
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

The CASE of FEMU: Cheap, Accurate, Scalable
and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, and Michael Hao Tong, University of Chicago;
Swaminatahan Sundararaman, Parallel Machines; Matias Bjørling, CNEX Labs;

Haryadi S. Gunawi, University of Chicago

https://www.usenix.org/conference/fast18/presentation/li

https://www.usenix.org/conference/fast18/presentation/li

The CASE of FEMU:
Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminatahan Sundararaman†, Matias Bjørling‡, Haryadi S. Gunawi

University of Chicago †Parallel Machines ‡CNEX Labs

ABSTRACT: FEMU is a software (QEMU-based)

flash emulator for fostering future full-stack soft-

ware/hardware SSD research. FEMU is cheap (open-
sourced), relatively accurate (0.5-38% variance as a

drop-in replacement of OpenChannel SSD), scalable

(can support 32 parallel channels/chips), and extensible

(support internal-only and split-level SSD research).

1 Introduction

Cheap and extensible research platforms are a key ingre-
dient in fostering wide-spread SSD research. SSD simu-
lators such as DiskSim’s SSD model [9], FlashSim [13]
and SSDSim [16], despite their popularity, only support
internal-SSD research but not kernel-level extensions.
On the other hand, hardware research platforms such as
FPGA boards [28, 34, 46], OpenSSD [7], or OpenChan-
nel SSD [11], support full-stack software/hardware re-
search but their high costs (thousands of dollars per de-
vice) impair large-scale SSD research.

This leaves software-based emulator such as QEMU-
based VSSIM [45], FlashEm [47], and LightNVM’s
QEMU [6], as the cheap alternative platform. Unfortu-
nately, the state of existing emulators is bleak; they are
either outdated, non-scalable, or not open-sourced.

We argue that it is a critical time for storage re-
search community to have a new software-based em-
ulator (more in §2). To this end, we present FEMU,
a QEMU-based flash emulator, with the following four
“CASE” benefits.

First, FEMU is cheap ($0) as it will be an open-
sourced software. FEMU has been successfully used in
several projects, some of which appeared in top-tier OS
and storage conferences [14, 43]. We hope FEMU will
be useful to broader communities.

Second, FEMU is (relatively) accurate. For exam-
ple, FEMU can be used as a drop-in replacement for
OpenChannel SSD; thus, future research that extends
LightNVM [11] can be performed on top of FEMU
with relatively accurate results (e.g., 0.5-38% variance in
our tests). With FEMU, prototyping SSD-related kernel
changes can be done without a real device.

Third, FEMU is scalable. As we optimized the QEMU
stack with various techniques, such as exitless interrupt

0

20

40

60

1-S
-L

1-H
-L

1-C
-K

1-H
-K

1-C
-A

R-S
-L

R-C
-A

1-S
-K

D-C
-A

1-E
-L

1-C
-L

1-E
-K

R-H
-L

R-H
-K

R-C
-K

D-H
-L

D-H
-K

D-C
-K

D-S
-L

1-S
-A

R-S
-K

R-C
-L

D-S
-A

D-C
-L

1-H
-A

1-E
-A

Top-8 in
1 or R

categories
First D

195

of

 p
ap

er
s

Figure 1: Categorization of SSD research. The figure

is explained in Section §2.1. The first bar reaches 195 papers.

and skipping QEMU AIO components, FEMU can scale
to 32 IO threads and still achieve a low latency (as low as
52µs under a 2.3GHz CPU). As a result, FEMU can ac-
curately emulate 32 parallel channels/chips, without un-
intended queueing delays.

Finally, FEMU is extensible. Being a QEMU-based
emulator, FEMU can support internal-SSD research
(only FEMU layer modification), kernel-only research
such as software-defined flash (only Guest OS modi-
fication on top of unmodified FEMU), and split-level
research (both Guest OS and FEMU modifications).
FEMU also provides many new features not existent
in other emulators, such as OpenChannel and multi-
device/RAID support, extensible interfaces via NVMe
commands, and page-level latency variability.

2 Extended Motivation

2.1 THE STATE OF SSD RESEARCH PLATFORMS:
We reviewed 391 papers in more than 30 major systems
and storage conferences and journals published in the last
10 years, and categorized them as follows:

1. What was the scale of the research? [1]: single
SSD; [R]: RAID of SSDs (flash array); or [D]:

distributed/multi-node SSDs.

2. What was the platform being used? [C]: commod-
ity SSDs; [E]: software SSD emulators (VSSIM
[45] or FlashEm [47]); [H]: hardware platforms
(FPGA boards, OpenSSD [7], or OpenChannel SSD
[6]); or [S]: trace-based simulators (DiskSim+SSD
[9] or FlashSim [13] and SSDSim [16]).

