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Abstract
Containers offer an efficient way to run workloads as

independent microservices that can be developed, tested
and deployed in an agile manner. To facilitate this pro-
cess, container frameworks offer a registry service that
enables users to publish and version container images
and share them with others. The registry service plays a
critical role in the startup time of containers since many
container starts entail the retrieval of container images
from a registry. To support research efforts on optimizing
the registry service, large-scale and realistic traces are re-
quired. In this paper, we perform a comprehensive char-
acterization of a large-scale registry workload based on
traces that we collected over the course of 75 days from
five IBM data centers hosting production-level registries.
We present a trace replayer to perform our analysis and
infer a number of crucial insights about container work-
loads, such as request type distribution, access patterns,
and response times. Based on these insights, we derive
design implications for the registry and demonstrate their
ability to improve performance. Both the traces and the
replayer are open-sourced to facilitate further research.

1 Introduction

Container management frameworks such as Docker [22]
and CoreOS Container Linux [3] have established con-
tainers [41, 44] as a lightweight alternative to virtual
machines. These frameworks use Linux cgroups and
namespaces to limit the resource consumption and vis-
ibility of a container, respectively, and provide isolation
in shared, multi-tenant environments at scale. In con-
trast to virtual machines, containers share the underlying
operating system kernel, which enables fast deployment
with low performance overhead [35]. This, in turn, is
driving the rapid adoption of the container technology in
the enterprise setting [23].

The utility of containers goes beyond performance, as
they also enable a microservice architecture as a new
model for developing and distributing software [16, 17,
24]. Here, individual software components focusing on
small functionalities are packaged into container images

∗Most of this work was done while at Virginia Tech.
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that include the software and all dependencies required
to run it. These microservices can then be deployed
and combined to construct larger, more complex archi-
tectures using lightweight communication mechanisms
such as REST or gRPC [9].

To facilitate the deployment of microservices, Docker
provides a registry service. The registry acts as a central
image repository that allows users to publish their im-
ages and make them accessible to others. To run a spe-
cific software component, users then only need to “pull”
the required image from the registry into local storage.
A variety of Docker registry deployments exist such as
Docker Hub [5], IBM Cloud container registry [12], or
Artifactory [1].

The registry is a data-intensive application. As the
number of stored images and concurrent client requests
increases, the registry becomes a performance bottleneck
in the lifecycle of a container [37, 39, 42]. Our esti-
mates show that the widely-used public container reg-
istry, Docker Hub [5], stores at least hundreds of ter-
abytes of data, and grows by about 1,500 new pub-
lic repositories daily, which excludes numerous private
repositories and image updates. Pulling images from a
registry of such scale can account for as much as 76% of
the container start time [37]. Several recent studies have
proposed novel approaches to improve Docker client and
registry communication [37, 39, 42]. However, these
studies only use small datasets and synthetic workloads.

In this paper, for the first time in the known litera-
ture, we perform a large-scale and comprehensive analy-
sis of a real-world Docker registry workload. To achieve
this, we started with collecting long-span production-
level traces from five datacenters in IBM Cloud container
registry service. IBM Cloud serves a diverse set of cus-
tomers, ranging from individuals, to small and medium
businesses, to large enterprises and government institu-
tions. Our traces cover all availability zones and many
components of the registry service over the course of 75
days, which totals to over 38 million requests and ac-
counts for more than 181.3 TB of data transferred.

We sanitized and anonymized the collected traces
and then created a high-speed, distributed, and versa-
tile Docker trace replayer. To the best of our knowl-
edge, this is the first trace replayer for Docker. To facil-
itate future research and engineering efforts, we release
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both the anonymized traces and the replayer for public
use at https://dssl.cs.vt.edu/drtp/. We be-
lieve our traces can provide valuable insights into con-
tainer registry workloads across different users, applica-
tions, and datacenters. For example, the traces can be
used to identify Docker registry’s distinctive access pat-
terns and subsequently design workload-aware registry
optimizations. The trace replayer can be used to bench-
mark registry setups as well as for testing and debugging
registry enhancements and new features.

We further performed comprehensive characterization
of the traces across several dimensions. We analyzed
the request ratios and sizes, the parallelism level, the
idle time distribution, and the burstiness of the workload,
among other aspects. During the course of our investi-
gation, we made several insightful discoveries about the
nature of Docker workloads. We found, for example, that
the workload is highly read-intensive comprising of 90-
95% pull compared to push operations. Given the fact
that our traces come from several datacenters, we were
able to find both common and divergent traits of differ-
ent registries. For example, our analysis reveals that the
workload not only depends on the purpose of the reg-
istry but also on the age of the registry service. The older
registry services show more predictable trends in terms
of access patterns and image popularity. Our analysis,
in part, is tailored to exploring the feasibility of caching
and prefetching techniques in Docker. In this respect,
we observe that 25% of the total requests are for top 10
repositories and 12% of the requests are for top 10 lay-
ers. Moreover, 95% of the time is spent by the registry
in fetching the image content from the backend object
store. Finally, based on our findings, we derive several
design implications for container registry services.

2 Background
Docker [22] is a container management framework that
facilitates the creation and deployment of containers.
Each Docker container is spawned from an image—a
collection of files sufficient to run a specific container-
ized application. For example, an image which pack-
ages the Apache web server contains all dependencies
required to run the server. Docker provides convenient
tools to combine files in images and run containers from
images on end hosts. Each end host runs a daemon pro-
cess which accepts and processes user commands.

Images are further divided into layers, each consist-
ing of a subset of the files in the image. The layered
model allows images to be structured in sub-components
which can be shared by other containers on the same
host. For example, a layer may contain a certain ver-
sion of the Java runtime environment and all containers
requiring this version can share it from a single layer, re-

ducing storage and network utilization.

