
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

FStream: Managing Flash Streams
in the File System

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty, Joo-Young Hwang,
Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong, Samsung Electronics. Co., Ltd.

https://www.usenix.org/conference/fast18/presentation/rho

https://www.usenix.org/conference/fast18/presentation/rho

FStream: Managing Flash Streams in the File System

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty
Joo-Young Hwang, Sangyeun Cho, Daniel DG Lee, Jaeheon Jeong

Samsung Electronics Co., Ltd.

Abstract
The performance and lifespan of a solid-state drive
(SSD) depend not only on the current input workload
but also on its internal media fragmentation formed over
time, as stale data are spread over a wide range of phys-
ical space in an SSD. The recently proposed streams
gives a means for the host system to control how data are
placed on the physical media (abstracted by a stream)
and effectively reduce the media fragmentation. This
work proposes FStream, a file system approach to tak-
ing advantage of this facility. FStream extracts streams
at the file system level and avoids complex application
level data mapping to streams. Experimental results
show that FStream enhances the filebench performance
by 5%∼35% and reduces WAF (Write Amplification
Factor) by 7%∼46%. For a NoSQL database benchmark,
performance is improved by up to 38% and WAF is re-
duced by up to 81%.

1 Introduction
Solid-state drives (SSDs) are rapidly replacing hard disk
drives (HDDs) in enterprise data centers. SSDs maintain
the traditional logical block device abstraction with the
help from internal software, commonly known as flash
translation layer (FTL). The FTL allows SSDs to sub-
stitute HDDs without complex modification in the block
device interface of an OS.

Prior work has revealed, however, that this compatibil-
ity comes at a cost; when the underlying media is frag-
mented as a device is aged, the operational efficiency of
the SSD deteriorates dramatically due to garbage collec-
tion overheads [11, 13]. More specifically, a user write
I/O translates into an amplified amount of actual media
writes [9], which shortens device lifetime and hampers
performance. The ratio of the actual media writes to the
user I/O is called write amplification factor (WAF).

A large body of prior work has been undertaken to ad-
dress the write amplification problem and the SSD wear-

out issue [3, 7]. To the same end, we focus on how to take
advantage of the multi-streamed SSD mechanism [8].
This mechanism opens up a way to dictate data place-
ment on an SSD’s underlying physical media, abstracted
by streams. In principle, if the host system perfectly
maps data having the same lifetime to the same streams,
an SSD’s write amplification becomes one, completely
eliminating the media fragmentation problem.

Prior works have revealed two strategies to leverage
streams. The first strategy would map application data
to disparate streams based on an understanding of the
expected lifetime of those data. For example, files in dif-
ferent levels of a log-structured merge tree could be as-
signed to a separate stream. Case studies show that this
strategy works well for NoSQL databases like Cassandra
and RocksDB [8, 14]. Unfortunately, this application-
level customization strategy requires that a system de-
signer understand her target application’s internal work-
ing fairly well, remaining a challenge to the designer.
The other strategy aimed to “automate” the process of
mapping write I/O operations to an SSD stream with no
application changes. For example, the recently proposed
AutoStream scheme assigns a stream to each write re-
quest based on estimated lifetime from past LBA access
patterns [15]. However, this scheme has not been proven
to work well under complex workload scenarios, partic-
ularly when the workload changes dynamically. More-
over, LBA based pattern detection is not practical when
file data are updated in an out-of-place manner, as in
copy-on-write and log-structured file systems. The above
sketched strategies capture the two extremes in the de-
sign space—application level customization vs. block
level full automation.

In this work, we take another strategy, where we sep-
arate streams at the file system layer. Our approach is
motivated by the observation that file system metadata
and journal data are short-lived and are good targets for
separation from user data. Naturally, the primary compo-
nent of our scheme, when applied to a journaling file sys-

USENIX Association 16th USENIX Conference on File and Storage Technologies 257

tem like ext4 and xfs, is to allocate a separate stream for
metadata and journal data, respectively. As a corollary
component of our scheme, we also propose to separate
databases redo/undo log file as a distinct stream at the
file system layer. We implement our scheme, FStream,
in Linux ext4 and xfs file systems and perform experi-
ments using a variety of workloads and a stream-capable
NVMe (NVM Express) SSD. Our experiments show that
FStream robustly achieves a near-optimal WAF (close to
1) across the workloads we examined. We make the fol-
lowing contributions in this work.