USENIX Association 16th USENIX Conference on File and Storage Technologies 83

3. What layer was modified? [A]: application layer;
[K]: OS kernel; [L]: low-level SSD controller logic.

Note that some papers can fall into two sub-categories
(e.g., modify both the kernel and the SSD logic). Fig-
ure 1 shows the sorted order of the combined categories.
For example, the most popular category is 1-S-L, where
195 papers target only single SSD (1), use simulator (S),
and modify the low-level SSD controller logic (L). How-
ever, simulators do not support running applications and
operating systems.

2.2 THE LACK OF LARGE-SCALE SSD RESEARCH:
Our first motivation is the lack of papers in the distributed
SSDs category (D-...), for example, for investigating the
impact of SSD-related changes to distributed computing
and graph frameworks. One plausible reason is the cost
of managing hardware (procurement, installation, main-
tenance, etc.). The top-8 categories in Figure 1, a total
of 324 papers (83%), target single SSD (1-...) and flash
array (R-...). The highest D category is D-C-A (as high-
lighted in the figure), where only 9 papers use commod-
ity SSDs (C) and modify the application layer (A). The
next D category is D-H-L, where hardware platforms (H)
are used for modifying the SSD controller logic (L). Un-
fortunately, most of the 6 papers in this category are from
large companies with large research budget (e.g., FPGA
usage in Baidu [28] and Tencent [46]). Other hardware
platforms such as OpenSSD [7] and OpenChannel SSD
[6] also cost thousands of dollars each, impairing multi-
node non-simulation research, especially in academia.

2.3 THE RISE OF SOFTWARE-DEFINED FLASH: To-
day, research on host-managed (aka. “software-defined”
or “user-programmable”) flash is growing [25, 28, 34, 35,
41, 46]. However, such research is mostly done on top
of expensive and hard-to-program FPGA platforms. Re-
cently, a more affordable and simpler platform is avail-
able, OpenChannel SSD [6], managed by Linux-based
LightNVM [11]. Before its inception (2015), there were
only 24 papers that performed kernel-only changes, since
then, 11 papers have been published, showing the suc-
cess of OpenChannel SSD.

However, there remains several issues. First, not all
academic communities have budget to purchase such
devices. Even if they do, while prototyping the ker-
nel/application, it is preferable not to write too much to
and wear out the device. Thus, replacing OpenChannel
SSD (during kernel prototyping) with a software-based
emulator is desirable.

2.4 THE RISE OF SPLIT-LEVEL ARCHITECTURE:

While most existing research modify a single layer (ap-
plication/kernel/SSD), some recent works show the ben-
efits of “split-level” architecture [8, 19, 24, 38, 42],

wherein some functionalities move up to the OS kernel
(K) and some other move down to the SSD firmware
(L) [18, 31, 36]. So far, we found only 40 papers in
split-level K+L category (i.e., modify both the kernel
and SSD logic layers), mostly done by companies with
access to SSD controllers [19] or academic researchers
with Linux+OpenSSD [21, 32] or with block-level em-
ulators (e.g., Linux+FlashEm) [29, 47]. OpenSSD with
its single-threaded, single-CPU, whole-blocking GC ar-
chitecture also has many known major limitations [43].
FlashEm also has limitations as we elaborate more be-
low. Note that the kernel-level LightNVM is not a suit-
able platform for split-level research (i.e., support K, but
not L). This is because its SSD layer (i.e., OpenChannel
SSD) is not modifiable; the white-box part of OpenChan-
nel SSD is the exposure of its internal channels and chips
to be managed by software (Linux LightNVM), but the
OpenChannel firmware logic itself is a black-box part.

2.5 THE STATE OF EXISTING EMULATORS: We are
only aware of three popular software-based emulators:
FlashEm, LightNVM’s QEMU and VSSIM.

FlashEm [47] is an emulator built in the Linux block
level layer, hence less portable; it is rigidly tied to its
Linux version; to make changes, one must modify Linux
kernel. FlashEm is not open-sourced and its development
stopped two years ago (confirmed by the creators).

LightNVM’s QEMU platform [6] is still in its early
stage. Currently, it cannot emulate multiple channels (as
in OpenChannel SSD) and is only used for basic test-
ing of 1 target (1 chip behind 1 channel). Worse, Light-
NVM’s QEMU performance is not scalable to emulate
NAND latencies as it depends on vanilla QEMU NVMe
interface (as shown in the NVMe line in Figure 2a).

VSSIM [45] is a QEMU/KVM-based platform that
emulates NAND flash latencies on a RAM disk, and has
been used in several papers. The major drawback of VS-
SIM is that it is built within QEMU’s IDE interface im-
plementation, which is not scalable. The upper-left red
line (IDE line) in Figure 2a shows the user-perceived IO
read latency through VSSIM without any NAND-delay
emulation added. More concurrent IO threads (x-axis)
easily multiply the average IO latency (y-axis). For ex-
ample from 1 to 4 IO threads, the average latency spikes
up from 152 to 583µs. The root cause is that IDE is not
supported with virtualization optimizations.