2.1 Docker Registry
To simplify their distribution, images are kept in an on-
line registry. The registry acts as a storage and con-
tent delivery system, holding named Docker images.
Some popular Docker registries are Docker Hub [5],
Quay.io [20], Artifactory [1], Google Container Reg-
istry [8], and IBM Cloud container registry [12].

Users can create repositories in the registry, which
hold images for a particular application or system such
as Redis, WordPress, or Ubuntu. Images in such repos-
itories are often used for building other application im-
ages. Images can have different versions, known as tags.
The combination of user name, repository name, and tag
uniquely identifies an image.

Users add new images or update existing ones by
pushing to the registry and retrieve images by pulling
from the registry. The information about which layers
constitute a particular image is kept in a metadata file
called manifest. The manifest also describes other image
settings such as target hardware architecture, executable
to start in a container, and environment variables. When
an image is pulled, only the layers that are not already
available locally are transferred over the network.

In this study we use Docker Registry’s version 2 API
which relies on the concept of content addressability.
Each layer has a content addressable identifier called
digest, which uniquely identifies a layer by taking a
collision-resistant hash of its data (SHA256 by default).
This allows Docker to efficiently check whether two lay-
ers are identical and deduplicate them for sharing be-
tween different images.
Pulling an Image. Clients communicate with the reg-
istry using a RESTful HTTP API. To retrieve an image, a
user sends a pull command to the local Docker daemon.
The daemon then fetches the image manifest by issu-
ing a GET <name>/manifests/<tag> request, where
<name> defines user and repository name while <tag>

defines the image tag.
Among other fields, manifest contains name, tag, and

fsLayers fields. The daemon uses the digests from
the fsLayers field to download individual layers that
are not already available in local storage. The client
checks if a layer is available in the registry by using
HEAD <name>/blobs/<digest> requests.

Layers are stored in the registry as compressed tarballs
(“blobs” in Docker terminology) and are pulled by is-
suing a GET <name>/blobs/<digest> request. The
registry can redirect layer requests to a different URL,
e.g., to an object store, which stores the actual layers. In
this case, the Docker client downloads the layers directly
from the new location. By default, the daemon down-
loads and extracts up to three layers in parallel.
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Figure 1: IBM Cloud Registry architecture. Nginx receives
users requests and forwards them to registry servers. Registry
servers fetch data from the backend object store and reply back.

Pushing an Image. To upload a new image to the reg-
istry or update an existing one, clients send a push com-
mand to the daemon. Pushing works in reverse order
compared to pulling. After creating the manifest locally
the daemon first pushes all the layers and then the mani-
fest to the registry.

Docker checks if a layer is already present in the
registry by issuing a HEAD <name>/blobs/<digest>

request. If the layer is absent, its upload starts with
a POST <name>/blobs/uploads/ request to the reg-
istry which returns a URL containing a unique upload
identifier (<uuid>) that the client can use to transfer
the actual layer data. Docker then uploads layers using
monolithic or chunked transfers. Monolithic transfer up-
loads the entire data of a layer in a single PUT request. To
carry out chunked transfer, Docker specifies a byte range
in the header along with the corresponding part of the
blob using PATCH <name>/blobs/uploads/<uuid>

requests. Then Docker submits a final PUT re-
quest with a layer digest parameter. After all lay-
ers are uploaded, the client uploads the manifest using
PUT <name>/manifests/<digest> request.

2.2 IBM Cloud Container Registry
In this work we collect traces from IBM’s container reg-
istry which is a part of the IBM Cloud platform [11].
The registry is a key component for supporting Docker
in IBM Cloud and serves as a sink for container images
produced by build pipelines and as the source for con-
tainer deployments. The registry is used by a diverse
set of customers, ranging from individuals, to small and
medium businesses, to large enterprises and government
institutions. These customers use the IBM container reg-
istry to distribute a vast variety of images that include
operating systems, databases, cluster deployment setups,
analytics frameworks, weather data solutions, testing in-
frastructures, continuous integration setups, etc.

The IBM Cloud container registry is a fully managed,
highly available, high-performance, v2 registry based on
the open-source Docker registry [4]. It tracks the Docker
project codebase in order to support the majority of the
latest registry features. The open-source functionality is
extended by several microservices, offering features such
as multi-tenancy with registry namespaces, a vulnerabil-

ity advisor, and redundant deployment across availability
zones in different geographical regions.

IBM’s container registry stack consists of over eigh-
teen components. Figure 1 depicts three components that
we trace in our study: 1) Nginx, 2) registry servers, and
3) broadcaster. Nginx acts as a load balancer and for-
wards customers’ HTTPS connections to a selected reg-
istry server based on the requested URL. Registry servers
are configured to use OpenStack Swift [18, 25, 26] as a
backend object store. The broadcaster provides registry
event filtering and distribution, e.g., it notifies the vulner-
ability advisor component on new image pushes.

Though all user requests to the registry pass through
Nginx, Nginx logs contain only limited information. To
obtain complete information required for our analysis
we also collected traces at registry servers and broad-
caster. Traces from registry servers provide information
about request distribution, traces from Nginx provide re-
sponse time information, and broadcaster traces allow us
to study layer sizes.

The IBM container registry setup spans five geo-
graphical locations: Dallas (dal), London (lon), Frank-
furt (fra), Sydney (syd), and Montreal. Every geo-
graphical location forms a single Availability Zone (AZ),
except Dallas and Montreal. Dallas hosts Staging (stg)
and Production (dal) AZs, while Montreal is home for
Prestaging (prs) and Development (dev) AZs. The dal,
lon, fra, and syd AZs are client-facing and serving
production workloads, while stg is a staging location
used internally by IBM employees. prs and dev are
used exclusively for internal development and testing of
the registry service. Out of the four production registries
dal is the oldest, followed by lon, and fra. Syd is the
youngest registry and we started collecting traces for it
since its first day of operation.

