MAURY, M., DEVADAS, V., FANG, V., AND KULKA-
RNI, A. To waffinity and beyond: A scalable architecture for
incremental parallelization of file system code. In /2th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16) (GA, 2016), USENIX Association, pp. 419-434.

ESMET, J., BENDER, M. A., FARACH-COLTON, M., AND
KuszMAUL, B. C. The tokufs streaming file system. In Hot-
Storage (2012).

FASHEH, M. Ocfs2: The oracle clustered file system, version
2. In Proceedings of the 2006 Linux Symposium (2006), Citeseer,
pp- 289-302.

GRAY, J., AND REUTER, A. Transaction processing: concepts
and techniques. Elsevier, 1992.

HAGMANN, R. Reimplementing the Cedar file system using log-
ging and group commit, vol. 21. ACM, 1987.

HATZIELEFTHERIOU, A., AND ANASTASIADIS, S. V. Im-
proving bandwidth efficiency for consistent multistream storage.
Trans. Storage 9, 1 (Mar. 2013), 2:1-2:27.

INTEL SoLID STATE DRIVE DC P3700 SERIES.
http://www.intel.com/content/dam/www/public/
us/en/documents/product-specifications/
ssd-dc-p3700-spec.pdf, 2015.

KANG, J., HU, C., Wo, T., ZHAIL, Y., ZHANG, B., AND HUAI,
J. Multilanes: Providing virtualized storage for os-level virtual-
ization on manycores. Trans. Storage 12, 3 (June 2016), 12:1—
12:31.

KANG, J., ZHANG, B., Wo, T., YU, W., DU, L., MA, S., AND
HuAL J. Spanfs: A scalable file system on fast storage devices.
In 2015 USENIX Annual Technical Conference (USENIX ATC
15) (Santa Clara, CA, 2015), USENIX Association, pp. 249-261.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

KiMm, D., PARK, J., LEE, K.-G., AND LEE, S. Forensic Analysis
of Android Phone Using Ext4 File System Journal Log. Springer
Netherlands, Dordrecht, 2012, pp. 435-446.

KopYTOov, A. Sysbench: a system performance benchmark.
URL: http://sysbench. sourceforge. net (2004).

Lu, L., ZHANG, Y., Do, T., AL-KISWANY, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Physical dis-
entanglement in a container-based file system. In OSDI (2014),
pp. 81-96.

MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,
TomAs, A., VIVIER, L., AND S, B. S. A. A and viver,
. the new ext4 filesystem: current status and future plans.
In In Ottawa Linux Symposium. http://ols.108.redhat.com/2007/
Reprints/mathur-Reprint.pdf (2007).

MIN, C., KASHYAP, S., MAASS, S., AND KiMm, T. Under-
standing manycore scalability of file systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (Denver, CO,
2016), USENIX Association, pp. 71-85.

OSTLUND, I., AND WRIGSTAD, T. Multiple aggregate entry
points for ownership types. ECOOP 2012-Object-Oriented Pro-
gramming (2012), 156-180.

PARK, D., AND SHIN, D. ijournaling: Fine-grained journaling
for improving the latency of fsync system call. In 20/7 USENIX
Annual Technical Conference (USENIX ATC 17) (Santa Clara,
CA, 2017), USENIX Association, pp. 787-798.

PiLLAIL T. S., ALAGAPPAN, R., LU, L., CHIDAMBARAM, V.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Ap-
plication crash consistency and performance with ccfs. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (Santa
Clara, CA, 2017), USENIX Association.

PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file sys-
tems. In USENIX Annual Technical Conference, General Track
(2005), vol. 194, pp. 196-215.

REISER, H. Reiserfs, 2004.

SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A
case for scaling applications to many-core with os clustering. In
Proceedings of the Sixth Conference on Computer Systems (New
York, NY, USA, 2011), EuroSys’11, ACM, pp. 61-76.

STALLMAN, R. M., AND DEVELOPERCOMMUNITY, G. Using
The Gnu Compiler Collection: A Gnu Manual For Gee Version
4.3.3. CreateSpace, Paramount, CA, 2009.

SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability in the xfs file sys-
tem. In USENIX Annual Technical Conference (1996), vol. 15.

Tu, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,
S. Speedy transactions in multicore in-memory databases. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 18-32.

TWEEDIE, S. Ext3, journaling filesystem. In Ottawa Linux Sym-
posium (2000), pp. 24-29.

TWEEDIE, S. C. Journaling the linux ext2fs filesystem. In The
Fourth Annual Linux Expo (1998).

VALOIS, J. D. Lock-free linked lists using compare-and-swap. In
Proceedings of the Fourteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing (New York, NY, USA, 1995),
PODC ’95, ACM, pp. 214-222.

WILSON, A. The new and improved filebench. In Proceed-
ings of 6th USENIX Conference on File and Storage Technologies
(2008).

USENIX Association

16th USENIX Conference on File and Storage Technologies 239

[35]

[36]

[37]

ZHANG, K., ZHAO, Y., YANG, Y., LIU, Y., AND SPEAR, M.
Practical non-blocking unordered lists. In Proceedings of the
27th International Symposium on Distributed Computing - Vol-
ume 8205 (New York, NY, USA, 2013), DISC 2013, Springer-
Verlag New York, Inc., pp. 239-253.

ZHENG, D., BURNS, R., AND SZALAY, A. S. Toward millions
of file system iops on low-cost, commodity hardware. In Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (New York, NY,
USA, 2013), SC ’13, ACM, pp. 69:1-69:12.

ZHENG, W., Tu, S., KOHLER, E., AND LISKOV, B. Fast
databases with fast durability and recovery through multicore
parallelism. In //th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14) (Broomfield, CO, 2014),
USENIX Association, pp. 465-477.

240

16th USENIX Conference on File and Storage Technologies

USENIX Association

