
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

ALACC: Accelerating Restore Performance of
Data Deduplication Systems Using Adaptive

Look-Ahead Window Assisted Chunk Caching
Zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du,

Department of Computer Science, University of Minnesota, Twin Cities

https://www.usenix.org/conference/fast18/presentation/cao

https://www.usenix.org/conference/fast18/presentation/cao

ALACC: Accelerating Restore Performance of Data Deduplication Systems
Using Adaptive Look-Ahead Window Assisted Chunk Caching

Zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du
Department of Computer Science, University of Minnesota, Twin Cities

{caoxx380, wenxx159, wuxx0835, du}@umn.edu

Abstract

Data deduplication has been widely applied in storage
systems to improve the efficiency of space utilization.
In data deduplication systems, the data restore perfor-
mance is seriously hindered by read amplification since
the accessed data chunks are scattered over many con-
tainers. A container consisting of hundreds or thousands
data chunks is the data unit to be read from or write to
the storage. Several schemes such as forward assem-
bly, container-based caching, and chunk-based caching
are used to reduce the number of container-reads dur-
ing the restore process. However, how to effectively use
these schemes to get the best restore performance is still
unclear.

In this paper, we first study the trade-offs of using
these schemes in terms of read amplification and com-
puting time. We then propose a combined data chunk
caching and forward assembly scheme called ALACC
(Adaptive Look-Ahead Chunk Caching) for improving
restore performance which can adapt to different dedu-
plication workloads with a fixed total amount of mem-
ory. This is accomplished by extending and shrinking
the look-ahead window adaptively to cover an appro-
priate data recipe range and dynamically deciding the
memory to be allocated to forward assembly area and
chunk-based caching. Our evaluations show the restore
throughput of ALACC is higher than that of the optimum
case of various configurations using the fixed amount of
memory allocated to forward assembly and to chunk-
based caching.

1 Introduction

Coming into the second decade of the twenty-first cen-
tury, social media, cloud computing, big data, and other
emerging applications are generating an extremely huge
amount of data daily. Data deduplication is thus widely
used in both primary and secondary storage systems to
eliminate the duplicated data at chunk-level or file-level.
In chunk-level data deduplication systems, the original
data stream is segmented into data chunks and the du-

plicated data chunks are eliminated (not to store). The
original data stream is then replaced by an ordered list
of references, called recipe, to the unique data chunks.
A unique chunk is a new data chunk which has not ap-
peared before. At the same time, only these unique data
chunks are stored in the persistent storage. To maxi-
mize the I/O efficiency, instead of storing each single
data chunk separately, these unique chunks are packed
into containers based on the order of their appearances in
the original data stream. A container which may consist
of hundreds or thousands of data chunks is the basic unit
of data read from or written to storage with a typical size
of 4MB or larger.

Restoring the original data is the reverse process of
deduplication. Data chunks are accessed based on their
indexing order in the recipe. The recipe includes the
metadata information of each data chunk (e.g., chunk
ID, chunk size, container address and offset). The corre-
sponding data chunks are assembled in a memory buffer.
Once the buffer is full, it will be sent back to the request-
ing client such that one buffer size data is restored. Re-
questing a unique or duplicate data chunk may trigger a
container read if the data chunk is not currently available
in memory, which causes a storage I/O and impacts re-
store performance. Our focus is specifically on restore
performance in secondary storage systems.

In order to reduce the number of container-reads, we
may read ahead the recipe and allocate the data chunks
to the buffers in the Forward Assembly Area (FAA).
We can also cache the read-out container (container-
based caching) or a subset of data chunks (chunk-based
caching) for future use. If a requested data chunk is not
currently available in memory, it will trigger a container-
read. It is also possible that only a few data chunks in
the read-out container can be used in the current FAA.
Therefore, to restore one container size of the original
data stream, several more containers may have to be read
from the storage causing read amplification. Read am-
plification causes low throughput and long completion
time for the restore process. Therefore, the major goal of
improving the restore performance is to reduce the num-
ber of container-reads [1]. For a given data stream, if

USENIX Association 16th USENIX Conference on File and Storage Technologies 309

its deduplication ratio is higher, its read amplification is
potentially more severe.

There are several studies that address the restore per-
formance issues [1, 2, 3, 4, 5, 6, 7]. The container-based
caching scheme is used in [3, 4, 5, 7]. To use the mem-
ory space more efficient, a chunk-based LRU caching
is applied in [1, 6]. In the restore, the sequence of fu-
ture accesses is precisely recorded in the recipe. Using
a look-ahead window or other methods can identify the
future information to achieve a more effective caching
policy. Lillibridge et al. [1] propose a forward assem-
bly scheme. The proposed scheme reserves and uses
multiple container size buffer in FAA to restore the data
chunks with a look-ahead window which is the same size
as FAA. Park et al. [7] use a fixed size look-ahead win-
dow to identify the cold containers and evict them first in
a container-based caching scheme.

The following issues are not fully addressed in the
existing work. First, the performance and efficiency of
container-based caching, chunk-based caching and for-
ward assembly vary as the workload locality changes.
When the total size of available memory for restore is
fixed, how to use these schemes in an efficient way and
make them adapt to the workload changing are very chal-
lenging. Second, how big is the look-ahead window and
how to use the future information in the look-ahead win-
dow to improve the cache hit ratio are less explored.
Third, acquiring and processing the future access infor-
mation in the look-ahead window requires computing
overhead. How to make better trade-offs to achieve good
restore performance, but limit the computing overhead is
also an important issue.

To address these issues, in this paper we design a hy-
brid scheme which combines chunk-based caching and
forward assembly. We also propose new ways of exploit-
ing the future access information obtained in the look-
ahead window to make better decisions on which data
chunks are to be cached or evicted. The sizes of the look-
ahead window, chunk cache, and FAA are dynamically
adjusted to reflect the future access information in the
recipe.

In this paper, we first propose a look-ahead window
assisted chunk-based caching scheme. A large Look-
Ahead Window (LAW) provides the future data chunk
access information to both FAA and chunk cache. Note
that the first portion of the LAW (as the same size as that
of FAA) is used to place chunks in FAA and the second
part of the LAW is used to identify the caching candi-
dates, evicting victims and accessing sequence of data
chunks. We will only cache the data chunks that appear
in the current LAW. Therefore, a cached data chunk is
classified as either an F-chunk or a P-chunk. F-chunks
are the data chunks that will be used in the near future
(appear in the second part of LAW). P-chunks are the

data chunks that only appear in the first part of the LAW.
If most of the cache space is occupied by the F-chunks,
we may want to increase the cache space. If most of the
cache space is occupied by P-chunks, caching is not very
effective at this moment. We may consider to reduce the
cache space or to enlarge the LAW.

Based on the variation of the numbers of F-chunks,
P-chunks, and other measurements, we then propose a
self-adaptive algorithm (ALACC) to dynamically adjust
the sizes of memory space allocated for FAA and chunk
cache, and the size of LAW. If the number of F-chunks
is low, ALACC extends the LAW size to identify more
F-chunks to be cached. If the number of P-chunks is ex-
tremely high, ALACC either reduces the cache size or
enlarges LAW size to adapt to the current access pattern.
When the monitored measurements indicate that FAA
performs better, ALACC increases the FAA size, thus
reduces the chunk caching space, and gradually shrinks
LAW. Since we consider a fixed amount of available
memory, a reduction of chunk cache space will increase
the same size of FAA or vice versa. For the reason that
LAW only involves meta-data information which takes
up a smaller data space, we ignore the space required by
LAW, but focus more on the computing overhead caused
by the operations of LAW in this paper.

Our contributions can be summarized as follows:

• We comprehensively investigate the performance
trade-offs of container-based caching, chunk-based
caching and forward assembly in different work-
loads and memory configurations.

• We propose ALACC to dynamically adjust the sizes
of FAA and chunk cache to adapt to the changing of
chunk locality to get the best restore performance.

