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Abstract
Inside modern SSDs, a small portion of MLC/TLC
NAND flash memory blocks operate in SLC-mode
to serve as write buffer/cache and/or store hot data.
These SLC-mode blocks absorb a large percentage of
write operations. To balance memory wear-out, such
MLC/TLC-to-SLC configuration rotates among all the
memory blocks inside SSDs. This paper presents a
simple yet effective design approach to reduce write
stress on SLC-mode flash blocks and hence improve the
overall SSD lifetime. The key is to implement well-
known delta compression without being subject to the
read latency and data management complexity penalties
inherent to conventional practice. The underlying
theme is to leverage the partial programmability of
SLC-mode flash memory pages to ensure that the
original data and all the subsequent deltas always
reside in the same memory physical page. To avoid
the storage capacity overhead, we further propose to
combine intra-sector lossless data compression with
intra-page delta compression, leading to opportunistic
in-place delta compression. This paper presents specific
techniques to address important issues for its practical
implementation, including data error correction, and
intra-page data placement and management. We
carried out comprehensive experiments, simulations,
and ASIC (application-specific integrated circuit)
design. The results show that the proposed design
solution can largely reduce the write stress on SLC-
mode flash memory pages without significant latency
overhead and meanwhile incurs relatively small silicon
implementation cost.

1 Introduction
Solid-state data storage built upon NAND flash memory
is fundamentally changing the storage hierarchy for
information technology infrastructure. Unfortunately,
technology scaling inevitably brings the continuous
degradation of flash memory endurance and write

speed. Motivated by data access locality and hetero-
geneity in real-world applications, researchers have well
demonstrated the effectiveness of complementing bulk
MLC/TLC NAND flash memory with small-capacity
SLC NAND flash memory to improve the endurance
and write speed (e.g., see [1–3]). The key is to use
SLC memory blocks serve as write buffer/cache and/or
store relatively hot data. Such a design strategy has
been widely adopted in commercial solid-state drives
(SSDs) [4–6], where SSD controllers dynamically
configure a small portion of MLC/TLC flash memory
blocks to operate in SLC mode. The MLC/TLC-to-SLC
configuration rotates throughout all the MLC/TLC flash
memory blocks in order to balance the flash memory
wear-out.

This paper is concerned with reducing the write
stress on those SLC-mode flash memory blocks in
SSDs. Aiming to serve as write buffer/cache and/or
store hot data, SLC-mode flash memory blocks account
for a large percentage of overall data write traffic [7].
Reducing their write stress can directly reduce the
flash memory wear-out. Hence, when these SLC-mode
memory blocks are configured back to operate as
normal MLC/TLC memory blocks, they could have
a long cycling endurance. Since a specific location
tends to be repeatedly visited/updated within a short
time (like consecutive metadata updates or in-place
minor revisions of file content), it is not uncommon
that data written into this SLC-mode flash based cache
have abundant temporal redundancy. Intuitively, this
feature makes the delta compression an appealing
option to reduce the write stress. In fact, the abundance
of data temporal redundancy in real systems has
inspired many researchers to investigate the practical
implementation of delta compression at different levels,
such as filesystems [8, 9], block device [10–13] and FTL
(Flash Translation Layer) [14]. Existing solutions store
the original data and all the subsequent compressed
deltas separately at different physical pages of the
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storage devices. As a result, to serve a read request,
they must fetch the original data and all the subsequent
deltas from different physical pages, leading to inherent
read amplification, particularly for small read request
or largely accumulated delta compression. In addition,
the system needs to keep the mapping information for
the original data and all the compressed deltas, leading
to a sophisticated data structure in the filesystem and/or
firmware. These issues inevitably lead to significant read
latency and hence a system performance penalty.

This paper aims to implement delta compression for
SLC-mode flash memory blocks with small read latency
penalty and very simple data management. First, we
note that the read latency penalty inherent to existing
delta compression design solutions is fundamentally
due to the per-sector/page atomic write inside storage
devices, which forces us to store the original data and
all the subsequent deltas across different sectors/pages.
Although per-sector atomic write is essential in hard
disk drives (i.e., hard disk drives cannot perform
partial write/update within one 4kB sector), per-page
atomic write is not absolutely necessary in NAND flash
memory. Through experiments with 20nm MLC NAND
flash memory chips, we observed that SLC-mode pages
can support partial programming, i.e., different portions
of the same SLC-mode page can be programmed at
different times. For example, given a 16kB flash
memory page size, we do not have to write one entire
16kB page at once, and instead we can write one portion
(e.g., 4kB or even a few bytes) at a time and finish
writing the entire 16kB page over a period of time. This
clearly warrants re-thinking the implementation of delta
compression.