Each AZ has an individual control plane and ingress
paths, but backend components, e.g. , object storage, are
shared. This means that AZ’s are completely network
isolated but images are shared across AZ’s. The reg-
istry setup is identical in hardware, software, and system
configuration across all AZs, except for prs and dev.
prs and dev are only half the size of the other AZs, be-
cause they are used for development and testing and do
not directly serve clients. Every AZ hosts six registry
instances, except for prs and dev, which host three.

3 Tracing Methodology
To collect traces from the IBM Cloud registry, we ob-
tained access to the system’s logging service (§3.1). The
logging service collects request logs from the different
system components and the log data contains a variety
of information, such as the requested image, the type of
request and a timestamp (§3.2). This information is suf-
ficient to carry out our analysis. Besides collecting the
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Aavailablity Zone Duration Trace data Filtered and Requests Data ingress Data egress Images pushed Images pulled Up since
(days) (GB) anonym. (GB) (millions) (TB) (TB) (1,000) (1,000) (mm/yy)

Dallas (dal) 75 115 12 20.85 5.50 107.5 356 5,000 06/15
London (lon) 75 40 4 7.55 1.70 25.0 331 2,200 10/15

Frankfurt (fra) 75 17 2 1.80 0.40 3.30 90 950 04/16
Sydney (syd) 65 5 0.5 1.03 0.29 1.87 105 360 04/16
Staging (stg) 65 25 3.2 5.90 2.41 29.2 327 1,560 -

Prestaging (prs) 65 4 0.5 0.75 0.23 2.45 65 140 -
Development (dev) 55 2 0.2 0.34 0.01 1.44 15 70 -

TOTAL 475 208 22.4 38.22 10.54 170.76 1289 10280 -

Table 1: Characteristics of studied data. dal and lon were migrated to v2 in April 2016.

{
" host " : " 579633 fd " ,
" h t t p . request . du ra t i on " : 0 . 879271282 ,
" h t t p . request . method " : "GET" ,
" h t t p . request . remoteaddr " : " 40535 j f 8 " ,
" h t t p . request . u r i " : " v2 / ca64 k j 67 / as87d65g / blobs / b

26s986d " ,
" h t t p . request . useragent " : " docker / 17 . 04 . 0−ce go /

go1 . 7 . 5 . . ) " ,
" h t t p . response . s ta tus " : 200 ,
" h t t p . response . w r i t t e n " : 1518 ,
" i d " : " 9 f 63984h " ,
" timestamp " : " 2017−07−01T01 : 39 : 37 . 098Z"

}

Figure 2: Sample of anonymized data.

traces, we also developed a trace replayer (§3.3) that can
be used by others to evaluate, e.g., Docker registry’s per-
formance. In this paper we used the trace replayer to
evaluate several novel optimizations the were inspired by
the results of the trace analysis. We made the traces and
the replayer publicly available at:
https://dssl.cs.vt.edu/drtp/

3.1 Logging Service
Logs are centrally managed using an “ELK” stack (Elas-
ticSearch [7], Logstash [14] and Kibana [13]). A
Logstash agent on each server ships logs to one of
the centralized log servers, where they are indexed and
added to an ElasticSearch cluster. The logs can then be
queried using the Kibana web UI or using the Elastic-
Search APIs directly. ElasticSearch is a scalable and re-
liable text-based search engine which allows to run full
text and structured search queries against the log data.
Each AZ has its own ElasticSearch setup deployed on
five to eight nodes and collects around 2 TB of log data
daily. This includes system usage, health information,
logs from different components etc. Collected data is in-
dexed by time.

3.2 Collected Data
For trace collection we pull data from the ElasticSearch
setup of each AZ for the “Registry”, “Nginx”, and
“Broadcaster” components as shown in Figure 1. We fil-
ter all requests that relate to pushing and pulling of im-
ages, i.e. GET, PUT, HEAD, PATCH and POST requests. Ta-
ble 1 shows the high-level characteristics of the collected
traces. The total amount of our traces spans seven avail-
ability zones and a duration of 75 days from 06/20/2017
to 09/02/2017. This results in a total of 208 GB of trace
data containing over 38 million requests, with more than
180TB of data transferred in them (data ingress/egress).

Registry 

Client 1 

Master Client 2 

Client 3 

Registry 

Trace 

Round Robin/ 

Hashing 

Figure 3: Trace replayer. Master parses the trace and forwards
request to one of the clients either in round robin or applying
hash to the http.request.remoteaddr field in the trace.

Next, we combine the traces from different components
by matching the incoming HTTP request identifier across
the components. Then we remove redundant fields to
shrink the trace size and in the end we anonymize them.
The total size of the anonymized traces is 22.4 GB.

Figure 2 shows a sample trace record. It con-
sists of 10 fields: the host field shows the
anonymized registry server which served the re-
quest; http.request.duration is the response time
of the request in seconds; http.request.method
is the HTTP request method (e.g., PUT or GET);
http.request.remoteaddr is the anonymized
remote client IP address; http.request.uri is the
anonymized requested url; http.request.useragent
shows the Docker client version used to make
the request; http.response.status shows
the HTTP response code for this request;
http.response.written shows the amount of
data that was received or sent; id shows the unique
request identifier; timestamp contains the request
arrival time in UTC timezone.

3.3 Trace Replayer
To study the collected traces further and use them to eval-
uate various registry optimizations, we designed and im-
plemented a trace replayer. It consists of a master node
and multiple client nodes as shown in Figure 3. The mas-
ter node parses the anonymized trace file one request at
a time and forwards it to one of the clients. Requests are
forwarded to clients in either round robin fashion or by
hashing the http.request.remoteaddr field in the
trace. By using hashing, the trace replayer maintains the
request locality to ensure all HTTP requests correspond-
ing to one image push or pull are generated by the same
client node as they were seen by the original registry ser-
vice. In some cases this option may generate workload
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skewness as some of the clients issue more requests than
others. This method is useful for large-scale testing with
many clients.