With this drawback, emulating internal SSD paral-
lelism is a challenge. VSSIM worked around the prob-
lem by only emulating NAND delays in another back-
ground thread in QEMU, disconnected from the main IO
path. Thus, for multi-threaded applications, to collect ac-
curate results, users solely depend on VSSIM’s monitor-
ing tool [45, Figure 3], which monitors the IO latencies
emulated in the background thread. In other words, users

84 16th USENIX Conference on File and Storage Technologies USENIX Association

cannot simply time the multi-threaded applications (due
to IDE poor scalability) at the user level.

Despite these limitations, we (and the community) are
greatly indebted to VSSIM authors as VSSIM provides a
base design for future QEMU-based SSD emulators. As
five years have passed, it is time to build a new emulator
to keep up with the technology trends.

3 FEMU

We now present FEMU design and implementation.
FEMU is implemented in QEMU v2.9 in 3929 LOC
and acts as a virtual block device to the Guest OS.
A typical software/hardware stack for SSD research is
{Application+Host OS+SSD device}. With FEMU, the
stack is {Application+Guest OS+FEMU}. The LOC
above excludes base OC extension structures from Light-
NVM’s QEMU and FTL framework from VSSIM.

Due to space constraints, we omit the details of how
FEMU works inside QEMU (e.g., FEMU’s FTL and GC
management, IO queues), as they are similarly described
in VSSIM paper [45, Section 3]. We put them in FEMU
release document [1]. In the rest of the paper, we focus
on the main challenges of designing FEMU: achieving
scalability (§3.1) and accuracy (§3.2) and increasing us-
ability and extensibility (§3.3).

Note that all latencies reported here are user-perceived
(application-level) latencies on memory-backed virtual
storage and 24 dual-thread (2x) CPU cores running at
2.3GHz. According to our experiments, the average la-
tency is inversely proportional to CPU frequency, for ex-
ample, QEMU NVMe latency under 1 IO thread is 35µs
on a 2.3GHZ CPU and 23µs on a 4.0GHz CPU.

3.1 Scalability

Scalability is an important property of a flash emula-
tor, especially with high internal parallelism of modern
SSDs. Unfortunately, stock QEMU exhibits a scalabil-
ity limitation. For example, as shown in Figure 2a, with
QEMU NVMe (although it is more scalable than IDE),
more IO threads still increases the average IO latency
(e.g., with 8 IO threads, the average IO latency already
reaches 106µs). This is highly undesirable because typi-
cal read latency of modern SSDs can be below 100µs.

More scalable alternatives to NVMe are virtio and dat-
aplane (dp) interfaces [3, 30] (virtio/dp vs. NVMe lines
in Figure 2a). However, these interfaces are not as exten-
sible as NVMe (which is more popular). Nevertheless,
virtio and dp are also not scalable enough to emulate low
flash latencies. For example, at 32 IO threads, their IO
latencies already reach 185µs and 126µs, respectively.

Problems: Collectively, all of the scalability bottle-
necks above are due to two reasons: (1) QEMU uses a
traditional trap-and-emulate method to emulate IOs. The

0
50

100

200

300

400

1 2 4 8 16 32 64

IO
 L

at
en

cy
 (u

s)

of threads

[a] Average Latency

IDE
NVMe

virtio
dp

FEMU

1 2 4 8 16 32 64
of threads

[b] Emulating 50us

+50us (Adv)
+50us (Raw)

Figure 2: QEMU Scalability. The figure shows the scala-

bility of QEMU’s IDE, NVMe, virtio, and dataplane (dp) inter-

face implementations, as well as FEMU. The x-axis represents

the number of concurrent IO threads running at the user level.

Each thread performs random 4KB read IOs. The y-axis shows

the user-perceived average IO latency. For Figure (a), the IDE

and NVMe lines representing VSSIM and LightNVM’s QEMU

respectively are discussed in §2.5; virtio, dp, and FEMU lines

in §3.1. For Figure (b), the “+50µs (Raw)” line is discussed in

§3.2.1; the “+50µs (Adv)” line in “Result 3” part of §3.2.3.

Guest OS’ NVMe driver “rings the doorbell [5]” to the
device (QEMU in our case) that some IOs are in the
device queue. This “doorbell” is an MMIO operation
that will cause an expensive VM-exit (“world switch”
[39]) from the Guest OS to QEMU. A similar operation
must also be done upon IO completion. (2) QEMU uses
asynchronous IOs (AIO) to perform the actual read/write
(byte transfer) to the backing image file. This AIO com-
ponent is needed to avoid QEMU being blocked by slow
IOs (e.g., on a disk image). However, the AIO overhead
becomes significant when the storage backend is a RAM-
backed image.