• By exploring the cache efficiency and overhead of
different LAW size, we propose and implement an
effective LAW with its size dynamically adjusted to
provide essential information for FAA and chunk
cache and avoid unnecessary overhead.

The rest of the paper is arranged as follows. Section
2 reviews the background of data deduplication and the
current schemes of improving restore performance. Sec-
tion 3 compares and analyzes different caching schemes.
We first present a scheme with the pre-determined and
fixed sizes of the forward assembly area, chunk cache,
and LAW in Section 4. Then, the adaptive algorithm is
proposed and discussed in Section 5. A brief introduc-
tion of the prototype implementation is in Section 6 and
the evaluation results and analyses are shown in Section
7. Finally, we provide some conclusions and discuss the
future work in Section 8.

310 16th USENIX Conference on File and Storage Technologies USENIX Association

2 Background and Related Work

In this section, we first review the deduplication and re-
store process. Then, the related studies of improving re-
store performance are presented and discussed.

2.1 Data Deduplication Preliminary

Data deduplication is widely used in the secondary
storage systems such as archiving and backup systems
to improve the storage space utilization [8, 9, 10, 11,
12, 13, 14, 15]. Recently, data deduplication is also ap-
plied in the primary storage systems such as SSD array
to make better trade-offs between cost and performance
[16, 17, 18, 19, 20, 21, 22, 23]. To briefly summarize
deduplication, as a data stream is written to the storage
system, it is divided into data chunks, which are repre-
sented by a secure hash value called a fingerprint. The
chunk fingerprints are searched in the indexing table to
check their uniqueness. Only the new unique chunks are
written to containers, and the original data stream is rep-
resented with a recipe consisting of a list of data chunk
meta-information including the fingerprint.

Restoring the original data stream back is the reverse
process of deduplication. Starting from the beginning of
the recipe, the restore engine identifies the data chunk
meta-information sequentially, accesses the chunks ei-
ther from memory or from storage, and assembles the
chunks in an assembling buffer in memory. To get a
chunk from storage to memory, the entire container hold-
ing the data chunk will be read, and the container may be
distant from the last accessed container. Once the buffer
is full, data is flushed out to the requested client.

In the worst case, to assemble N duplicated chunks,
we may need N container-reads. A straightforward so-
lution to reduce the container-reads is to cache some of
the containers or data chunks. Since some data chunks
will be used very shortly after they are read into memory,
these cached chunks can be directly copied from cache
to the assembling buffer which can reduce the number of
container-reads. Another way to reduce the number of
container-reads is to store (re-write) some of the dupli-
cated data chunks together with the unique chunks during
the deduplication process in the same container. There-
fore, the duplicated chunks and unique chunks will be
read out together in the same container and thus avoids
the needs of accessing these duplicated chunks from
other containers. However, this approach will reduce the
effectiveness of data deduplication.

2.2 Related Work on Restore Performance Im-
provement

Selecting and storing some duplicated data chunks
during the deduplication process and designing efficient

caching policies during the restore process are two ma-
jor research directions to improve the restore perfor-
mance. In the remaining of this subsection, we first
review the studies of selectively storing the duplicated
chunks. Then, we introduce the container-based caching,
chunk-based caching and forward assembly.

There have been several studies focusing on how to se-
lect and store the duplicated data chunks to improve the
restore performance. The duplicated data chunks have al-
ready been written to the storage when they first appeared
as unique data chunks and dispersed over different phys-
ical locations in different containers, which creates the
chunk fragmentation issue [3]. During the restore pro-
cess, restoring these duplicated data chunks causes po-
tential random container-reads which lead to a low re-
store throughput. Nam et al. [3, 4] propose a way to
measure the chunk fragmentation level (CFL). By stor-
ing some of the duplicated chunks to keep the CFL lower
than a given threshold in a segment of the recipe, the
number of container-reads is reduced.

Kaczmarczyk et al. [2] use the mismatching de-
gree between the stream context and disk context of the
chunks to make the decision of storing selected dupli-
cated data chunks. The container capping is proposed by
Lillibridge et al. [1]. The containers storing the dupli-
cated chunks are ranked and the duplicated data chunks
in the lower ranking containers are selected and stored
again. In a historical-based duplicated chunk rewrit-
ing algorithm [5], the duplicated chunks in the inherited
sparse containers are rewritten. Due to the fact that re-
writing some selected duplicated data chunks again sac-
rifices the deduplication ratio and the selecting and re-
writing can be applied separately during the deduplica-
tion process, we will consider only the restore process in
this paper.

Different caching policies are studied in [1, 2, 3, 4, 6,
7, 24, 25]. Kaczmarczyk et al. [2] and Nam et al. [3, 4]
use container-based caching. Other than using recency
to identify the victims in the cache, Park et al. [7] pro-
pose a future reference count based caching policy with
the information from a fixed size look-head window. Be-
lady’s optimal replacement policy can only be used in a
container-based caching schema [5]. It requires extra ef-
fort to identify and store the replacement sequence dur-
ing the deduplication. If a smaller caching granularity
is used, a better performance can be achieved. Instead
of caching containers, some of the studies directly cache
data chunks to achieve higher cache hit ratio [1, 6]. Al-
though container-based caching has lower operating cost,
chunk-based caching can better filter out the data chunks
that are irrelevant to the near future restore and better im-
prove the cache space utilization.

However, the chunk-based caching with LRU also has
some performance issues. The historical based LRU may

USENIX Association 16th USENIX Conference on File and Storage Technologies 311

Table 1: Data Sets
Data Set Name ds 1 ds 2 ds 3

Deduplication Ratio 1.03 2.35 2.11
Reuse Distance (# containers) 24 18 26

fail to identify data chunks in the read-in container which
are not used in the past and current assembling buffers,
but they will be used in the near future. This results in
cache misses. To address this issue, a look-ahead win-
dow which covers a range of future accesses from the
recipe can provide the crucial future access information
to improve the cache effectiveness.

A special fashion of chunk-based caching proposed by
Lillibridge et al. is called forward assembly [1]. Multiple
containers (say k) are used as assembling buffers called
Forward Assembly Area (FAA) and a look-ahead win-
dow of the same size is used to identify the data chunks
to be restored in the next k containers. FAA can be con-
sidered as a chunk-based caching algorithm. It caches
all the data chunks that appear in the next k containers
and evicts any data chunk which does not appear in these
containers. Since data chunks are directly copied from
container-read buffer to FAA, it avoids the memory-copy
operations from the container-read buffer to the cache.
Therefore, forward assembly has lower overhead com-
paring with the chunk-based caching. Forward assembly
can be very effective if each unique data chunk will re-
appear in a short range from the time it is being restored.

As discussed, there is still a big potential to improve
the restore performance if we effectively combine for-
ward assembly and chunk-based caching using the fu-
ture access information in the LAW. In this paper, we
consider the total amount memory available to FAA and
chunk cache is fixed. If the memory allocation for these
two can vary according to the locality changing, the num-
ber of container-reads may be further reduced.

3 Analysis of Cache Efficiency

Before we start to discuss the details of our proposed de-
sign, we first compare and analyze the cache efficiency
of container-based caching, chunk-based caching, and
forward assembly. The observations and knowledge we
learned will help our design. The traces used in the ex-
periments of this section are summarized in Table 1. ds 1
and ds 2 are the last version of EMC 1 and FSL 1 traces
respectively which are introduced in detail in Section 7.1.
ds 3 is a synthetic trace based on ds 2 with larger re-use
distance. The container size is 4MB. Computing time is
used to measure the management overhead. It is defined
as the total restore time excluding the storage I/O time
which includes the cache adjustment time, memory-copy

0

50

100

150

200

250

300

C
on

ta
in

er
-r

ea
ds

pe
r

10
0M

B

R
es

to
re

d

Total Cache Size

Container_LRU
Chunk_LRU

(a) # Containers-reads per 100MB
restored as cache size varies from
32MB to 1GB

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

C
om
pu
tin
g
T
im
e

(s
ec
on
ds
/G
B
)

Total Cache Size

Container_LRU
Chunk_LRU

(b) Computing time per 1GB re-
stored as cache size varies from
32MB to 1GB

Figure 1: The cache efficiency comparison between
chunk-based caching and container-based caching

time, CPU operation time, and others.