Clients are responsible for issuing the HTTP requests
to the registry setup. For all PUT layer requests, a client
generates a random file of corresponding size and trans-
fers it to the registry. As the content of the newly gen-
erated file is not same as the content of the layer seen
in the trace, the digest/SHA256 is going to be different
for the two. Hence, upon successful completion of the
request, the client replies back to the master with the re-
quest latency as well as the digest of the newly generated
file. The master keeps track of the mapping between the
digest in the trace and its corresponding newly generated
digest. For all future GET requests for this layer, the mas-
ter issues requests for the new digest instead of the one
seen in the trace. For all GET requests the client just re-
ports the latency.

The trace replayer runs in two phases: warmup and
actual testing. During the warmup phase, the master it-
erates over the GET requests to make sure that all corre-
sponding manifests and layers already exist in the reg-
istry setup. In the testing phase all requests are issued in
the same order as seen in the trace file.

The requests are issued by the trace replayer in two
modes: 1) “as fast as possible”, and 2) “as is”, to ac-
count for the timestamp of each request. The master side
of the trace replayer is multithreaded and each client’s
progress is tracked in a separate thread. Once all clients
finish their jobs, aggregated throughput and latency is
calculated. Per-request latency and per-client latency and
throughput are recorded separately.

The trace replayer can operate in two modes to per-
form two types of analysis: 1) performance analysis of a
large scale registry setup and 2) offline analysis of traces.
Performance analysis mode. The Docker registry uti-
lizes multiple resources (CPU, Memory, Storage, Net-
work) and provisioning them is hard without a real work-
load. The performance analysis mode allows to bench-
mark what throughput and latency can a Docker reg-
istry installation achieve when deployed on specific pro-
visioned resources. For example, in a typical deploy-
ment, Docker is I/O intensive and the replayer can be
used to benchmark network storage solutions that act as
a backend for the registry.
Offline analysis mode. In this mode, the master does not
forward the requests to the clients but rather hands them
off to an analytic plugin to handle any requested opera-
tion. This mode is useful to perform offline analysis of
the traces. For example, the trace player can simulate dif-
ferent caching policies and determine the effect of using
different cache sizes. In Sections §5.3 and §5.4 we use
this mode to perform caching and prefetching analysis.
Additional analysis. By making our traces and trace re-
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Figure 4: Image pull vs. push ratio, and distribution of HTTP
requests served by registry.

player publicly available we enable more detailed analy-
sis in the future. For example, one can create a module
for the replayer’s performance analysis mode that ana-
lyzes request arrival rates with a user-defined time gran-
ularity. One may also study the impact of using content
delivery networks to cache popular images by running
the trace replayer in the performance analysis mode. Fur-
thermore, to understand the effect of deduplication on
data reduction in the registry, researchers can conduct
studies on real layers in combination with our trace re-
player. The relationship between resource provisioning
vs. workload demands can be established by benchmark-
ing registry setups using our trace replayer and traces.

4 Workload Characterization
To determine possible registry optimizations, such as
caching, prefetching, efficient resource provisioning, and
site-specific optimizations, we center our workload anal-
ysis around the following five questions:

1. What is the general workload the registry serves?
What are request type and size distributions? (§4.1)

2. Do response times vary between production, staging,
pre-staging, and development deployments? (§4.2)

3. Is there spatial locality in registry requests? (§4.3)
4. Do any correlations exist among subsequent requests?

Can future requests be predicted? (§4.4)
5. What are the workload’s temporal properties? Are

there bursts and is there any temporal locality? (§4.5)

4.1 Request Analysis
We start with the request type and size analysis to under-
stand the basic properties of the registry’s workload.
Request type distribution. Figure 4(a) shows the ratio
of images pulled from vs. pushed to the registry. As ex-
pected, the registry workload is read-intensive. For dal,
lon, and fra, we observe that 90%–95% of requests
are pulls (i.e. reads). Syd exhibits a lower pull ratio of
78% because it is a newer installation and, therefore, it is
being populated more intensively than mature registries.
Non-production registries (stg, prs, dev) also demon-
strate a lower (68–82%) rate of pulls than production
registries, due to higher image churn rates. Each push
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(b) PUT layers.
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(c) PATCH layers.
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(d) GET manifests.
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(e) PUT manifests.
Figure 8: CDF of response time for GET, PUT, PATCH requests to layers and GET and PUT requests to manifests.
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(b) Push.
Figure 5: The ratio of requests that access either an image
manifest or a layer.
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(b) Manifests.
Figure 6: CDF of manifest and layer sizes for GET requests.

or pull consists of a sequence of HTTP requests as dis-
cussed in §2. Figure 4(b) shows the distribution of differ-
ent HTTP requests served by the registry. All registries
receive more than 60% of GET requests and 10%–22% of
HEAD requests. PUT requests are 1.9–5.8× more com-
mon than PATCH requests because PUTs are used for up-
loading manifests (in addition to layers) and many layers
are small enough to be uploaded in a single request.

Figures 5(a) and 5(b) show the manifest vs. layer ratio
for pull and push image requests, respectively. We in-
clude GET requests in pull count, while pushes include
PUT or HEAD requests to account for attempts to upload
the layers that are already present in the registry. For
pulls we observe that, except for syd and fra, 50% or
more requests retrieve layers rather than manifests. This
is expected as a single manifest refers to multiple layers.
Our investigation revealed that the divergent behavior of
syd and fra is caused by their clients trying to pull im-
ages that they have already pulled in the past. This results
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Figure 7: CDF of requests per minute.

into many GET requests to the manifests without subse-
quent GET requests to the layers. For pushes, we see that
accesses to layers dominate accesses to manifests.
Request size distribution. Figure 6 shows the CDF of
manifest and layer sizes for GET and PUT requests. In
Figure 6(a) we observe that about 65% of the layers are
smaller than 1 MB and around 80% are smaller than
10 MB. In Figure 6(b), we find that the typical manifest
size is around 1 KB for all AZs except for lon where
50% of the GET requests are for manifests larger than
10 KB. For lon, a large number of requests are for man-
ifests that are compatible with the older Docker version,
hence increasing their size. We observe similar trends for
PUTs for all the AZs (not shown in the Figures).