Our solutions: To address these problems, we lever-
age the fact that FEMU purpose is for research prototyp-
ing, thus we perform the following modifications:

(1) We transform QEMU from an interrupt- to a
polling-based design and disable the doorbell writes in
the Guest OS (just 1 LOC commented out in the Linux
NVMe driver). We create a dedicated thread in QEMU to
continuously poll the status of the device queue (a shared
memory mapped between the Guest OS and QEMU).
This way, the Guest OS still “passes” control to QEMU
but without the expensive VM exits. We emphasize that
FEMU can still work without the changes in the Guest
OS as we report later. This optimization can be treated
as an optional feature, but the 1 LOC modification is ex-
tremely simple to make in many different kernels.

(2) We do not use virtual image file (in order to skip
the AIO subcomponent). Rather, we create our own
RAM-backed storage in QEMU’s heap space (with con-
figurable size malloc()). We then modify QEMU’s
DMA emulation logic to transfer data from/to our heap-

USENIX Association 16th USENIX Conference on File and Storage Technologies 85

backed storage, transparent to the Guest OS (i.e., the
Guest OS is not aware of this change).

Results: The bold FEMU line in Figure 2a shows the
scalability achieved. In between 1-32 IO threads, FEMU
can keep IO latency stable in less than 52µs, and even
below 90µs at 64 IO threads. If the single-line Guest-
OS optimization is not applied (the removal of VM-exit),
the average latency is 189µs and 264µs for 32 and 64
threads, respectively (not shown in the graph). Thus, we
recommend applying the single-line change in the Guest
OS to remove expensive VM exits.

The remaining scalability bottleneck now only comes
from QEMU’s single-thread “event loop” [4, 15], which
performs the main IO routine such as dequeueing the
device queue, triggering DMA emulations, and sending
end-IO completions to the Guest OS. Recent works ad-
dressed these limitations (with major changes) [10, 23],
but have not been streamlined into QEMU’s main dis-
tribution. We will explore the possibility of integrating
other solutions in future development of FEMU.

3.2 Accuracy

We now discuss the accuracy challenges. We first de-
scribe our delay mechanism (§3.2.1), followed by our
basic and advanced delay models (§3.2.2-3.2.3).

3.2.1 Delay Emulation

When an IO arrives, FEMU will issue the DMA
read/write command, then label the IO with an emulated
completion time (Tendio) and add the IO to our “end-
io queue,” sorted based on IO completion time. FEMU
dedicates an “end-io thread” that continuously takes an
IO from the head of the queue and sends an end-io inter-
rupt to the Guest OS, once the IO’s emulated completion
time has passed current time (Tendio>Tnow).

The “+50us (Raw)” line in Figure 2b shows a simple
(and stable) result where we add a delay of 50µs to every

IO (Tendio=Tentry+50µs). Note that the end-to-end IO
time is more than 50µs because of the Guest OS over-
head (roughly 20µs). Important to say that FEMU also
does not introduce severe latency tail. In the experiment
above, 99% of all the IOs are stable at 70µs. Only 0.01%
(99.99th percentile) of the IOs exhibit latency tail of
more than 105µs, which already exists in stock QEMU.
For example, in VSSIM, the 99th-percentile latency is
already over 150µs.

3.2.2 Basic Delay Model

The challenge now is to compute the end-io time (Tendio)
for every IO accurately. We begin with a basic de-
lay model by marking every plane and channel with
their next free time (Tfree). For example, if a page
write arrives to currently-free channel #1 and plane
#2, then we will advance the channel’s next free time

P1

NAND RAMD-Reg NAND RAMD-Reg

(a) Single-register model:
P2P1P1 P2

(b) Double-register model:

NAND

RAM

D-Reg P1
C-Reg

NAND
P2 P2

RAM More parallelism
(Read P2
finishes faster)D-Reg

C-Reg

time

Figure 3: Single- vs. double-register model. (a) In

a single-register model, a plane only has one data register (D-

Reg). Read of page P2 cannot start until P1 finishes using the

register (i.e., the transfer to the controller’s RAM completes).

(b) In a double-register model, after P1 is read to the data reg-

ister, it is copied quickly to the cache register (D-Reg to C-Reg).

As the data register is free, read of P2 can begin (in parallel

with P1’s transfer to the RAM), hence finishes faster.

(TfreeOfChannel1=Tnow+Ttransfer, where Ttransfer

is a configurable page transfer time over a channel)
and the plane’s next free time (TfreeOfPlane2+=Twrite,
where Twrite is a configurable write/programming time
of a NAND page). Thus, the end-io time of this write
operation will be Tendio=TfreeOfPlane2.

Now, let us say a page read to the same plane
arrives while the write is ongoing. Here, we will
advance TfreeOfPlane2 by Tread, where Tread is
a configurable read time of a NAND page, and
TfreeOfChannel1 by Ttransfer. This read’s end-io time
will be Tendio=TfreeOfChannel1 (as this is a read oper-
ation, not a write IO).