3.1 Caching Chunks vs. Caching Containers

Technically, caching containers can avoid the
memory-copy from the container-read buffer to the
cache. If the entire cache space is the same, the cache
management overhead of container-based caching is
lower than that of chunk-based caching. In most cases,
some data chunks in a read-in container are irrelevant to
the current and near-future restore process. Container-
based caching still caches these chunks and wastes the
valuable memory space. Also, some of the useful data
chunks are forced to be evicted together with the whole
container which increases the cache miss ratio. Thus,
without considering managing overhead, caching chunks
can achieve better cache hit ratio than caching containers
if we apply the same cache policy in most workloads.
This is especially true if we use LAW as a guidance of
future accesses. Only in the extreme cases that most data
chunks in the container are used very shortly and there
is very high temporal based locality, the cache hit ratio
of caching containers can be better than that of caching
chunks.

We use the ds 2 trace to evaluate and compare the
number of container-reads and the computing overhead
of caching chunks and caching containers. We imple-
mented the container-based caching and chunk-based
caching with the same LRU policy. The assembling
buffer used is one container size. As shown in Fig-
ure 1(b), the computing time of restoring 1GB data of
caching chunks is about 15-150% higher than that of
caching containers. Theoretically, the LRU cache in-
sertion, lookup and eviction are O(1) time complexity.
However, the computing time drops in both designs as
the cache size increases. The reason is that with larger
memory size more containers or data chunks can be
cached and the cache eviction happens less frequently.
There will be fewer memory-copy of containers or data
chunks, which leads to less computing time.

312 16th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

3

4

5

ds_1 ds_2 ds_3

C
om

pu
tin

g
T

im
e

(s
ec

on
ds

/G
B

)

Forward Assembly chunk_caching

(a) Computing time per 1GB restored

29
30
31
32
33
34
35
36
37
38

ds_1 ds_2 ds_3

R
re

st
or

eT
hr

ou
gh

pu
t

(M
B

/S
)

Forward Assembly chunk_caching

(b) Restore throughput

Figure 2: The cache efficiency comparison between for-
ward assembly and chunk-based caching

Also, due to fewer cache replacements in the
container-based caching, the computing time of caching
containers drops quicker than that of caching chunks.
However, as shown in Figure 1(a), the number of
container-reads of caching chunks is about 30-45% fewer
than that of caching containers. If one container-read
needs 30ms, about 3% fewer container-reads can cover
the extra computing time overhead of caching chunks.
Therefore, caching chunks is preferred in the restore pro-
cess, especially when the cache space is limited.

3.2 Forward Assembly vs. Caching Chunks

Comparing with chunk-based caching, forward as-
sembly does not have the overhead of cache replacement
and the overhead of copying data chunks from container-
read buffer to the cache. Thus, the computing time of for-
ward assembly is much lower than that of chunk-based
caching. As for the cache efficiency, the two approaches
have their own advantages and disadvantages with dif-
ferent data chunk localities. If most of the data chunks
are unique or the chunk re-use locality is high in a short
range (e.g., within the FAA range), forward assembly
performs better than chunk-based caching. In this sce-
nario, most of the data chunks in the read-in containers
will only be used to fill the current FAA. In the same
scenario, if chunk-based caching can intelligently choose
the data chunks to be cached based on the future access
information in LAW, it can achieve a similar number of
container-reads but it has larger computing overhead.

If the re-use distances of many duplicated data chunks
are out of the FAA range, chunk-based caching per-
forms better than forward assembly. Since these dupli-
cated data chunks could not be allocated in the FAA, ex-
tra container-reads are needed when restoring these data
chunks via forward assembly. In addition, a chunk in the
chunk cache is only stored once while in forward assem-
bly it needs to be stored multiple times in its appearing
locations in the FAA. Thus, chunk-based caching can po-
tentially cover more data chunks with larger re-use dis-
tances. When the managing overhead is less than the

time saved by the reduction of container-reads, chunk-
based caching performs better.

We use the aforementioned three traces to compare the
efficiency of forward assembly with that of chunk-based
caching. The memory space used by both schemes is
64MB. For chunk-based caching, it uses the same size
LAW as FAA to provide the information of data chunks
accessed in the future. It caches the data chunks that ap-
pear in the LAW first, then adopts the LRU as its caching
policy to manage the rest of caching space. As shown in
Figure 2(a), the computing time of forward assembly is
smaller than that of chunk-based caching. The restore
throughput of forward assembly is higher than that of
chunk based caching except in ds 3 as shown in Figure
2(b). In ds 3, the re-use distances of 77% of the dupli-
cated data chunks are larger than the FAA range. More
cache misses occur in forward assembly, while chunk-
based caching can effectively cache some of these data
chunks. In general, if the deduplication ratio is extremely
low or most of the chunk re-use distances can be cov-
ered by the FAA, the performance of forward assembly
is better than that of chunk-based caching. Otherwise,
chunk-based caching can be a better choice.

4 Look-Ahead Window Assisted Chunk-
based Caching

As discussed in the previous sections, combining for-
ward assembly with chunk-based caching can potentially
adapt to various workloads and achieve better restore
performance. In this section, we design a restore algo-
rithm with the assumption that the sizes of FAA, chunk
cache and LAW are all fixed. We call the memory space
used by chunk-based caching chunk cache. We first dis-
cuss how the FAA, chunk-based caching and LAW coop-
erate together to restore the data stream. Then, a detailed
example is presented to better demonstrate our design.

FAA consists of several container size memory buffers
and they are arranged in a linear order. We call each con-
tainer size buffer an FAB. A restore pointer pinpoints the
data chunk in the recipe to be found and copied to its cor-
responding location in the first FAB at this time. The data
chunks before the pointer are already assembled. Other
FABs are used to hold the accessed data chunks if these
chunks also appeared in these FABs. LAW starts with the
first data chunk in the first FAB (FAB1 in the example)
and covers a range bigger than that of FAA in the recipe.
In fact, the first portion of the LAW (equivalent to the
size of FAA) is used for the forward assembly purpose
and the remaining part of LAW is used for the purpose
of chunk-based caching.

An assembling cycle is the process to completely re-
store the first FAB in the FAA. That is, the duration af-
ter the previous first FAB is written back to the client

USENIX Association 16th USENIX Conference on File and Storage Technologies 313

Persistent
Storage

2 5 10 14 10 15 17 22…… ……

Look-Ahead Window Covered Range

Chunk Cache

22 18

Restored Data

UnknownFAACovered Range

2 822 18 23 12 13 32 23 28 6

102 518 10222 822

FAA

FAB1 FAB2

=

Restored

1712 1310

12

13

10

5

2

8

Information for Chunk Cache

F-cache P-cache

High Priority End

Low Priority End

……

22

restore

18

Container Read Buffer

Client

Figure 3: An example of look-ahead window assisted
chunk-based caching

and a new empty FAB is added to the end of FAA to
the time when the new first FAB is completely filled up.
At the end of one assembling cycle (i.e., the first FAB is
completely assembled), the content of the FAB is written
back to the requested client as the restored data and this
FAB is removed from the FAA. At the same time, a new
empty FAB will be added to the end of the FAA so that
FAA is maintained with the same size. For the LAW, the
first portion (one container size) corresponding to the re-
moved FAB is dropped and one more segment of recipe
(also one container size) is appended to the end of LAW.
Then, the restore engine starts the next assembly cycle to
fill in the new first FAB of the current FAA.