• We provide an automated multi-streaming of differ-
ent types of file system generated data with respect
to their lifetime;

• We enhance the existing journaling file systems,
ext4 and xfs, to use the multi-streamed SSDs with
minimally invasive changes; and

• We achieve stream classification for application
data using file system layer information.

The remainder of this paper is organized as follows.
First, we describe the background of our study in Sec-
tion 2, with respect to the problems of previous multi-
stream schemes. Section 3 describes FStream and its im-
plementation details. We show experimental results in
Section 4 and conclude in Section 5.

2 Background
2.1 Write-amplification in SSDs
Flash memory has an inherent characteristic of erase-
before-program. Write, also called “program” operation,
happens at the granularity of a NAND page. A page can-
not be rewritten unless it is “erased” first. In-place update
is not possible due to this erase-before-write characteris-
tic. Hence, overwrite is handled by placing the data in
a new page, and invalidating the previous one. Erase
operation is done in the unit of a NAND block, which
is a collection of multiple NAND pages. Before eras-
ing a NAND block, all its valid pages need to be copied
out elsewhere; this is done in a process called garbage-
collection (GC). These valid page movements cause ad-
ditional writes that consume bandwidth, thereby leading
to performance degradation and fluctuation. These ad-
ditional writes also reduce endurance as program-erase
cycles are limited for NAND blocks. One way to mea-
sure GC overheads is write amplification factor (WAF),
which is described as the ratio of writes performed on
flash memory to writes requested from the host system.

WAF =
Amount of writes committed to flash

Amount of writes that arrived from the host
WAF may soar more often than not as an SSD experi-

ences aging [8].

2.2 Multi-streamed SSD
The multi-streamed SSD [8] endeavors to keep WAF in
check by focusing on the placement of data. It allows
the host to pass a hint (stream ID) along with write re-
quests. The stream ID provides a means to convey hints
on lifetime of data that are getting written [5]. The multi-
streamed SSD groups data having the same stream ID to
be stored to the same NAND block. By avoiding mixing
data of different lifetime, fragmentation is reduced inside
NAND blocks. Figure 1 shows an example of how the
data placement using multi-stream could reduce media
fragmentation.

Figure 1: Data placement comparison for two write sequences. Here
H=Hot, C=Cold, and we assume there are four pages per flash block.

Multi-stream is now a part of T10 (SCSI) standard,
and under discussion in NVMe (NVM Express) working
group. NVMe 1.3 specification introduces support for
multi-stream in the form of “directives” [1]. An NVMe
write command has the provision to carry a stream ID.

2.3 Leveraging Streams
While the multi-streamed SSD provides the facility of
segregating data into streams, its benefit largely depends
upon how well the streams are leveraged by the host.
Identifying what should and should not go into the same
stream is of cardinal importance for maximum bene-
fit. Previous work [8, 14] shows benefits of application-
assigned streams. This approach has the benefit of de-
termining data lifetime accurately, but it involves mod-
ifying the source code of the target application, leading
to increased deployment effort. Also when multiple ap-
plications try to assign streams, a centralized stream as-
signment is required to avoid conflicts. Instead of di-
rect assignment of stream IDs, recently Linux (from 4.13
kernel) supports fcntl() interface to send data life-
time hints to file systems to exploit the multi-streamed
SSDs [2, 6]. AutoStream [15] takes stream management
to the NVMe device driver layer. It monitors requests

258 16th USENIX Conference on File and Storage Technologies USENIX Association

from file systems and estimates data lifetime. However,
only limited information (e.g., request size, block ad-
dresses) is available in the driver layer, and even worse,
the address-based algorithm may be ineffective under a
copy-on-write file system.

Our approach, FStream, implements stream manage-
ment intelligence at the file system layer. File systems
have readily the information about file system generated
data such as metadata and journal. To detect lifetime of
user data, we take a simple yet efficient method which
uses file’s name or extension. For the sake of brevity, we
do not cover the estimation of user data lifetime in detail
at the file system layer.

3 FStream
We start by highlighting the motivation behind employ-
ing multi-stream in file systems. This is followed by
overview of ext4 and xfs on-disk layout and journaling
methods. Then we delve into the details of Ext4Stream
and XFStream, which are stream-aware variants of ext4
and xfs, respectively.