In summary, this basic queueing model represents a
single-register and uniform page latency model. That is,
every plane only has a single page register, hence can-
not serve multiple IOs in parallel (i.e., a plane’s Tfree

represents IO serialization in that plane) and the NAND
page read, write, and transfer times (Tread, Twrite and
Ttransfer) are all single values. We also note that GC
logic can be easily added to this basic model; a GC is es-
sentially a series of reads/writes (and erases, Terase) that
will also advance plane’s and channel’s Tfree.

3.2.3 Advanced “OC” Delay Model

While the model above is sufficient for basic comparative
research (e.g., comparing different FTL/GC schemes,
some researchers might want to emulate the detailed in-
tricacies of modern hardware. Below, we show how we
extend our model and achieve a more accurate delay em-
ulation of OpenChannel SSD (“OC” for short).

The OC’s NAND hardware has the following intrica-
cies. First, OC uses double-register planes; every plane
is built with two registers (data+cache registers), hence
a NAND page read/write in a plane can overlap with a
data transfer via the channel to the plane (i.e., more paral-
lelism). Figure 3 contrasts the single- vs. double-register
models where the completion time of the second IO to
page P2 is faster in the double-register model.

86 16th USENIX Conference on File and Storage Technologies USENIX Association

1 2 4 8 168
4

2
1

0
0.4
0.8
1.2
1.6

[a] OC

X Y

La
te

nc
y

(m
s)

1 2 4 8 168
4

2
1

[b] FEMU

X Y

Figure 4: OpenChannel SSD (OC) vs. FEMU. X: # of

channels, Y: # of planes per channel. The figures are described

in the “Result 1” segment of Section 3.2.3.

Second, OC uses a non-uniform page latency model;
that is, pages that are mapped to upper bits of MLC cells
(“upper” pages) incur higher latencies than those mapped
to lower bits (“Lower” pages); for example 48/64µs for
lower/upper-page read and 900/2400µs for lower/upper-
page write. Making it more complex, the 512 pages in
each NAND block are not mapped in a uniformly inter-
leaving manner as in “LuLuLuLu...”, but rather in a spe-
cific way, “LLLLLLuLLuLLuu...”, where pages #0-6 and
#8-9 are mapped to Lower pages, pages #7 and #10 to
upper pages, and the rest (“...”) have a repeating pat-
tern of “LLuu”.

Results: By incorporating this detailed model, FEMU
can act as an accurate drop-in replacement of OC, which
we demonstrate with the following results.

Result 1: Figure 4 compares the IO latencies on OC
vs. FEMU. The workload is 16 IO threads performing
random reads uniformly spread throughout the storage
space. We map the storage space to different configu-
rations. For example, x=1 and y=1 implies that OC
and FEMU are configured with only 1 channel and 1
plane/channel, thus as a result, the average latency is
high (z>1550µs) as all the 16 concurrent reads are con-
tending for the same plane and channel. The result for
x=16 and y=1 implies that we use 16 channels with 1
plane/channel (a total of 16 planes). Here, the concur-
rent reads are absorbed in parallel by all the planes and
channels, hence a faster average read latency (z<130µs).
Overall, Figures 4a and 4b exhibit a highly similar pat-
tern, showing the success of our queuing delay emula-
tion. The latency difference (error) is only between 0.8-
11.6%; Error=(Latfemu−Latoc)/Latoc.

Result 2: Figure 5a shows the results from running
several macrobenchmarks with six filebench personali-
ties, with 16 IO threads of concurrent reads/writes on 16
planes across 4 channels. The figure only shows the la-
tency difference (Error) which contrasts the accuracy
of our basic and advanced delay models. With the basic
model, the resulting latencies are highly inaccurate (12-
57%), but with the advanced model, the error drops to

 0
 20
 40
 60
 80

File
Server

Network
FS

OLTP Varmail Video
Server

Web
Proxy

Er
ro

r (
%

)

[a] Filebench

D-Reg S-Reg

16T16P

16T1P
1T16P

1T1P

[b] Varmail

D-Reg

Figure 5: Filebench on OpenChannel SSD (OC)
vs. FEMU. The figures are described in the “Result 2”

segment of Section 3.2.3. The y-axis shows the latency dif-

ference (error) of the benchmark results on OC vs. FEMU

(Error=(Latfemu−Latoc)/Latoc). D-Reg and S-Reg repre-

sent the advanced and basic model respectively. The two bars

with bold edge in Figures (a) and (b) are the same experiment

and configuration (varmail with 16 threads on 16 planes).

only 0.5-38%, which are 1.5-40× more accurate across
the six benchmarks.

We believe that these errors are reasonable as we deal
with delay emulation of tens of µs granularity. We leave
further optimization for future work; we might have
missed other OC intricacies that should be incorporated
into our advanced model (as explained at the end of §2.4,
OC only exposes channels and chips, but other details
are not exposed by the vendor). Nevertheless, we inves-
tigate further the residual errors, as shown in Figure 5b.
Here, we use the varmail personality but we vary the
#IO threads [T] and #planes [P]. For example, in the 16
threads on 16 planes configuration (x=“16T16P” in Fig-
ure 5b, which is the same configuration used in experi-
ments in Figure 5a), the error is 38%. However, the error
decreases in less complex configurations (e.g., 0.7% er-
ror with single thread on single plane). Thus, higher er-
rors come from more complex configurations (e.g., more
IO threads and more planes), which we explain next.