During the assembling cycle, the following is the pro-
cedure of restoring the data chunk pointed by the restore
pointer. If the data chunk at the restore pointer has al-
ready been stored by previous assembling operations, the
pointer will be directly moved to the next one. If the data
chunk has not been stored at its location in the FAB, the
chunk cache is checked first. If the chunk is found in the
cache, the data chunk is copied to the locations where
this data chunk appears in all the FABs including the lo-
cation pointed by the restore pointer. Also, the priority
of the chunk in the cache is adjusted accordingly. If the
chunk is not in the chunk cache, the container that holds
the data chunk will be read in from the storage. Then,
each data chunk in this container is checked with LAW
to identify all the locations it appears in the FAA. Then,
the data chunk is copied to the corresponding locations
in all FABs if they exist. Next, we have to decide which
chunks in this container are to be inserted to the chunk
cache according to a caching policy, and it will be de-
scribed later. After this data chunk is restored, the restore
pointer moves to the next data chunk in the recipe. The
read-in container will be replaced by the next requested
container. An example is shown in Figure 3, and it will
be described in detail in the last part of this section.

When inserting data chunks from the read-in container
to the chunk cache, we need to identify the potential us-
age of these chunks in the LAW and treat them accord-
ingly. Based on the second portion of LAW (i.e., the
remaining LAW after the size of FAA), the data chunks
from the read-in container can be classified into three cat-
egories: 1) U-chunk (Unused chunk) is a data chunk that
does not appear in the current entire LAW, 2) P-chunk
(Probably used chunk) is a data chunk that appears in the
current FAA but does not appear in the second portion of
the LAW, and 3) F-chunk (Future used chunk) is a data
chunk that will be used in the second portion of the LAW.
Note that a F-chunk may or may not be used in the FAA.

F-chunks are the data chunks that should be cached. If
more cache space is still available, we may cache some
P-chunks according to their priorities. That is, F-chunks
have priority over P-chunks for caching. However, each
of them has a different priority policy. The priority of
F-chunks is defined based on the ordering of their ap-
pearance in the second portion of the LAW. That is, an
F-chunk to be used in the near future in the LAW has a
higher priority over another F-chunk which will be used
later in the LAW. The priority of P-chunks is LRU based.
That is, the most recently used (MRU) P-chunk has a
higher priority over the least recently used P-chunks. Let
us denote the cache space used by F-chunks (P-chunks)
as F-cache (P-cache). The boundary between the F-cache
and P-cache is dynamically changing as the number of
F-chunks and that of P-chunks vary.

When the LAW advances, new F-chunks are added to
the F-cache. An F-chunk that has been restored and no
longer appeared in the LAW will be moved to the MRU
end of the P-cache. That is, this chunk becomes a P-
chunk. The priorities of some F-chunks are adjusted ac-
cording to their future access sequences. The new P-
chunks are added to the P-cache based on the LRU order
of their last appearance. Some P-chunks may become
F-chunks if they appear in the newly added portion of
LAW. When the cache eviction happens, data chunks are
evicted from the LRU end of the P-cache first. If there
is no P-chunk in P-cache, eviction starts from the lowest
priority end of the F-cache.

Figure 3 is an example to show the entire working pro-
cess of our design. Suppose one container holds 4 data
chunks. The LAW covers the data chunks of 4 contain-
ers in the recipe from chunk 18 to chunk 28. The data
chunks before the LAW have been assembled and writ-
ten back to the client. The data chunks beyond the LAW
is unknown to the restore engine at this moment. There
are two buffers in the FAA denoted as FAB1 and FAB2.
Each FAB has a size of one container and also holds 4
data chunks. FAA covers the range from chunk 18 to
chunk 17. The rest information of data chunks in the
LAW (from chunk 22 to chunk 28) are used for the chunk

314 16th USENIX Conference on File and Storage Technologies USENIX Association

cache. The red frames in the figure show the separations
of data chunks in containers. The labeled chunk number
represents the chunk ID and is irrelevant to the order of
the data chunk appearing in the recipe.

In FAB1, chunks 18, 2, 5 have already been stored and
the current restore pointer is at data chunk 10 (pointed
by the red arrow). This data chunk has neither been allo-
cated nor been cached. The container that stores chunk
10, 12, 13 and 17 is read out from the storage to the con-
tainer read buffer. Then, the data of chunk 10 is copied
to the FAB1. At the same time, chunk 10 also appears
in the FAB2 and the chunk is stored in the corresponding
position too. Next, the restore pointer moves to the chunk
14 at the beginning of the FAB2. Since FAB1 has been
fully assembled, its content is written out as restored data
and it is removed from FAA. The original FAB2 becomes
the new FAB1 and a new FAB (represented with dotted
frames) is added after FAB1 and becomes the new FAB2.

All the data chunks in the container read buffer are
checked with the LAW. Data chunk 10 is used in the FAA
but it does not appear again in the rest of LAW. So chunk
10 is a P-chunk and it is inserted to the MRU end of the
P-cache. Chunk 12 and chunk 13 are not used in the cur-
rent FAA but they will be used in the next two assembling
cycles within the LAW. They are identified as F-chunks
and added to the F-cache. Notice that chunk 12 appears
after chunk 22 and chunk 13 is used after chunk 12 as
shown in the recipe. Therefore, chunk 13 is inserted into
the low priority end and chunk 12 has the priority higher
than chunk 13. Chunk 17 has neither been used in the
FAA nor appeared in the LAW. It is a U-chunk and it will
not be cached. When restoring chunk 14, a new con-
tainer will be read into the container read buffer and it
will replace the current one.

5 The Adaptive Algorithm

The performance of the look-ahead window assisted
chunk-based caching is better than that of simply com-
bining the forward assembly with LRU-based chunk
caching. However, the sizes of FAA, chunk cache and
LAW are pre-determined and fixed in this design. As
discussed in the previous sections, FAA and chunk cache
have their own advantages and disadvantages for dif-
ferent workloads. In fact, in a given workload like a
backup trace, most data chunks are unique at the begin-
ning. Later in different sections of the workload, they
may have various degrees of duplication and re-usage.

Therefore, the sizes of FAA and chunk cache can be
dynamically changed to reflect the locality of the cur-
rent section of a workload. It is also important to figure
out what the appropriate LAW size is to get the best re-
store performance given a configuration of the FAA and
chunk cache. We propose an adaptive algorithm called

0

5

10

15

20

25

30

35

40

12 24 48 96 192 384 768

R
es
to
re
T
hr
ou
gh
pu
t

(M
B
/S
)

Look AheadWindow size
(# of containers)

(a) Restore throughput

0

2

4

6

8

10

12

14

12 24 48 96 192 384 768

C
om
pu
tin
g
T
im
e

(s
ec
on
ds
/G
B
)

Look AheadWindow Size
(# of containers)

(b) Computing time per 1GB restored

Figure 4: The restore performance and computing over-
head variation as the LAW size increases

ALACC that can dynamically adjust the sizes of FAA,
chunk cache and LAW according to the workload vari-
ation during the restore process. First, we evaluate and
analyze the restore performance of using different LAW
sizes. Then, we present the details of ALACC.

5.1 Performance Impact of LAW Size

We did an experiment that varies the LAW sizes for a
given workload and compared the restore throughput and
required computing overhead. We use an 8MB (2 con-
tainer size) FAA and a 24MB (6 container size) chunk
cache as the memory space configuration and increase
the LAW size from 12 container size to 768 container
size (it covers the original data stream size from 48MB to
3GB). As shown in Figure 4, the computing time contin-
uously increases as the LAW size increases due to higher
overhead to process and maintain the information in the
LAW. When the size of LAW is larger than 96, the restore
throughput starts to decrease. The performance degrada-
tion is caused by the increase of computing overhead and
less efficiency of chunk cache. Thus, using an appropri-
ate LAW size is important to make better trade-offs be-
tween cache efficiency and computing overhead.