4.2 Registry Load and Response Time

Load distribution. Figure 7 shows the CDF of received
requests per minute over time. dal has the highest over-
all load and services at least 100 requests per minute
more than 80% of the time. lon and stg are second
and third, followed by fra, syd, prs, and dev, in de-
scending order. This trend is consistent across the dif-
ferent request types (not shown). The ordering of AZs
by the load yields two main observations. First, devel-
opment and pre-staging registries experience low utiliza-
tion. dev, for example, does not receive any requests
57% of the time. Second, registry load increases with
its age. In our traces dal and lon have been running
the longest while fra and syd have only been deployed
recently.
Response time distribution. Figure 8 shows the CDFs
of response time of different requests to layers and to
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(a) Layer popularity.
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(b) Manifest popularity.
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(c) Repository popularity.
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(d) Client popularity.
Figure 10: CDF of access for layers, manifests, repositories, and clients.
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Figure 11: Popularity of top ten layers, manifests, repositories, and clients.
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Figure 9: Dependency of response time on the layer size.

manifests. As dal is the highest loaded AZ, its request
response times are higher compared to other AZs. More
than 60% of the GET layer requests take more than one
second to finish (Figure 8(a)). For the top 25% of re-
quests we see a response time of ten seconds and higher.
fra, syd, prs, and dev are not highly loaded, so they
have the lowest latency in serving the GET layer requests.
PUT and PATCH layer requests (Figures 8(b) and 8(c))
follow similar trends. However, PATCH requests are vis-
ibly slower than GETs and PUTs as they carry more data.
We also analyze the dependency of response time on the
layer size (see Figure 9) and find that response times re-
main nearly constant for layers smaller than 1 MB and
then start to grow linearly.

Figure 8(d) and 8(e) show the response time distri-
butions for PUT and GET requests to manifests, respec-
tively. Since manifests are smaller and cached, we ob-
serve significantly smaller and more stable latencies than
that of requests serving layers. One interesting obser-
vation is that lon has the highest response time when
serving manifests (300-400 ms more than dal). This

is because lon serves manifests with larger sizes com-
pared to other AZs. This is also consistent with the re-
sults shown in Figure 6(b). For the PUT manifest re-
quests we observe a more uniform trend across the AZs
as the size of the new manifests is similar for all the AZs.

4.3 Popularity Analysis
In this section we study the popularity of layers, mani-
fests, users, repositories, and clients to answer whether
image accesses are skewed and produce hot-spots.
Popularity distribution. Figure 10 shows the CDF of
the access rate of layers, manifests, repositories, and
clients. Figure 10(a) demonstrates that there is a heavy
skew in layer accesses. For example, the 1% most fre-
quently accessed layers in dal account for 42% of all
requests while in syd this increases to 59%. However,
requests to the dev and prs sites are almost evenly dis-
tributed. The reason is that during testing, developers
frequently push or pull images that are not available nei-
ther at registry nor at client side. We also observe that
the younger AZs experience a higher skew compared to
the older AZs. We believe this is due to the fact that
accesses become more evenly distributed over a long pe-
riod of time.

For manifest accesses (Figure 10(b)) skew is more sig-
nificant than for layers. This confirms that there are in-
deed hot images which can benefit from caching. Repos-
itory accesses (Figure 10(c)) reflect this fact but show
slightly less skew as manifests are contained in reposito-
ries and hence there are less repositories than manifests.
The same trend holds for users under which repositories
are stored (not shown in Figure 10). Furthermore, we
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find that client accesses are also heavily skewed (Fig-
ure 10(d)). This means that there are few highly ac-
tive clients while most of them only submit few requests.
This trend is consistent across all AZs. While this does
not directly affect the workload, clients can be biased to-
wards a certain subset of images which will contribute to
the access skew.
Top-10 analysis. To further understand the popular-
ity distribution of registry items, we analyze the top 10
hottest items in each category. Figure 11(a) shows the
access rates for the top 10 layers, which account for 8%–
30% of all accesses depending on the registry. The most
popular layer (rank 1) in all AZs absorbs 1–10% of all
requests while in syd it absorbs 19%. The popularity
rate drops rapidly as we move from most popular to tenth
most popular layer. The relative amount of accesses for
the top 10 layers is the lowest for dal as it stores the
most layers and experiences the highest amount of re-
quests.

For the top 10 manifests (Figure 11(b)), we observe
that some container images are highly popular and ac-
count for as many as 40% of the requests in fra and
syd, and 60% in prs. Note that a manifest is fetched
even if the image is already cached at the client side.
Hence, a manifest fetch does not necessarily mean that
the corresponding layers are fetched (§4.4). Similar to
Figure 10, the skew decreases for repository popularity
(Figure 11(c)) and user popularity. Part of the reason for
the small number of highly accessed images in younger
AZ is that registry services in production are tested pe-
riodically to monitor their health and performance. For
the AZs with a smaller workload (fra and syd), those
test images make up three out of the top five most ac-
cessed images. We intentionally did not exclude these
images from our analysis as they are typically part of the
registry workload in production environments.

Figure 11(d) shows that the most popular client sub-
mits around 15% of the total requests. This excludes prs
and dev, which are used by the registry development
team for internal development and testing. These two
AZs only have a small number of clients, and 2 clients
contribute around 80% of all requests.