3.1 Motivation
Applications can have better knowledge about the life-
time and update frequency of data that they write than file
systems do. However, applications do not know about
the lifetime and update frequency of file system meta-
data. The file system metadata usually have different
update frequencies than applications’ data, and are of-
ten influenced by on-disk layout and write policy of a
particular file system. Typically file systems keep data
and metadata logically separated, but they may not re-
main “physically” separated on SSDs. While carrying
out file operations, metadata writes may get mixed with
data writes in the same NAND block or one type of meta-
data may get mixed with another type of metadata. File
systems equipped with stream separation capability may
reduce the mixing of applications’ data and file system
metadata, and improve WAF and performance.

3.2 Ext4 metadata and journaling
The ext4 file system divides the disk-region in multi-
ple equal-size regions called “block groups,” as shown
in Figure 2. Each block group contains data and their re-
lated metadata together which helps in reducing seeks for
HDDs. Ext4 introduces flex-bg feature, which “clubs” a
series of block groups whose metadata are consolidated
in the first block group. Each file/directory requires an
inode, which is of size 256 bytes by default. These in-
odes are stored in the inode table. inode bitmap and block
bitmap are used for allocation of inodes and data blocks,
respectively. Group descriptor contains the location of

other metadata regions (inode table, block bitmap, inode
bitmap) within the block group. Another type of meta-
data is a directory block.

Figure 2: Ext4 on-disk layout. For simplicity, we have not shown
flex-bg.

File-system consistency is achieved through write-
ahead logging in journal. Journal is a special file whose
blocks reside in user data area, pre-allocated at the
time of file system format. Ext4 has three journal-
ing modes; data-writeback (metadata journaling), data-
ordered (metadata journaling + write data before meta-
data), and data-journal (data journaling). The default
mode is data-ordered.

Figure 3: Ext4 journal in ordered mode. Ext4 writes data and jour-
nal in sequence. Metadata blocks are written to their actual home loca-
tion after they are persisted to the journal.

Ext4 journals at a block granularity, i.e., even if few
bytes of an inode are changed, the entire block (typically
4KiB) containing many inodes is journaled. For jour-
naling it takes assistance from another component called
journaling block device (JBD), which has its own kernel
thread called jbd2. The journal area is written in a cir-
cular fashion. Figure 3 shows journaling operation in the
ordered mode. During a transaction, ext4 updates meta-
data in in-memory buffers, and informs the jbd2 thread to
commit a transaction. jbd2 maintains a timer (default 5
seconds), on expiry of which it writes modified metadata
into the journal area, apart from transaction related book-
keeping data. Once changes have been made durable,the
transaction is considered committed. Then, the metadata
changes in memory are flushed to their original locations
by write-back threads, which is called checkpointing.

3.3 Xfs metadata and journaling
Similar to ext4, xfs also divides the disk region into
multiple equal-size regions called allocation groups, as
shown in Figure 4. The primary objective of allocation

USENIX Association 16th USENIX Conference on File and Storage Technologies 259

groups is to increase parallelism rather than disk local-
ity, unlike EXT4 block groups. Each allocation group
maintains its own superblock and other structures for
free space management and inode allocation, thereby al-
lowing parallel metadata operations. Free space man-
agement within an allocation group is done by using B+
trees. Inodes are allocated in chunks of 64. These chunks
are managed in another B+ tree meant exclusively for in-
ode allocation.

Figure 4: Xfs on-disk layout.

For transaction safety, xfs implements metadata jour-
naling. A separate region called “log” is created during
file system creation (mkfs.xfs). Log is written in a cir-
cular fashion as transactions are performed. Xfs main-
tains many log buffers (default 8) in memory, which can
record the changes for multiple transactions. Default
commit interval is 30 seconds. During commit, modified
log buffers are written to on-disk log area. Post commit,
modified metadata buffers are scheduled for flushing to
their actual disk locations.

3.4 Ext4Stream: Multi-stream in ext4

Table 1 lists the streams we introduced in ext4. These
streams can be enabled with the corresponding mount
option listed in the table.

Mount-option Stream
journal-stream Separate journal writes
inode-stream Separate inode writes
dir-stream Separate directory blocks
misc-stream Separate inode/block bitmap and

group descriptor
fname-stream Assign distinct stream to file(s)

with specific name
extn-stream File-extension based stream

Table 1: Streams introduced in Ext4Stream.

The journal stream mount option is to separate jour-
nal writes. We added a j streamid field in the
journal s structure. When ext4 is mounted with the
journal stream option, a stream ID is allocated and
stored in the j streamid field. jbd2 passes this stream
ID when it writes dirty buffers and descriptor blocks in a
journal area using submit bh and related functions.