We can explain the observation by analyzing the chunk
cache efficiency. Suppose the LAW size is SLAW chunks,
the FAA size is SFAA chunks, and the chunk cache size is
Scache chunks. Note that we use a container size as the ba-
sic unit for allocation and the number of containers can
be easily translated to the number of chunks. Assume
one data chunk Ci is used at the beginning of the FAA
and it will be reused after DCi chunks (i.e., the reuse dis-
tance of this chunk). If DCi < SFAA, it will be reused in
the FAA. If SFAA < DCi , this chunk should be either an F-
chunk or a P-chunk. However, the chunk category highly
depends on the size of SLAW . If the LAW only covers
the FAA range (SFAA = SLAW < DCi), the proposed algo-
rithm degenerates to the LRU-based chunk caching algo-
rithm. If SFAA < DCi < SLAW , we can definitely identify
this chunk as an F-chunk and decide to cache this chunk.
However, if SLAW < DCi , this chunk will be identified as

USENIX Association 16th USENIX Conference on File and Storage Technologies 315

a P-chunk and it may or may not be cached (this depends
on the available space in cache). Therefore, at least we
should ensure SFAA +Scache ≤ SLAW .

If the LAW size is large enough and most of the chunk
cache space are occupied by F-chunks, the cache effi-
ciency is high. However, once the cache is full of F-
chunks, the newly identified F-chunk may or may not
be inserted into the cache. This depends on its reuse
order. Thus, continuing increase the LAW size would
not further improve the cache efficiency. What is worse,
a larger LAW size requires more CPU and memory re-
sources to identify and maintain the future access infor-
mation. As we discuss before, if SLAW is the same as
SFAA, all cached chunks are P-chunks and chunk caching
becomes an LRU-based algorithm.

Thus, the best trade-off between cache efficiency and
overhead is when the total number of P-chunks is as low
as possible but not 0. However, it may be hard to main-
tain the number of P-chunks low all the time, especially
when there is a very limited number of F-chunks identi-
fied with a large LAW size. In this case, the size of LAW
should not be extended or it should be decreased slightly.

5.2 ALACC

Based on the previous analysis, we propose an adap-
tive algorithm, which dynamically adjusts the memory
space ratio of FAA and chunk cache, and the size of
LAW. We apply the adjustment at the end of each as-
sembling cycle right after the first FAB is restored. Sup-
pose at the end of ith assembling cycle, the sizes of FAA,
chunk cache and LAW are Si

FAA, Si
cache and Si

LAW con-
tainer size respectively. Si

FAA + Si
cache is fixed. To avoid

an extremely large LAW size, we set a maximum size of
LAW (MaxLAW) that is allowed during the restore.

The algorithm of ALACC optimizes the memory allo-
cation to FAA and chunk cache first. On one hand, if the
workload has an extremely low locality or its duplicated
data chunk re-use distance is small, FAA is preferred. On
the other hand, according to the total number of P-chunk
in the cache, the chunk cache size is adjusted. Then, ac-
cording to the memory space allocation changing and the
total number of F-chunk in the cache, the LAW size is
adjusted to optimize the computing overhead. The de-
tailed adjustment conditions and actions are described in
the following part of this section.

In our algorithm, the conditions of increasing the FAA
size are examined first. If any of these conditions is sat-
isfied, FAA will be increased by 1 container size and the
size of chunk cache will be decreased by 1 container ac-
cordingly. Otherwise, we will check the conditions of
adjusting the chunk cache size. Notice that the size of
FAA and chunk cache could remain the same if none of
the adjustment conditions are satisfied. Finally, the LAW
size will be changed.

FAA and LAW Size Adjustment. As discussed in
Section 3.2, FAA performs better than chunk cache when
1) the data chunks in the first FAB are identified mostly
as unique data chunks and these chunks are stored in
the same or close containers, or 2) the re-use distance
of most duplicated data chunks in this FAB is within the
FAA range. Regarding the first condition, we consider
that the FAB can be filled in by reading in no more than
2 containers and none of the data chunks needed by the
FAB is from the chunk cache. When this happens, we
consider this assembling cycle FAA effective. For Con-
dition 2, we observed that if the re-use distances of 80%
or more of the duplicated chunks in this FAB is smaller
than the FAA size, forward assembly performs better.

Therefore, based on the observations, we use either of
the following two conditions to increase the FAA size.
First, if the number of consecutive FAA effective assem-
bling cycles becomes bigger than a given threshold, we
increase the FAA size by 1 container. Here, we use the
current FAA size, Si

FAA, as the threshold to measure this
condition at the end of ith assembling cycle. When Si

FAA
size is small, the condition is easier to satisfy and the
size of FAA can be increased faster. When Si

FAA is large,
the condition is more difficult to satisfy. After increasing
the FAA size by one, the count of consecutive FAA ef-
fective assembling cycles is reset to 0. Second, the data
chunks used during the ith assembling cycle to fill up the
first FAB in FAA are examined. If the re-use distances
of more than 80% of these examined chunks during the
ith assembling cycle are smaller than Si

FAA + 1 container
size, the size of FAA will be increased by 1 container.
That is, Si+1

FAA = Si
FAA +1.

If the FAA size is increased by 1 container, the size
of chunk cache will decrease by 1 container accordingly.
Originally, Si

LAW −Si
FAA container size LAW information

is used by Si
cache container size cache. After the FAA

adjustment, Si
LAW −Si

FAA +1 container size LAW is used
by Si

cache− 1 container size cache, which wastes the in-
formation in the LAW. Thus, the LAW size is decreased
by 1 container size to avoid the same size LAW used
by a now smaller size chunk cache. After the new sizes
of FAA, chunk cache and LAW are decided, two empty
FABs (one to replace the re-stored FAB and the other re-
flects the increasing size of FAA) will be added to the end
of FAA and the chunk cache starts to evict data chunks.
Then, the (i+1)th assembling cycle will start.

Chunk Cache and LAW Size Adjustment. If there
is no adjustment to the FAA size, we now consider the
adjustment of chunk cache size. After finished the ith as-
sembling cycle, the total number (NF−chunk) of F-chunks
in the F-cache and the total number (NP−chunk) of P-
chunks in the P-cache are counted. Also, the number
of F-chunks that are newly added to the F-cache during
the ith assembling cycle is denoted by NF−added . These

316 16th USENIX Conference on File and Storage Technologies USENIX Association

newly added F-chunks either come from the read-in con-
tainers in the ith assembling cycle or are transformed
from P-chunks due to the extending of the LAW. We ex-
amine the following three conditions.

First, if NP−chunk becomes 0, it indicates that all the
cache space is occupied by F-chunks. The current LAW
size is too large and the number of F-chunks based on
the current LAW is larger than the chunk cache capacity.
Therefore, the chunk cache size will be increased by 1
container. Meanwhile, the size of LAW will decrease by
1 container to reduce the unnecessary overhead. Second,
if the total size of NF−added is bigger than 1 container,
it indicates that the total number of F-chunks increases
very quickly. Thus, we increase the chunk cache size by
1 container and decrease LAW by 1 container. Notice
that a large NF−added can happen when NP−chunk is either
small or large. This condition will make our algorithm
quickly react to the changing of the workload.

Third, if NP−chunk is very large (i.e., NF−chunk is very
small), the chunk cache size will be decreased by 1 con-
tainer. In this situation, the LAW size is adjusted dif-
ferently according to either of the following two con-
ditions: 1) In the current workload, there are few data
chunks in the FAB that are reused in the future, and
2) The size of LAW is too small, it cannot look ahead
far enough to find more F-chunks for the current work-
load. For Condition 1, we decrease the LAW size by
1 container. For Condition 2, we increase the LAW
size by K containers. Here, K is calculated by K =
(MaxLAW − Si

LAW)/(Si
FAA + Si

cache). If LAW is small, its
size is increased by a larger amount. If LAW is big, its
size will be increased slowly.

LAW Size Independent Adjustment If none of the
aforementioned conditions are satisfied (the sizes of FAA
and chunk cache remain the same), the LAW size will
be adjusted independently. Here, we use the NF−chunk
to decide the adjustment. If NF−chunk is smaller than a
given threshold (e.g., 20% of the total chunk cache size),
the LAW size will be slightly increased by 1 container
to process more future information. If NF−chunk is higher
than the threshold, the LAW size will be decreased by 1
to reduce the computing overhead.