Overall, the detailed top-10 analysis shows that while
there are a few highly popular test images, the popu-
larity of the remaining hot items is decreasing fast and
hence, overly small caches will be insufficient to effec-
tively cache data. For example, based on these results,
we estimate that a cache size of 2% of the dataset size
can provide 40% and higher hit ratios.

We also analyzed the pull count of the top 10 hottest
repositories on Docker Hub. We found that the most
downloaded repository (Alpine Linux) has a pull count of
more than 1 billion while the tenth most popular reposi-
tory (Ubuntu) has a pull count of 369 million. This trend
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Figure 12: Relationship between GET manifest and subse-
quent GET layer requests.

further verifies that caching can be highly effective for
increasing the performance of container registries.

4.4 Request Correlation
In this section we investigate whether a GET request for
a certain manifest always results in subsequent GET re-
quests to the corresponding layers. Therefore, we define
a client session as the duration from the time a client con-
nects until a certain threshold. We varied the threshold
from 1 to 10 minutes but could not observe significant
differences. However, values less than 1 minute dramati-
cally affect the results as that is less than the typical time
a client takes to pull an image. We set the session thresh-
old to 1 minute and then count all GET layer requests that
follow a GET manifest request within a session.

Figure 12(a) shows the CDF of the number of times
clients issue the corresponding GET layer requests af-
ter retrieving a manifest. In most cases, ranging from
96% for dev to 73% for fra, GET manifest requests are
not followed by any subsequent request. The reason is
that whenever a client has already fetched an image and
then pulls an image, only the manifest file is requested
to check if there has been any change in the image. This
shows that there is no strong correlation between GET
manifest and layer requests.

We then focused only on GET manifest request that
were received within the session of a PUT request to
the same repository, from which the manifest is fetched
(Figure 12(b)). This leads to a significant increase in
subsequent GET layer requests within a session for all
production and staging AZs. The manifest requests not
followed by GET layer requests are due to the fact that
clients sometimes pull the same image more than once.
Overall, our analysis reveals a strong correlation between
GET manifest and subsequent layer requests if preceding
PUT requests are considered.

4.5 Temporal Properties
Next, we investigate whether the workload shows any
temporal patterns.
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(b) Request concurrency.
Figure 13: CDF of client and request concurrency.
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Figure 14: Average number of requests over the tracing period
for each hour of the day and day of the week.

Client and request concurrency. We start with measur-
ing how many clients and requests are active at a given
point in time. Active clients are the clients that main-
tain a connection to the registry, while active requests
are the requests that were received but have not yet been
processed by the registry. Figures 13(a) and 13(b) show
the results for clients and requests, respectively. Overall,
the median number of concurrently active clients is low,
ranging from 0.6 clients for dev to 7 clients for dal.
However, there are peak periods during which several
hundred clients are connected at the same time. We ob-
serve a similar trend for concurrently active requests.

To understand whether these peak periods follow a
certain pattern, we plot the average number of requests
per hour and day across all traced hours and days in Fig-
ures 14(a) and Figure 14(b). For dal, we observe that
request numbers are decreasing during the night and over
the weekend. While other AZs show a similar trend, it
is less pronounced at those sites. This suggests that reg-
istry resources can be provisioned statically for hours and
days. We plan to explore short-term bursts in the future.
Inter-arrival and idle times. Next, we look at request
inter-arrival and idle times to study whether the registry
experiences longer periods of idleness, during which less
resources are required. Inter-arrival time is defined as the
time between two subsequent requests. Idle time is the
time during which there are no active requests.

Figure 15(a) shows the inter-arrival times. dal, lon
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(a) Request inter-arrival time.
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(b) Request idle time.
Figure 15: CDF of request inter-arrival and idle times

and stg experience the highest request frequency with a
99th percentile of inter-arrival time around 3 s while for
other AZs it is around 110 s. When looking at idle times
(Figure 15(b)), we observe that idle periods are short and
in most cases below 1 s. However, the amount of ex-
perienced idle periods varies significantly across AZs.
Throughout the entire collection time, dal saw only ap-
proximately 0.1 million idle periods while lon experi-
enced more than 1.5 million. While some AZs expe-
rience a large amount of idle periods, their duration is
short and hence, they are hard to exploit with traditional
resource provisioning approaches.

4.6 Analysis Summary
We summarize our analysis in seven observations:

1. GET requests are dominant in all registries and more
than half of the requests are for layers, opening an op-
portunity for effective layer caching and prefetching at
the registry.

2. 65% and 80% of all layers are smaller than 1 MB and
10 MB, respectively, making individual layers suitable
for caching.

3. The registry load is affected by the registry’s intended
use case and the age of the registry. Younger, non-
production registries experience lower loads compared
to longer running, production systems. This should be
considered when provisioning resources for an AZ to
save cost and use existing resources more efficiently.

4. Response times correlate with registry load and hence
also depend on the age (younger registries experience
less load) and the use case of the registry.

5. Registry accesses to layers, manifests, repositories,
and by users are heavily skewed. Few extremely
hot images are accessed frequently but the popular-
ity drops rapidly. Therefore, caching techniques are
feasible but cache sizes should be selected carefully.

6. There is a strong correlation between PUT requests
and subsequent GET manifest and GET layer requests.
The registry can leverage this pattern to prefetch the
layers from the backend object store to the cache, sig-
nificantly reducing pull latencies for the client. This
correlation exists for both popular as well as non-
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Figure 16: Effect of various backend storage technologies on
registry performance.

popular images.
7. While there are weak declines in request rates during

weekends, we did not find pronounced repeated spikes
that can be used to improve resource provisioning.

5 Registry Design Improvements

In this section, we use the observations from §4 to design
two improvements to the container registry: (i) a multi-
layer cache for popular layers; and (ii) a tracker for newly
pushed layers, which enables prefetching of the newest
layers from the backend object store. We evaluate our
design using our trace replayer.