Result 3: We find that using an advanced model re-
quires more CPU computation, and this compute over-
head will backlog with higher thread count. To show
this, Figure 2b compares the simple +50µs delay emu-
lation in our raw implementation (§3.2.1) vs. advanced
model. Here, both cases simply add +50µs, but the ad-
vanced model must traverse many if-else statements (to
check register, plane, and channel next free time), hence
the compute overhead. Further scalability optimizations,
as discussed at the end of §3.1 can help.

3.3 Usability and Extensibility

Being a software-based emulation platform, FEMU can
be extended in many different ways. We now describe
existing features/usabilities of FEMU, briefly showcase
successful extensions used in our recent work [14, 43] as
well as possible future work that FEMU features enable.

USENIX Association 16th USENIX Conference on File and Storage Technologies 87

 0
 1
 2
 3
 4

PlaneChannel
ControllerAv

g.
 L

at
en

cy
 (m

s)

GC Blocking Levels

[a] Varmail

 0
 2
 4
 6
 8

 10

PlaneChannel
Controller

Jo
b

D
ur

at
io

n
(x

10
0

s)

GC Blocking Levels

[b] WordCount

Figure 6: Use examples. Figure 6a is described in the

“FTL and GC schemes” segment of Section 3.3. Figure 6b is

discussed in the “Distributed SSDs” segment of Section 3.3.

• FTL and GC schemes: In default mode, our FTL em-
ploys a dynamic mapping and a channel-blocking GC as
used in other simulators [9, 16]. One of our projects uses
FEMU to compare different GC schemes: controller,
channel, and plane blocking [43]. In controller-blocking
GC, a GC operation “locks down” the controller, pre-
venting any foreground IOs to be served (as in OpenSSD
[7]). In channel-blocking GC, only channels involved in
GC page movement are blocked (as in SSDSim [16]). In
plane-blocking GC, the most efficient one, page move-
ment only flows within a plane without using any chan-
nel (i.e., “copyback” [2]). Sample results are shown in
Figure 6a. Beyond our work, recent works also show the
benefits of SSD partitioning for performance isolation
[11, 17, 22, 27, 37], which are done on either a simu-
lator or a hardware platform. More partitioning schemes
can also be explored with FEMU.

• White-box vs. black-box mode: FEMU can be used
as (1) a white-box device such as OpenChannel SSD
where the device exposes physical page addresses and
the FTL is managed by the OS such as in Linux Light-
NVM or (2) a black-box device such as commodity SSDs
where the FTL resides inside FEMU and only logical ad-
dresses are exposed to the OS.

• Multi-device support for flash-array research:
FEMU is configurable to appear as multiple devices to
the Guest OS. For example, if FEMU exposes 4 SSDs,
inside FEMU there will be 4 separate NVMe instances
and FTL structures (with no overlapping channels) man-
aged in a single QEMU instance. Previous emulators
(VSSIM and LightNVM’s QEMU) do not support this.

• Extensible OS-SSD NVMe commands: As FEMU
supports NVMe, new OS-to-SSD commands can be
added (e.g., for host-aware SSD management or split-
level architecture [31]). For example, currently in Light-
NVM, a GC operation reads valid pages from OC to
the host DRAM and then writes them back to OC.
This wastes host-SSD PCIe bandwidth; LightNVM fore-
ground throughput drops by 50% under a GC. Our con-
versation with LightNVM developers suggests that one

can add a new “pageMove fromAddr toAddr” NVMe com-
mand from the OS to FEMU/OC such that the data move-
ment does not cross the PCIe interface. As mentioned
earlier, split-level architecture is trending [12, 20, 29, 40,
44] and our NVMe-powered FEMU can be extended to
support more commands such as transactions, deduplica-
tion, and multi-stream.

• Page-level latency variability: As discussed before
(§3.2), FEMU supports page-level latency variability.
Among SSD engineers, it is known that “not all chips are
equal.” High quality chips are mixed with lesser quality
chips as long as the overall quality passes the standard.
Bad chips can induce more error rates that require longer,
repeated reads with different voltages. FEMU can also
be extended to emulate such delays.

• Distributed SSDs: Multiple instances of FEMU can
be easily deployed across multiple machines (as simple
as running Linux hypervisor KVMs), which promotes
more large-scale SSD research. For example, we are
also able to evaluate the performance of Hadoop’s word-
count workload on a cluster of machines running FEMU,
but with different GC schemes as shown in Figure 6b.
Since HDFS uses large IOs, which will eventually be
striped across many channels/planes, there is a smaller
performance gap between channel and plane blocking.
We hope FEMU can spur more work that modifies the
SSD layer to speed up distributed computing frameworks
(e.g., distributed graph processing frameworks).