ALACC makes the trade-offs between computing
overhead and the reduction of container-reads, such that
a higher restore throughput can be achieved. Instead
of using a fixed value as the threshold, we tend to dy-
namically change FAA size and LAW size. It can slow
down the adjustments when the overhead is big (when
the LAW size is large) and it can speed up the adjust-
ment when the overhead is small to quickly reduce the
container-reads (when FAA size is small).

6 Prototype Implementation

We implemented a prototype of a deduplication system
(a C program with 11k LoC) with several restore designs:
FAA, container-based caching, chunk-based caching,
LAW assisted chunk-based caching, and ALACC. For
the deduplication process, it can be configured to use dif-
ferent container size and chunk size (fixed size chunking
and variable size chunking) to process the real world data
or to generate deduplication traces.

To satisfy the flexibility and efficiency requirements
of ALACC, we implemented several data structures. All
the data chunks in the chunk cache are indexed by a hash-
map to speed up the searching operation. F-chunks are
ordered by their future access sequence provided by the
LAW and P-chunks are indexed by an LRU list. The
LAW maintains the data chunk metadata (chunk ID, size,
container ID, address and offset in the container) in the
same order as they are in the recipe. Although the in-
sertion and deletion in the LAW is O(1) by using the
hashmap, identifying the F-chunk priority is O(log(N)),
where N is the LAW size.

A Restore Recovery Log (RRL) is maintained to en-
sure reliability. When one FAB is full and flushed out,
the chunk ID of the last chunk in the FAB, the chunk
location in the recipe, the restored data address, FAA,
chunk cache and LAW configurations are logged to the
RRL. If the system is down, by using the information in
the RRL, the restore process can be recovered to the lat-
est restored cycle. The FAA, chunk cache and LAW will
be initiated and reconstructed.

7 Performance Evaluation

To comprehensively evaluate our design, we imple-
ment five restore engines including ALACC, LRU-based
container caching (Container LRU), LRU-based chunk
caching (Chunk LRU), forward assembly (FAA), and
fixed combination of forward assembly and chunk-based
caching. However, in the last case, we show only the Op-
timal Fix Configuration (Fix Opt). Fix Opt is obtained
by exhausting all possible fixed combinations of FAA,
chunk cache, and LAW sizes.

7.1 Experimental Setup and Data Sets
The prototype is deployed on a Dell PowerEdge

R430 server with a 2.40GHz Intel Xeon with 24 cores
and 32GB of memory using Seagate ST1000NM0033-
9ZM173 SATA hard disk with 1TB capacity as the stor-
age. The container size is configured as 4MB. All five
implementations are configured with one container size
space as container read buffer and memory size of S con-
tainers. Container LRU and Chunk LRU use one con-
tainer for FAA and S− 1 for container or chunk cache.

USENIX Association 16th USENIX Conference on File and Storage Technologies 317

Table 2: Characteristics of datasets

Dataset FSL 1 FSL 2 EMC 1 EMC 2
Size 103.5GB 317.4GB 29.2GB 28.6GB
ACS1 4KB 4KB 8KB 8KB
DR2 3.82 4.88 1.04 4.8
CFL3 13.3 3.3 14.7 19.3
1 ACS stands for Average Chunk Size
2 DR stands for the Deduplication Ratio, which is the original

data size divided by the deduplicated data size.
3 CFL stands for the Chunk Fragmentation Level, which

is the average number of containers that stores the data
chunks from one container size of original data stream.
High CFL value leads to low restore performance.

FAA uses LAW of S container size and all S memory
space as the forward assembly area. The specific config-
uration of Fix Opt is given in Section 7.2. In all experi-
ments, ALACC is initiated with S/2 container size FAA,
S/2 container size chunk cache and 2S container size
LAW before the execution. For the reason that ALACC
requires to maintain at least one container size space as
FAB, the FAA size varies from 1 to S and the chunk cache
size varies from (S−1) to 0 accordingly. After one ver-
sion of backup is restored, the cache is cleaned.

We use four deduplication traces in the experiments
as shown in Table 2. FSL 1 and FSL 2 are two differ-
ent backup traces from FSL /home directory snapshots
of the year 2014 [26]. Each trace has 6 full snapshot
backups and the average chunk size is 4KB. EMC 1 and
EMC 2 are the weekly full-backup traces from EMC and
each trace has 6 versions and 8KB average chunk size
[27]. EMC 1 was collected from an exchange server and
EMC 2 was the /var directory backup from a revision
control system.

To measure the restore performance, we use the speed
factor, computing cost factor and restore throughput as
the metrics. The speed factor (MB/container-read) is
defined as the mean data size restored per container
read. Higher speed factors indicate higher restore per-
formance. The computing cost factor (second/GB) is de-
fined as the time spent on computing operations (sub-
tracting the storage I/O time from the restore time) per
GB data restored and the smaller value is preferred. The
restore throughput (MB/second) is calculated from the
original data stream size divided by the total restore time.
We run each test 5 times and present the mean value. No-
tice that, for the same trace using the same caching pol-
icy, if the restore machine and the storage are different,
the computing cost factor and restore throughput can be
different while the speed factor is the same.

Table 3: The FAA/chunk cache/LAW configuration (# of
containers) of Fix Opt for each deduplication trace

FSL 1 FSL 2 EMC 1 EMC 2
Size 4/12/56 6/10/72 2/14/92 4/12/64

2
4
6
8

10

12

14

12

13

14

15

16

17

18

162432
40

48
56

64
72

80
88

96

FA
A
Si
ze

R
es
to
re
T
hr
ou
gh
pu
t(
M
B
/S
)

LAWSize

12-13 13-14 14-15 15-16 16-17 17-18

Figure 5: The restore throughput of different FAA, chunk
cache and LAW size configurations

7.2 Optimal Performance of Fixed Configura-
tions

In LAW assisted chunk-based caching design, the
sizes of FAA, chunk cache and LAW are fixed and are
not changed during the restore process. To find out the
best performance of a configuration for a specific trace
with a given memory size, in our experiments we run all
possible configurations for each trace to discover the op-
timal throughput. This optimal configuration is indicated
by Fix Opt. For example, for 64MB memory, we vary
the FAA size from 4MB to 60MB and the chunk cache
size from 60MB to 4MB. At the same time, the LAW size
increases from 16 containers to 96 containers. Each test
tries one set of fixed configuration and finally, we draw a
three-dimensional figure to find out the optimal results.

An example is shown in Figure 5, for FSL 1, the op-
timal configuration has 4 containers of FAA, 12 con-
tainers of chunk cache and a LAW size of 56 contain-
ers. One throughput peak is when the LAW is small.
The computing cost is low while the container-reads are
slightly higher. The other throughput peak is when the
LAW is relatively large. With more future information,
the container-reads are lower but the computing cost is
higher. The optimal configuration of each trace is shown
in Table 3, the sizes of FAA and chunk cache can be cal-
culated by the number of containers times 4MB.

7.3 Restore Performance Comparison

Using the same restore engine and storage as discover-
ing the Fix Opt, we evaluate and compare the speed fac-

318 16th USENIX Conference on File and Storage Technologies USENIX Association

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(a) Speed factor of FSL 1

0

4

8

12

16

20

0 1 2 3 4 5

C
om

pu
tin

g
 C

os
t

Fa
ct

or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(b) Computing cost factor of FSL 1

0

5

10

15

20

25

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(c) Restore throughput of FSL 1

0

1

2

3

4

5

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(d) Speed factor of FSL 2

0

2

4

6

8

10

12

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(e) Computing cost factor of FSL 2

0

10

20

30

40

50

60

70

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(f) Restore throughput of FSL 2

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(g) Speed factor of EMC 1

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(h) Computing cost factor of EMC 1

0

10

20

30

40

50

60

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(
M
B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(i) Restore throughput of EMC 1

0

1

2

3

4

5

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(j) Speed factor of EMC 2

0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(k) Computing cost factor of EMC 2

0

15

30

45

60

75

90

105

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(l) Restore throughput of EMC 2

Figure 6: The restore performance results comparison of Container LRU, Chunk LRU, FAA, Fix Opt and ALACC.
Notice that the speed factor, computing cost factor and restore throughput vary largely in different traces, we use
different scales among subfigures to show the relative improvement or difference of the five designs in the same trace.