5.1 Implementation
We implemented the trace replayer and its performance
analysis mode in Python. This mode allows us to study
the effect of different storage technologies on response
latency. We use Bottle [2] for routing requests between
the master and clients and the dxf library [6] for storing
and retrieving data in/from the registry. For caching and
prefetching, we implemented two separate modules. To
implement the in-memory layer cache, we modified the
Swift storage driver for the registry (about 200 LoC mod-
ified/added). The modified driver stores the small sized
layers in memory and uses Swift for larger layers.

5.2 Performance Analysis
The registry is launched on a 32 core machine with
64 GB of main memory and 512 GB of SSD storage,
and the Swift object store runs on a separate set of nodes
of similar configuration. The trace replayer is started on
an additional six nodes (one master and five clients). We
made sure that the trace replayer or the object store are
never the bottleneck during this analysis. All nodes are
connected via 10 Gbps network links. To drive the anal-
ysis, the trace replayer is used to replay 10,000 requests
from the dal trace (August 1st , 2017 starting at 12 am).

We compare four different backends: 1) Swift;
2) memory for layers smaller than 1 MB and Swift for
rest of the layers (Memory + Swift); 3) local file system
with SSD (Local FS); and 4) Redirection, i.e. the registry

replies back with the link to the layer in Swift and the
client then fetches the layer directly from Swift. Swift,
Local FS, and Redirection are by default supported by
the Docker registry.

Figure 16 shows the latency vs. layer size for all
backends. We observe that, for small sized layers (i.e.
layers less than 1 MB), the response time is the lowest
(0.008 s on average) for Memory + Swift. This is fol-
lowed by Local FS, which yields an average response
time of around 0.013 s and Swift with an average re-
sponse time of 0.07 s. Redirection performs the worst
with average response time of 0.11 s.

For large size objects, we observe that Memory +
Swift and Local FS are comparable and both beat Swift
and Redirection. Moreover, for layers slightly larger than
1 MB, Swift outperforms Redirection. However, for very
large layers, Swift and Redirection perform similarly,
with average response latencies of 0.63 s and 0.59 s, re-
spectively.

The results highlight the advantage of having a fast
backend storage system for the registry, and demonstrate
the opportunity for caching to significantly improve reg-
istry performance.

5.3 Two-level Cache
In designing our cache, we chose to exploit the high ca-
pacity memory as well as SSDs that are present in mod-
ern server machines. We also observed that a small frac-
tion of layers are too large to justify the use of memory to
cache them. Consequently, we design a two-level cache
consisting of main memory (for smaller layers) and SSDs
(for larger layers). We do not have to deal with possi-
ble cache invalidation as layers are content addressable
and any change in a layer also changes its digest. This
results in a “new” layer for caching while the older ver-
sion of the layer is no longer accessed and eventually gets
evicted from the cache.

Hit ratio analysis. We perform a simulation-based
evaluation of our two-level cache for the registry servers.
For these experiments, we mimic the IBM registry server
setup. We simulate the same number of servers as there
are in each AZ and for each server, we add memory and
SSD caches. The registry servers do not share the cache
as the Docker registry implementation is non-distributed.
However, the setup can be scaled by adding more registry
servers behind the Nginx load balancer.

We use the LRU caching policy for both the mem-
ory and the SSD level cache. We select cache sizes of
2%, 4%, 6%, 8%, and 10% of the data ingress for each
AZ. The data ingress of an AZ is the amount of new data
stored in that AZ during the 75 days period during which
we collected the traces. For the SSD level cache sizes, we
select 10×, 15×, and 20× the size of the memory cache.
Any object evicted from the memory cache goes first to
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Figure 17: Hit ratio of LRU caching policy for both the memory and the SSD level cache.

the SSD cache before it is completely evicted. We store
layers smaller than 100 MB in the memory level cache,
while larger layers are stored in the SSD level cache. For
our analysis, we iterate over the traces to warm the cache
and start calculating the hit and miss ratios upon observ-
ing the first eviction from the cache. Given our long trace
period, the first eviction happens early relative to the time
it takes to replay all traces.

Figure 17 shows the hit ratios. We see that for the
production and staging AZs, adding even a single level
of LRU-based memory cache yields a hit ratio of 40%
for dal with a cache size of 2% of ingress data and as
high as 78% for fra and syd with a cache size of 10%
of ingress data.

Increasing the cache size increases the hit ratio, until
it reaches the max of 78%. This is because we only put
layers less than 100 MB in the memory cache. However,
when we enable the second level cache, we achieve a
combined hit ratio of 100% with 6% cache size for dal
and 4% cache size for the other four AZs. We observe
different results for the prs and dev AZs. As these two
traces represent testing interactions by the registry devel-
opment team, we do not see any advantage of using the
cache in this case.

5.4 Prefetching Layers
Our second design improvement is to enable prefetch-
ing of layers from the backend object store by predicting
what layers are most likely to be requested. Therefore,
we use our observations of the push-pull relationship es-
tablished in §4.4 to predict what layers to prefetch as
shown in Algorithm 1.

In §4.4, we observed that the incoming PUT requests
determine which layers will be prefetched when the reg-
istry receives a subsequent GET manifest request. When
a PUT is received, the repository and the layer speci-
fied in the request will be added to a look up table that
includes the request arrival time and the client address.
When a GET manifest request is received from a client
within a certain threshold LMthresh, the host checks if the
look up table contains the repository specified in the re-
quest. If it is a hit and the client’s address is not present
in the table, then the address of the client is added to the
table and the layer is prefetched from the backend object
store. Note that both the amount of time that the entries

Algorithm 1: Layers Prefetching Algorithm.
Input: LMthresh: Threshold for duration between PUT layer and

subsequent GET manifest requests, MLthresh: Threshold
for duration to keep prefetched layer.