• Page-level fault injection: Beyond performance-
related research, flash reliability research [26, 33] can
leverage FEMU as well (e.g., by injecting page-level
corruptions and faults and observing how the high-level
software stack reacts).

• Limitations: FEMU is DRAM-backed, hence can-
not emulate large-capacity SSDs. Furthermore, for crash
consistency research, FEMU users must manually emu-
late “soft” crashes as hard reboots will wipe out the data
in the DRAM. Also, as mentioned before (§3.2), there is
room for improving accuracy.

4 Conclusion & Acknowledgments

As modern SSD internals are becoming more complex,
their implications to the entire storage stack should be in-
vestigated. In this context, we believe FEMU is a fitting
research platform. We hope that our cheap and extensible
FEMU can speed up future SSD research.

We thank Sam H. Noh, our shepherd, and the anony-
mous reviewers for their tremendous feedback. This ma-
terial was supported by funding from NSF (grant Nos.
CNS-1526304 and CNS-1405959).

88 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] https://github.com/ucare-uchicago/femu.

[2] Using COPYBACK Operations to Maintain Data
Integrity in NAND Flash Devices. https://www.
micron.com/~/media/documents/products/

technical-note/nand-flash/tn2941_idm_
copyback.pdf, 2008.

[3] Towards Multi-threaded Device Emulation in QEMU.
KVM Forum, 2014.

[4] Improving the QEMU Event Loop. KVM Forum, 2015.

[5] NVMe Specification 1.3. http://www.nvmexpress.
org, 2017.

[6] Open-Channel Solid State Drives. http://lightnvm.
io, 2017.

[7] The OpenSSD Project. http://openssd.io, 2017.

[8] Violin Memory. All Flash Array Architecture, 2017.

[9] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design Tradeoffs for SSD Performance. In Proceedings

of the USENIX Annual Technical Conference (ATC),
2008.

[10] Muli Ben-Yehuda, Michael Factor, Eran Rom, Avishay
Traeger, Eran Borovik, and Ben-Ami Yassour. Adding
Advanced Storage Controller Functionality via
Low-Overhead Virtualization. In Proceedings of the 10th

USENIX Symposium on File and Storage Technologies

(FAST), 2012.

[11] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Symposium on File

and Storage Technologies (FAST), 2017.

[12] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun,
Ting-Fang Chien, An-Nan Chang, and Cheng-Ding
Chen. Software Orchestrated Flash Array. In The 7th

Annual International Systems and Storage Conference

(SYSTOR), 2014.

[13] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: A Flash Translation Layer Employing
Demand-based Selective Caching of Page-level Address
Mappings. In Proceedings of the 14th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2009.

[14] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface. In Proceedings of

the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[15] Nadav Har’El, Nadav, Gordon, Abel, Landau, Alex,
Ben-Yehuda, Muli, Traeger, Avishay, Ladelsky, and
Razya. Efficient and Scalable Paravirtual I/O System. In
Proceedings of the 2013 USENIX Annual Technical

Conference (ATC), 2013.

[16] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and
Shuping Zhang. Performance Impact and Interplay of
SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity. In
Proceedings of the 25th International Conference on

Supercomputing (ICS), 2011.

[17] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and
Moinuddin K. Qureshi. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for
Virtualized SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),
2017.

[18] Xavier Jimenez and David Novo. Wear Unleveling:
Improving NAND Flash Lifetime by Balancing Page
Endurance. In Proceedings of the 12th USENIX

Symposium on File and Storage Technologies (FAST),
2014.

[19] William K. Josephson, Lars A. Bongo, David Flynn,
Fusion-io, and Kai Li. DFS: A File System for
Virtualized Flash Storage. In Proceedings of the 8th

USENIX Symposium on File and Storage Technologies

(FAST), 2010.

[20] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-streamed Solid-State Drive.
In the 6th Workshop on Hot Topics in Storage and File

Systems (HotStorage), 2014.

[21] Woon-Hak Kang, Sang-Won Lee, Bongki Moon,
Gi-Hwan Oh, and Changwoo Min. X-FTL:
Transactional FTL for SQLite Databases. In Proceedings

of the 2013 ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2013.

[22] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO Complying SSDs Through OPS Isolation. In
Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[23] Tae Yong Kim, Dong Hyun Kang, Dongwoo Lee, and
Young Ik Eom. Improving Performance by Bridging the
Semantic Gap between Multi-queue SSD and I/O
Virtualization Framework. In Proceedings of the 31st

IEEE Symposium on Massive Storage Systems and

Technologies (MSST), 2015.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash ≈ Local Flash. In Proceedings of

the 22nd International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), 2017.