USENIX Association 16th USENIX Conference on File and Storage Technologies 319

Table 4: The percentage of memory size occupied by
FAA of ALACC in each restore testing case

Version # 0 1 2 3 4 5
FSL 1 50% 38% 39% 38% 40% 38%
FSL 2 67% 67% 64% 69% 64% 57%
EMC 1 26% 24% 14% 17% 16% 16%
EMC 2 7% 8% 8% 8% 8% 7%

tor, computing cost and restore performance (through-
put) of the four traces with 64MB total memory. The
evaluation results are shown in Figure 6. As indicated in
Table 2, the CFL of FSL 2 is much lower than the oth-
ers, which leads to a very close restore performance of
all the restore designs. However, when the CFL is high,
ALACC is able to adjust the sizes of FAA, chunk cache,
and LAW to adapt to the highly fragmented chunk stor-
ing, and achieves higher restore performance.

The computing cost varies in different traces and ver-
sions. In most cases, the computing cost of FAA is rela-
tively lower than the others, because it avoids the cache
insertion, look-up, and eviction operations. As expected,
the computing overhead of Chunk LRU is usually higher
than that of Container LRU due to more management
operations for smaller caching granularity. However, in
EMC 2, the computing overhead of Container LRU is
much higher than the other four designs. The overhead
is caused by the high frequent cache replacement and
extremely high cache miss ratio. The cache miss ra-
tio of Container LRU is about 3X higher than that of
Chunk LRU. The time of reading containers from stor-
age to the read-in buffer dominates the restore time.
Thus, the speed factor can nearly determine the restore
performance. Comparing the speed factor and restore
throughput of the same trace, for example, trace FS 1 in
Figure 6(a) and 6(c), the curves of the same cache policy
are very similar.

For all 4 traces, the overall average speed factor
of ALACC is 83% higher than Container LRU, 37%
higher than FAA, 12% higher than Chunk LRU and 2%
higher than Fix Opt. The average computing cost of
ALACC is 27% higher than that of Container LRU, 23%
higher than FAA, 33% lower than Chunk LRU and 26%
lower than Fix Opt. The average restore throughput
of ALACC is 89% higher than that of Container LRU,
38% higher than FAA, 14% higher than Chunk LRU
and 4% higher than Fix Opt. In our experiments, the
speed factor of ALACC is higher than those of Con-
tainer LRU, Chunk LRU, and FAA. More importantly,
ALACC achieves at least a similar or better performance
as Fix Opt. By dynamically adjusting the sizes of FAA,
chunk cache and LAW, the improvement of the restore
throughput is higher than the speed factor. Notice that we

Table 5: The average LAW size (# of containers) of
ALACC in each restore testing case

Version # 0 1 2 3 4 5
FSL 1 31.2 30.5 31.4 32.2 32.0 30.7
FSL 2 44.6 44.1 40.1 32.3 32.8 36.9
EMC 1 77.1 83.1 88.7 84.2 76.1 82.6
EMC 2 95.3 95.2 95.1 95.3 94.8 95.2

need tens of experiments to find out the optimal config-
urations of Fix Opt which is almost impossible to carry
out in a real-world production scenario.

The main goal of ALACC is to make better trade-
offs between the number of container-reads and the re-
quired computing overhead. The average percentage of
the memory space occupied by FAA of ALACC is shown
in Table 4 and the average LAW size is shown in Table
5. The percentage of chunk cache in the memory can be
calculated by (1−FAA percentage). The mean FAA size
and LAW size vary largely in different workloads. The
restore data with larger data chunk re-use distance usu-
ally needs smaller FAA size, larger cache size, and larger
LAW size, like in traces FSL 1, FSL 2, and EMC 2.
One exception is trace EMC 1. This trace is very spe-
cial, only about 4% data chunks are duplicated chunks
and they are scattered over many containers. The per-
formances of Container LRU, Chunk LRU and FAA are
thus very close since extra container-reads will always
happen when restoring the duplicated chunks. By adap-
tively extending the LAW to a larger size (about 80 con-
tainers and 5 times larger than FAA cover range) and us-
ing larger chunk cache space, ALACC successfully iden-
tifies the data chunks that will be used in far future and
caches them. Therefore, ALACC can outperform others
in such an extreme workload. Assuredly, ALACC has
the highest computing overhead (about 90% higher than
others in average) as shown in Figure 6(h).

Comparing the trend of varying FAA and LAW sizes
of Fix Opt (shown in Table 3) with that of ALACC
(shown in Tables 4 and 5), we can find that ALACC
usually applies smaller LAW and larger cache size than
Fix Opt. Thus, ALACC achieves lower computing cost
and improves the restore throughput as shown in Figures
6(b), 6(e) and 6(k). In EMC 2, ALACC has a larger
cache size and a larger LAW size than those of Fix Opt.
After we exam the restore log, we find that the P-chunks
occupied 95% the cache space in more than 90% of the
assembling cycles. A very small portion of data chunks
is duplicated many times, which can explain why the
Chunk LRU performs close to Fix Opt. In such an ex-
treme case, ALACC makes the decision to use a larger
cache space and a larger LAW size such that it can still
adapt to the workload and maintain a high speed factor

320 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000P
-c

h
u

n
k

s
p

er
 c

o
n

ta
in

er

Asssemble cycle number

’FSL_2_v1.log’ using 14

(a) P-chunk numbers per container size chunk cache

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000 2500 3000

F
A

A
 s

iz
e

Asssemble cycle number

’FSL_2_v1.log’ using 4

(b) FAA size (# of containers)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000 2500 3000

C
ac

h
e

si
ze

Asssemble cycle number

’FSL_2_v1.log’ using 5

(c) Chunk cache size (# of containers)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

L
A

W
 S

iz
e

Asssemble cycle number

’FSL_2_v1.log’ using 6

(d) LAW size (# of containers)

Figure 7: The variation of P-chunk numbers per con-
tainer size chunk cache, FAA size, chunk cache size, and
LAW size during the restore of FSL 1 in version 0

and high restore throughput as shown in Figures 6(j) and
6(l). In general, ALACC successfully adapts to the lo-
cality changing and delivers high restore throughput for
a given workload.

7.4 The Adaptive Adjustment in ALACC

To verify the adaptive adjustment process of ALACC,
we write the log at the end of each assembling cycle
and using P-chunk as an example to show the size ad-
justment of FAA, chunk cache and LAW by ALACC.
The log records the P-chunk numbers per container size
cache , the sizes of FAA, chunk cache, and LAW. We use
FSL 2 version 1 as an example and the results are shown
in Figure 7. The number of P-chunks per container size
cache is very low at the beginning and varies sharply as
assembly cycle increases as shown in Figure 7(a). One
container size cache can store about 1000 data chunks
in average. During the assembling cycle range (1000–

1500), most of the chunk cache space is occupied by
the P-chunks and there are few duplicated data chunks.
Thus, ALACC uses a larger FAA and a smaller LAW.

If the number of P-chunk is relatively low, more
caching space is preferred. For example, in the assem-
bling cycle range (700–900), the number of P-chunks is
lower than 200 (i.e., more than 80% of the chunk cache
space is used for F-chunks). As expected, the FAA size
drops quickly and the chunk cache size increases sharply
and stays at a high level. Meanwhile, since the cache
space is increased, the LAW size is also increased to
cover larger recipe range and to identify more F-chunks.
In general, ALACC successfully monitors the workload
variation and self-adaptively reacts to the number of P-
chunks variation as expected, and thus, delivers higher
restore throughput without manual adjustments.