Ext4 makes use of buffer-head (bh) structures for var-
ious metadata buffers including inode, bitmaps, group
descriptors and directory data blocks. We added a new
field streamid in buffer-head to store a stream ID, and
modified submit bh. While forming an I/O from buffer-
head, this field is also set in bio, taking stream ID infor-
mation to a lower layer. Ext4Stream maintains stream
IDs for different metadata regions in its superblock, and,
depending on the type of metadata buffer-head, it sets
bh->streamid accordingly.

The inode stream mount option is to separate in-
ode writes. Default inode size is 256 bytes, so sin-
gle 4KiB FS block can store 16 inodes. Modification
in one inode leads to writing of an entire 4KiB block.
When Ext4Stream modifies inode buffer, it also sets
bh->streamid with the stream ID meant for the inode
stream.

The dir stream mount option is to keep directory
blocks into its own stream. When a new file or subdirec-
tory is created inside a directory, a new directory entry
needs to be added. This triggers either update of an ex-
isting data block belonging to the directory or addition
of a new data block. Directory blocks are organized in a
htree; leaf nodes contain directory entries and non-leaf
nodes contain indexing information. We assign a same
stream ID for both types of directory blocks.

The misc stream is to keep inode/block bitmap blocks
and group descriptor blocks into a stream. These regions
receive updates during the creation/deletion of file/direc-
tory and when data blocks are allocated to file/directory.
We group these regions into a single stream because they
are of small size.

The fname stream helps to put data of certain special
files into distinct stream. Motivation is to use this for
separating undo/redo log for SQL and NoSQL databases.

The extn stream is to enable file extension based
stream recognition. Data blocks of certain files, such as
multimedia files, can be considered cold. Ext4Stream
can parse extension of files during file creation. If it
matches with some well-known extensions, file is as-
signed a different stream ID. This helps prevent hot
or cold data blocks getting mixed with other types of
data/metadata blocks.

3.5 XFStream: Multi-stream in xfs

Table 2 lists the streams we introduced to xfs. These
streams can be enabled with the corresponding mount
options listed in the table.

Xfs implements its own metadata buffering rather than
using page cache. The xfs buf t structure is used to
represent a buffer. Apart from metadata, in-memory
buffers of log are implemented via xfs buf t. When the
buffer is flushed, a bio is prepared out of xfs buf t. We

260 16th USENIX Conference on File and Storage Technologies USENIX Association

Mount-option Stream
log stream Separate writes occurring in log
inode stream Separate inode writes
fname stream Assign distinct stream to file(s)

with specific name

Table 2: Streams introduced in XFStream.

added a new field called streamid in xfs buf t, and
used that to set the stream information in bio.

The log stream enables XFStream to perform writes
in the log area with its own stream ID. Each mounted xfs
volume is represented by a xfs mount t structure. We
added the field log streamid in it, which is set when xfs
is mounted with log stream. This field is used to con-
vey stream information in xfs buf t representing the
log buffer.

The inode stream mount option enables XFStream
to separate inode writes into a stream. A new field
ino streamid kept in xfs mount t is set to stream ID
meant for inodes. This field is used to convey stream
information in xfs buf t representing the inode buffer.

Finally, the fname stream enables XFStream to as-
sign a distinct stream to file(s) with specific name(s).

4 Evaluation
Our experimental system configurations are as follows.

• System: Dell Poweredge R720 server with 32 cores
and 32GB memory,

• OS: Linux kernel 4.5 with io-streamid support,

• SSD: Samsung PM963 480GB, with the allocation
granularity 1 of 1.1GB,

• Benchmarks: filebench [12], YCSB (Yahoo!
Cloud Serving Benchmark) 0.1.4 [4] on Cassandra
1.2.10 [10].

The SSD we used supports up to 9 streams; eight NVMe
standard compliant streams and one default stream. If
a write command does not specify its stream ID, it is
written to the default stream.

We conduct experiments in two parts; the first part is
to measure the benefit of separating file system metadata
and journal. Each test starts with a fresh state involving
device format and file system format. To reduce vari-
ance between the runs, we disable lazy journal and in-
ode table initialization at the time of ext4 format. As a
warming workload for filebench, we write a single file
sequentially to fill 80% of logical device capacity, to en-
sure that 80% of the logical space stays valid throughout

1A multi-streamed SSD allocate and expand stream in the unit of
allocation granularity

the test. Remaining logical space involves the actual ex-
periment. The varmail and fileserver workloads included
in the filebench are used to simulate mail server and file
server workloads, respectively. The number of files in
both workloads is set to 900,000; default values are used
for other parameters. Each filebench workload is run for
two hours with 14GB of files, performing deletion, cre-
ation, append, sync (only for varmail), and random read.
Since the size of the workloads is smaller than that of
RAM, vast majority of the operations that actually reach
the device are likely to be write operations. In order to
acquire WAF, we retrieve the number of NAND writes
and host writes from FTL, and divide the former by the
latter.