[25] Sungjin Lee, Ming Liu, Sang Woo Jun, Shuotao Xu,
Jihong Kim, and Arvind. Application-Managed Flash.
In Proceedings of the 14th USENIX Symposium on File

and Storage Technologies (FAST), 2016.

[26] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur
Mutlu. A Large-Scale Study of Flash Memory Failures
in the Field. In Proceedings of the 2015 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2015.

USENIX Association 16th USENIX Conference on File and Storage Technologies 89

[27] Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and Sharing in Disaggregated
Rack-Scale Storage. In Proceedings of the 13th

Symposium on Networked Systems Design and

Implementation (NSDI), 2017.

[28] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF:
Software-Defined Flash for Web-Scale Internet Storage
System. In Proceedings of the 18th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[29] Vijayan Prabhakaran, Thomas L. Rodeheffer, and
Lidong Zhou. Transactional Flash. In Proceedings of the

8th Symposium on Operating Systems Design and

Implementation (OSDI), 2008.

[30] Rusty Russell. virtio: Towards a De-Facto Standard for
Virtual I/O Devices. In ACM SIGOPS Operating

Systems Review (OSR), 2008.

[31] Mohit Saxena, Michael M. Swift, and Yiying Zhang.
FlashTier: a Lightweight, Consistent and Durable
Storage Cache. In Proceedings of the 2012 EuroSys

Conference (EuroSys), 2012.

[32] Mohit Saxena, Yiying Zhang, Michael M. Swift, Andrea
C. Arpaci Dusseau, and Remzi H. Arpaci Dusseau.
Getting Real: Lessons in Transitioning Research
Simulations into Hardware Systems. In Proceedings of

the 11th USENIX Symposium on File and Storage

Technologies (FAST), 2013.

[33] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),
2016.

[34] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang
Liu, and Steven Swanson. Willow: A
User-Programmable SSD. In Proceedings of the 11th

Symposium on Operating Systems Design and

Implementation (OSDI), 2014.

[35] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao.
DIDACache: A Deep Integration of Device and
Application for Flash Based Key-Value Caching. In
Proceedings of the 15th USENIX Symposium on File and

Storage Technologies (FAST), 2017.

[36] Liang Shi, Kaijie Wu, Mengying Zhao, Chun Jason Xue,
Duo Liu, and Edwin H.-M. Sha. Retention Trimming for
Lifetime Improvement of Flash Memory Storage
Systems. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 35(1),
January 2016.

[37] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins,
Carlos Maltzahn, and Scott Brandt. Flash on Rails:
Consistent Flash Performance through Redundancy. In
Proceedings of the 2014 USENIX Annual Technical

Conference (ATC), 2014.

[38] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a Flash with
ioSnap. In Proceedings of the 2014 EuroSys Conference

(EuroSys), 2014.

[39] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In
Proceedings of the USENIX Annual Technical

Conference (USENIX), 2001.

[40] Animesh Trivedi, Nikolas loannou, Bernard Metzler,
Patrick Stuedi, Jonas Pfefferle, Ioannis Koltsidas,
Kornilios Kourtis, and Thomas R. Gross. FlashNet:
Flash/Network Stack Co-design. In The 10th Annual

International Systems and Storage Conference

(SYSTOR), 2017.

[41] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree based
Key-Value Store on Open-Channel SSD. In Proceedings

of the 2014 EuroSys Conference (EuroSys), 2014.

[42] Zev Weiss, Sriram Subramanian, Swaminathan
Sundararaman, Nisha Talagala, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
ANViL: Advanced Virtualization for Modern
Non-Volatile Memory Devices. In Proceedings of the

13th USENIX Symposium on File and Storage

Technologies (FAST), 2015.

[43] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect
Elimination of Garbage Collection Tail Latencies in
NAND SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),
2017.

[44] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. AutoStream: Automatic Stream
Management for Multi-streamed SSDs. In The 10th

Annual International Systems and Storage Conference

(SYSTOR), 2017.

[45] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong
Kang, Jongmoo Choi, Sungroh Yoon, and Jaehyuk Cha.
VSSIM: Virtual machine based SSD simulator. In
Proceedings of the 29th IEEE Symposium on Massive

Storage Systems and Technologies (MSST), 2013.

[46] Jianquan Zhang, Dan Feng, Jianlin Gao, Wei Tong,
Jingning Liu, Yu Hua, Yang Gao, Caihua Fang, Wen Xia,
Feiling Fu, and Yaqing Li. Application-Aware and
Software-Defined SSD Scheme for Tencent Large-Scale
Storage System. In Proceedings of 22nd IEEE

International Conference on Parallel and Distributed

Systems (ICPADS), 2016.

[47] Yiying Zhang, Leo Prasath Arulraj, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
De-indirection for Flash-based SSDs with Nameless
Writes. In Proceedings of the 10th USENIX Symposium

on File and Storage Technologies (FAST), 2012.

90 16th USENIX Conference on File and Storage Technologies USENIX Association