1 while true do
2 r ← request received
3 if r = PUT layer then

/* Create new entry for layer */

4 RepoMap[r.repo] ← NewEntry(r.client,r.layer)
5 RepoMap[r.repo] ← set LM_timer

/* When LM_timer > LMthresh, entry is evicted */

6 else if r = GET mani f est then
7 if r.client not in RepoMap[r.repo] for r.layer then
8 RepoMap[r.repo] ← add r.client
9 Pre f etchedLayers ← prefetch r.layer

10 Pre f etchedLayers[r.layer] ← set ML_timer
/* When ML_timer > MLthresh, layer is evicted */

11 pre f etch++

12 else if r = GET layer then
13 if r.layer in Pre f etchedLayers then
14 serve from Pre f etchedLayers[r.layer]
15 pre f etch_hit ++

16 else
17 serve from object store
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Figure 18: Hits/prefetch ratio.

remain in the look up table and how long the layers are
cached at the registry side, defined by MLthresh, are con-
figurable.

Hits/prefetch analysis. We tested our algorithm us-
ing different values for retaining look up table entries,
LMthresh, and retaining prefetched layers, MLthresh. We
use values of 1 hour, 12 hours, and 1 day for each of the
threshold parameters. Figure 18 shows the results. Sin-
gle bars represent MLthresh values while groups of bars
are assigned to LMthresh values.

On one hand, we find that increasing MLthresh can sig-
nificantly increase the hit/prefetch ratio. On the other
hand, increasing the retention threshold for the look up
table entries only marginally increases the hit ratio. This
is because the longer an entry persists in the table, the
fewer prefetches it serves as the record of clients added
to the table increases. We also find that the maximum
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amount of memory used by dal, lon, fra, syd, prs,
and dev is 10 GB, 1.7 GB, 0.5 GB, 1 GB, 2 MB, and
69 MB respectively. We note that for both prs and dev
the maximum amount of memory is low because they
experience less activity and therefore contain less PUT
requests compared to other cases.

Our analysis shows that it is possible to improve reg-
istry performance by adding an appropriate sized cache.
For small layers, a cache can improve response latencies
by an order of magnitude and achieve hit ratios above
90%. We also show that it is possible to predict the
GET layer requests under certain scenario to facilitate
prefetching.

6 Related Work
To put our study in context we start with describing
related research on Docker containers, Docker registry,
workload analysis, and data caching.
Docker containers. Improving performance of con-
tainer storage has recently attracted attention from both
industry and academia. DRR [34] improves common
copy-on-write performance targeting a dense container-
intensive workload. Tarasov et al. [45] study the im-
pact of the storage driver choice on the performance of
Docker containers for different workloads running inside
the containers. Contrary to this work, we focus on the
registry side of a container workload.
Docker registry. Other works have looked at optimizing
image retrieval from a registry side [37, 42]. Slacker [37]
speeds up the container startup time by utilizing lazy
cloning and lazy propagation. Images are fetched from
a shared NFS store and only the minimal amount of data
needed to start the container is retrieved initially. Ad-
ditional data is fetched on demand. However, this de-
sign tightens the integration between the registry and the
Docker client as clients now need to be connected to the
registry at all times (via NFS) in case additional image
data is required. Contrariwise, our study focuses on the
current state-of-the-art Docker deployment in which the
registry is an independent instance and completely de-
coupled from the clients.

CoMICon [42] proposes a system for cooperative
management of Docker images among a set of nodes us-
ing peer-to-peer (P2P) protocol. In its essence, CoMI-
Con attempts to fetch a missing layer from a node in
close proximity before asking a remote registry for it.
Our work is orthogonal to this approach as it analyzes a
registry production workload. The results of our analysis
and the collected traces can also be used to evaluate new
registry designs such as CoMICon.

To the best of our knowledge, similar to IBM Cloud,
most public registries [5, 8, 19] use the open-source im-
plementation of the Docker registry [4]. Our findings are

applicable to all such registry deployments.
Workload analysis studies. A number of works [27, 38]
have studied web service workloads to better understand
how complex distributed systems behave at scale. Sim-
ilar studies exist [31, 30] which focus on storage and
file system workloads to understand access patterns and
locate performance bottlenecks. No prior work has ex-
plored the emerging container workloads in depth.

Slacker [37] also includes the HelloBench [10] bench-
mark to analyze push/pull performance of images. How-
ever, Slacker looks at client-side performance while our
analysis is focused at registry side. Our work takes a
first step in performing a comprehensive and large-scale
study on real-world Docker container registries.
Caching and prefetching. Caching and prefetching
have long been effective techniques to improve system
performance. For example, modern datacenters use dis-
tributed memory cache servers [15, 21, 32, 33] to im-
prove database query performance by caching the query
results. A large body of research [28, 29, 36, 40, 43,
46, 47] studied the effects of combining caching and
prefetching. In our work we demonstrate that the addi-
tion of caches significantly improves container registry’s
performance, while layer prefetching reduces the pull la-
tency for large and less popular images.

7 Conclusion
Docker registry platform plays a critical role in providing
containerized services. However, heretofore, the work-
load characteristics of production registry deployments
have remained unknown. In this paper, we presented the
first characterization of such a workload. We collected
and analyzed large-scale trace data from five geographi-
cally distributed datacenters housing production Docker
registries. The traces span 38 million requests over a pe-
riod of 75 days, resulting in 181.3 TB of traces.

In our workload analysis we answer pertinent ques-
tions about the registry workload and provide insights to
improve the performance and usage of Docker registries.
Based on our findings, we proposed effective caching
and prefetching strategies which exploit registry-specific
workload characteristics to significantly improve perfor-
mance. Finally, we have open-sourced our traces and
also provide a trace replayer, which can be used to serve
as a solid basis for new research and studies on container
registries and container-based virtualization.
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