In the second part, we measure the benefits in data-
intensive workloads by applying automatic stream as-
signment on certain application specific files. Previ-
ous work [8] has reported improvement by modify-
ing Cassandra source to categorize writes into multiple
streams. FStream assigns distinct stream to Cassandra
Commitlog through fname stream facility. Load phase
involves loading 120,000,000 keys, followed by insertion
of 80,000,000 keys during run phase.

4.1 Filebench results

Category
varmail fileserver

ext4 ext4
-nj

xfs ext4 xfs

Journal 61% - 60% 26% 16%
Inode 8% 21% 9% 16% 32%
Directory 4% 15.8% - 3% -
Other meta 0.2% 0.2% - 0.2% -
Data 26.8% 63% 31% 54.8% 52%

Table 3: Distribution of I/O types during a filebench run.

The benefit of separating metadata or journal into dif-
ferent streams depends on the amount of metadata write
traffic and degree of mixing among various I/O types.
As shown in Figure 5, Ext4Stream shows 35% perfor-
mance increase and 25% WAF reduction than baseline
ext4 for varmail. XFStream shows 22% performance
increase and 14% WAF reduction for varmail compared
to xfs. Both Ext4Stream and XFStream show more en-
hancements for varmail than for fileserver, because var-
mail is more metadata-intensive than fileserver, as shown
in Table 3.

To investigate the effect of the stream separation for
file systems without journaling, we disable the journal in
ext4, denoted as ext4-nj. Under varmail workload, ext4-
nj performs better than ext4 by 62%, which is mainly
due to the removal of journal writes. Stream separation

USENIX Association 16th USENIX Conference on File and Storage Technologies 261

0

20000

40000

60000

80000

100000

120000

O
pe

ra
tio

ns
/s

ec

Varmail Fileserver Cassandra

Ext4 Ext4Stream Ext4-NJ Ext4Stream-NJ XFS XFStream Ext4-DJ Ext4Stream-DJ

35%

26%

22%

5%

9%
38%

19%
38%

(a) Throughput comparison

0

0.5

1

1.5

2

2.5

Varmail Fileserver Cassandra

Ext4 Ext4Stream Ext4-NJ Ext4Stream-NJ XFS XFStream Ext4-DJ Ext4Stream-DJ

25% 46% 14% 7% 14% 81%
66%

45%

W
AF

(b) WAF comparison

Figure 5: Above graphs show performance and WAF improvement percentage obtained with multi-stream variants of file-systems. Here Ext4-NJ
denotes Ext4 without journal, and Ext4-DJ denotes Ext4 with data journal.

improves the performance and WAF of ext-nj by 26%
and 46%, respectively.

A key observation in fileserver is that reducing meta-
data writes is more important for performance than re-
ducing journal writes. xfs generates 16% more inode
writes and 10% less journal writes for fileserver than
ext4. Though the sum of metadata and journal writes
is similar, xfs’s performance is less than half of ext4’s
performance. The reason is that the metadata writes are
random access while journal writes are sequential. Se-
quential writes are better for FTL’s GC efficiency, and
hence are good for performance and lifetime.

Another important observation comes from ext4 file-
server write distribution in Table 3 which shows 16%
inode write, but only 0.2% other-meta which includes
inode-bitmap as well. This is because of a jbd2 opti-
mization. If a transaction modifies an already-dirty meta
buffer, jbd2 delays its writeback by resetting its dirty
timer, which is why inode/block bitmap buffer writes
remain low despite large number of block/inode alloca-
tions.

As shown in Fig 5(b), ext4 WAF remains close to one
during the fileserver test. However, when ext4 is oper-
ated with data=journal mode (shown by ext4-DJ), WAF
soars above 1.5 due to continuous mixing between jour-
nal and application-data. Ext4Stream-DJ eliminates this
mixing and brings WAF down back to near one.