8 Conclusion and Future Work

Improving restore performance of deduplication system
is very important. In this paper, we studied the effec-
tiveness and the efficiency of different caching mecha-
nisms applied to the restore process. Based on the ob-
servations of the caching efficiency experiments, we de-
sign an adaptive algorithm called ALACC which is able
to adaptively adjust the sizes of the FAA, chunk cache
and LAW according to the workload changes. By mak-
ing better trade-offs between the number of container-
reads and computing overhead, ALACC achieves much
better restore performance than container-based caching,
chunk-based caching and forward assembly. In our ex-
periments, the restore performance of ALACC is slightly
better than the best performance of restore engine with
all possible configurations of fixed sizes of FAA, chunk
cache and LAW. In our future work, duplicated data
chunk rewriting will be investigated and integrated with
ALACC to further improve the restore performance of
data deduplication systems for both primary and sec-
ondary storage systems.

Acknowledgments

We thank all the members in CRIS group to provide
the useful comments to improve our design. We thank
Dongchul Park for assistance with the trace exploring
and pre-processing, and Baoquan Zhang for the specific
reviewing comments. We would like to thank our shep-
herd, Philip Shilane, for his useful comments and sug-
gestions. This work is partially supported by the fol-
lowing NSF awards: 1305237, 1421913, 1439622 and
1525617.

USENIX Association 16th USENIX Conference on File and Storage Technologies 321

References

[1] Mark Lillibridge, Kave Eshghi, and Deepavali
Bhagwat. Improving restore speed for backup
systems that use inline chunk-based deduplication.
In 11th USENIX Conference on File and Storage
Technologies (FAST 13), pages 183–198, 2013.

[2] Michal Kaczmarczyk, Marcin Barczynski, Woj-
ciech Kilian, and Cezary Dubnicki. Reducing im-
pact of data fragmentation caused by in-line dedu-
plication. In Proceedings of the 5th Annual Inter-
national Systems and Storage Conference, page 15.
ACM, 2012.

[3] Youngjin Nam, Guanlin Lu, Nohhyun Park, Wei-
jun Xiao, and David HC Du. Chunk fragmenta-
tion level: An effective indicator for read perfor-
mance degradation in deduplication storage. In
High Performance Computing and Communica-
tions (HPCC), 2011 IEEE 13th International Con-
ference on, pages 581–586. IEEE, 2011.

[4] Young Jin Nam, Dongchul Park, and David HC
Du. Assuring demanded read performance of data
deduplication storage with backup datasets. In
Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012
IEEE 20th International Symposium on, pages
201–208. IEEE, 2012.

[5] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuon-
ing Chen, Wen Xia, Fangting Huang, and Qing
Liu. Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting
historical information. In USENIX Annual Techni-
cal Conference (USENIX ATC 14), pages 181–192,
2014.

[6] Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and
Lei Tian. Sar: Ssd assisted restore optimization for
deduplication-based storage systems in the cloud.
In Networking, Architecture and Storage (NAS),
2012 IEEE 7th International Conference on, pages
328–337. IEEE, 2012.

[7] Dongchul Park, Ziqi Fan, Young Jin Nam, and
David HC Du. A lookahead read cache: Improving
read performance for deduplication backup stor-
age. Journal of Computer Science and Technology,
32(1):26–40, 2017.

[8] Benjamin Zhu, Kai Li, and R Hugo Patterson.
Avoiding the disk bottleneck in the data domain
deduplication file system. In 6th USENIX Confer-
ence on File and Storage Technologies (FAST 08),
volume 8, pages 1–14, 2008.

[9] Wei Zhang, Tao Yang, Gautham Narayanasamy,
and Hong Tang. Low-cost data deduplication for
virtual machine backup in cloud storage. In Hot-
Storage, 2013.

[10] Fanglu Guo and Petros Efstathopoulos. Building a
high-performance deduplication system. In 2011
USENIX Annual Technical Conference (USENIX
ATC 11), 2011.

[11] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuon-
ing Chen, Wen Xia, Yucheng Zhang, and Yujuan
Tan. Design tradeoffs for data deduplication perfor-
mance in backup workloads. In 13th USENIX Con-
ference on File and Storage Technologies (FAST
15), pages 331–344, 2015.

[12] Jaehong Min, Daeyoung Yoon, and Youjip Won.
Efficient deduplication techniques for modern
backup operation. IEEE Transactions on Comput-
ers, 60(6):824–840, 2011.

[13] Deepavali Bhagwat, Kave Eshghi, Darrell DE
Long, and Mark Lillibridge. Extreme binning:
Scalable, parallel deduplication for chunk-based
file backup. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems, 2009.
MASCOTS’09. IEEE International Symposium on,
pages 1–9. IEEE, 2009.

[14] Sean Quinlan and Sean Dorward. Venti: A new ap-
proach to archival storage. In 1st USENIX Confer-
ence on File and Storage Technologies (FAST 02),
volume 2, pages 89–101, 2002.

[15] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt,
Michal Kaczmarczyk, Wojciech Kilian, Przemys-
law Strzelczak, Jerzy Szczepkowski, Cristian Un-
gureanu, and Michal Welnicki. Hydrastor: A scal-
able secondary storage. In 7th USENIX Conference
on File and Storage Technologies (FAST 09), vol-
ume 9, pages 197–210, 2009.

[16] Kiran Srinivasan, Timothy Bisson, Garth R Good-
son, and Kaladhar Voruganti. idedup: latency-
aware, inline data deduplication for primary stor-
age. In 10th USENIX Conference on File and Stor-
age Technologies (FAST 12), volume 12, pages 1–
14, 2012.

[17] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cached-
edup: in-line deduplication for flash caching. In
14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 301–314, 2016.

322 16th USENIX Conference on File and Storage Technologies USENIX Association

[18] Biplob K Debnath, Sudipta Sengupta, and Jin Li.
Chunkstash: Speeding up inline storage deduplica-
tion using flash memory. In USENIX annual tech-
nical conference (USENIX ATC 10), 2010.

[19] Yoshihiro Tsuchiya and Takashi Watanabe. Dblk:
Deduplication for primary block storage. In Mass
Storage Systems and Technologies (MSST), 2011
IEEE 27th Symposium on, pages 1–5. IEEE, 2011.

[20] Vasily Tarasov, Deepak Jain, Geoff Kuenning,
Sonam Mandal, Karthikeyani Palanisami, Philip
Shilane, Sagar Trehan, and Erez Zadok. Dmdedup:
Device mapper target for data deduplication. In
2014 Ottawa Linux Symposium, 2014.

[21] Sonam Mandal, Geoff Kuenning, Dongju Ok,
Varun Shastry, Philip Shilane, Sun Zhen, Vasily
Tarasov, and Erez Zadok. Using hints to im-
prove inline block-layer deduplication. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST 16), pages 315–322, 2016.

[22] Zhuan Chen and Kai Shen. Ordermergededup:
Efficient, failure-consistent deduplication on flash.
In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 291–299, 2016.

[23] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi
Ottean, Jin Li, and Sudipta Sengupta. Primary
data deduplication-large scale study and system de-
sign. In 2012 USENIX Annual Technical Confer-
ence (USENIX ATC 12), pages 285–296, 2012.

[24] Ziqi Fan, David HC Du, and Doug Voigt. H-arc: A
non-volatile memory based cache policy for solid
state drives. In Mass Storage Systems and Tech-
nologies (MSST), 2014 30th Symposium on, pages
1–11. IEEE, 2014.

[25] Ziqi Fan, Fenggang Wu, Dongchul Park, Jim Diehl,
Doug Voigt, and David HC Du. Hibachi: A coop-
erative hybrid cache with nvram and dram for stor-
age arrays. In Mass Storage Systems and Technolo-
gies (MSST), 2017 IEEE 33th Symposium on. IEEE,
2017.

[26] http://tracer.filesystems.org/.

[27] Nohhyun Park and David J Lilja. Characteriz-
ing datasets for data deduplication in backup ap-
plications. In Workload Characterization (IISWC),
2010 IEEE International Symposium on, pages 1–
10. IEEE, 2010.

USENIX Association 16th USENIX Conference on File and Storage Technologies 323