4.2 Cassandra results
Cassandra workloads are data-intensive. Database
changes are first made to an in-memory structure, called
“memtable”, and are written to an on-disk commitlog
file. The commitlog implements the consistency for Cas-
sandra databases as file system journal does for ext4 and
xfs. It is written far more often than file system jour-
nal. By separating the commitlog from databases, done
by file systems through detecting the file name of com-
mitlog files, we observe 38% throughput improvement
and 81% WAF reduction. Cassandra commitlog files are

named as commitlog-* with date and time information.
With fname stream option, files with their names start-
ing with commitlog flow into a single stream. Even if
multiple instances of Cassandra run on a single SSD,
commitlog files are written only to the stream assigned
by fname stream.

5 Conclusions
In this paper, we advocate an approach of applying multi-
stream in the file system layer in order to address the
SSD aging problem and GC overheads. Previous pro-
posals of using multi-stream are either application level
customization or block level full automation. We aimed
to make a new step forward from those proposals. We
separate streams at the file system level. We focused
on the attributes of file system generated data, such as
journal and metadata, because they are short-lived thus
suitable for stream separation. We implemented an auto-
matic separation of those file system generated data, with
no need for user intervention. Not only have we provided
fully automated separation of metadata and journal, but
also we advise to separate the redo/undo logs used by
applications to different streams. Physical data separa-
tion achieved by our stream separation scheme, FStream,
helps FTL reduce GC overheads, and thereby enhance
both performance and lifetime of SSDs. We applied
FStream to ext4 and xfs and obtained encouraging results
for various workloads that mimic real-life servers in data
centers. Experimental results showed that our scheme
enhances the filebench performance by 5%∼35% and re-
duces WAF by 7%∼46%. For a Cassandra workload,
performance is improved by up to 38% and WAF is re-
duced by up to 81%.

Our proposal can bring sizable benefits in terms of
SSD performance and lifetime. As future work, we con-
sider applying FStream to log-structured file systems,
like f2fs, and copy-on-write file systems, e.g., btrfs. We
also plan to evaluate how allocation granularity and op-
timal write size affects the performance and endurance.

262 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] The NVM Express 1.3 Specification. http://www.

nvmexpress.org/.

[2] AXBOE, J. Add support for write life time hints, June 2017.

[3] CHIANG, M.-L., LEE, P. C., AND CHANG, R.-C. Managing
flash memory in personal communication devices. In Consumer
Electronics, 1997. ISCE’97., Proceedings of 1997 IEEE Interna-
tional Symposium on (1997), IEEE, pp. 177–182.

[4] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud com-
puting (2010), ACM, pp. 143–154.

[5] EDGE, J. Stream IDs and I/O hints, May 2016.

[6] EDGE, J. Stream ID status update, Mar 2017.

[7] HSIEH, J.-W., KUO, T.-W., AND CHANG, L.-P. Efficient iden-
tification of hot data for flash memory storage systems. ACM
Transactions on Storage (TOS) 2, 1 (2006), 22–40.

[8] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-
streamed solid-state drive. In 6th USENIX Workshop on Hot Top-
ics in Storage and File Systems (HotStorage 14) (Philadelphia,
PA, 2014), USENIX Association.

[9] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-
memory based file system. In Usenix Winter (1995), pp. 155–164.

[10] LAKSHMAN, A., AND MALIK, P. Cassandra. http://

cassandra.apache.org/, July 2008.

[11] SHIMPI, A. L. The ssd anthology: Understanding ssds and new
drivers from ocz. http://db-engines.com/en/ranking/

wide+column+store, February 2014.

[12] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A
flexible framework for file system benchmarking. USENIX; login
41 (2016).

[13] YAN, S., LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,
S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-tail flash: Near-
perfect elimination of garbage collection tail latencies in nand
ssds. In FAST (2017), pp. 15–28.

[14] YANG, F., DOU, K., CHEN, S., HOU, M., KANG, J., AND CHO,
S. Optimizing nosql DB on flash: A case study of rocksdb. In
2015 IEEE 15th Intl Conf on Scalable Computing and Commu-
nications, Beijing, China, August 10-14, 2015 (2015), pp. 1062–
1069.

[15] YANG, J., PANDURANGAN, R., CHOI, C., AND BALAKRISH-
NAN, V. Autostream: automatic stream management for multi-
streamed ssds. In Proceedings of the 10th ACM International
Systems and Storage Conference, SYSTOR 2017, Haifa, Israel,
May 22-24, 2017 (2017), pp. 3:1–3:11.

USENIX Association 16th USENIX Conference on File and Storage Technologies 263

http://www.nvmexpress.org/
http://www.nvmexpress.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://db-engines.com/en/ranking/wide+column+store
http://db-engines.com/en/ranking/wide+column+store