Leveraging the per-page partial-programming support
of SLC-mode flash memory, we propose a solution
to implement delta compression without incurring
significant read latency penalty and complicating data
management. The key idea is simple and can be
described as follows. When a 4kB sector is being written
the first time, we always try to compress it before writing
to an SLC-mode flash memory page. Assume the flash
memory page size is 16kB, we store four 4kB sectors
in each page as normal practice. The use of per-sector
lossless compression leaves some memory cells unused
in the flash memory page. Taking advantage of the
per-page partial-programming support of SLC-mode
flash memory, we can directly use those unused memory
cells to store subsequent deltas later on. As a result,
the original data and all its subsequent deltas reside in
the same SLC flash memory physical page. Since the
runtime compression/decompression can be carried out
by SSD controllers much faster than a flash memory
page read, this can largely reduce the data access latency
overhead in the realization of delta compression. In

addition, it can clearly simplify data management since
everything we need to re-construct the latest data is
stored in a single flash page. This design strategy is
referred to as opportunistic in-place delta compression.

For the practical implementation of the proposed
design strategy, this paper presents two different
approaches to layout the data within each SLC-mode
flash memory page, aiming at different trade-offs
between write stress reduction and flash-to-controller
data transfer latency. We further develop a hybrid error
correction coding (ECC) design scheme to cope with the
significantly different data size among original data and
compressed deltas. We carried out experiments and sim-
ulations to evaluate the effectiveness of proposed design
solutions. First, we verified the feasibility of SLC-mode
flash memory page partial programming using a PCIe
FPGA-based flash memory characterization hardware
prototype with 20nm MLC NAND flash memory
chips. For the two different data layout approaches,
we evaluated the write stress reduction under a variety
of delta compression values, and quantitatively studied
their overall latency comparison. To estimate the silicon
cost induced by the hybrid ECC design scheme and
on-the-fly compression/decompression, we further
carried out ASIC (application-specific integrated circuit)
design, and the results show that the silicon cost is not
significant. In summary, the contributions of this paper
include:
• We for the first time propose to cohesively integrate

SLC-mode flash memory partial programmability,
data compressibility and delta compressibility to
reduce write stress on SLC-mode pages in SSDs
without incurring significant read latency and
storage capacity penalty;

• We develop specific solutions to address the data er-
ror correction and data management design issues
in the proposed opportunistic delta-compression de-
sign strategy;

• We carried out comprehensive experiments to
demonstrate its effectiveness on reducing write
stress at small read latency overhead and show its
practical silicon implementation feasibility.

2 Background and Motivation
2.1 Write Locality
The content temporal locality in storage system implies
that one specific page could be visited for multiple times
within a short time period. To quantitatively investigate
this phenomenon, we analyzed several typical traces
including Finance-1, Finance-2 [15], Homes [16] and
Webmail Server traces [16], and their information
is listed in Table 1. We analyzed the percentage of
repeated LBA (logical block address) in the collected
traces. Figure 1 shows the distribution of repeated
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overwrite times within one hour. In the legend, ’1’
means a specific LBA is only visited once while ’2-10’
means an LBA is visited more than twice and less than
10 times. We can find more than 90% logical blocks are
updated more than once in Finance-1 and Finance-2.
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Figure 1: Percentage of repeated overwrite times of
several typical workload traces.

Table 1: Disk traces information

Name duration # of unique LBAs # of total LBAs

Finance-1 1h 109,177 3,051,388
Finance-2 1h 31,625 571,529
Homes 24h 20,730 28,947
Webmail 24h 6,853 16,514

Another noticeable characteristic in most applica-
tions is the partial page content overwrite or update.
Authors in [17] revealed that more than 60% of write
operations involve partial page overwrites and some
write operations even only update less than 10 bytes.
This implies a significant content similarity (or temporal
redundancy) among consecutive data writes to the same
LBA. However, due to the page-based data write in flash
memory, such content temporal redundancy is however
left unexplored in current conventional practice.

2.2 Delta Compression

Although delta compression can be realized at different
levels spanning filesystems [8, 9], block device [10–13]
and FTL [14], their basic strategy is very similar and can
be illustrated in Figure 2. For the sake of simplicity, we
consider the case of applying delta compression to the
4kB content at the LBA of La. Let C0 denote the original
content at the LBA of La, which is stored in one flash
memory physical page P0. At time T1, we update the 4kB
content at LBA of La with C1. Under delta compression,
we obtain the compressed delta between C0 and C1, de-
noted as d1, and store in another flash memory physical
page P1. At time T2, we update the content again with C2.
To maximize the delta compression efficiency, we obtain

and store the compressed delta between C2 and C1, de-
noted as d2. The process continues as we keep updating
the content at the LBA of La, for which we need to keep
the original content C0 and all the subsequent deltas (i.e.,
d1, d2, · · · ).

  



 



  

 



 



 



 



Figure 2: Illustration of conventional method for
realizing temporal redundancy data compression.

Clearly, conventional practice could result in notice-
able read latency penalty. In particular, to serve each
read request, we must fetch the original data and all
the deltas in order to re-construct the current content,
leading to read amplification and hence latency penalty.
In addition, it comes with sophisticated data structure
and hence complicates data management, which could
further complicate flash memory garbage collection. As
a result, although delta compression can very naturally
exploit abundant temporal redundancy inherent in many
applications, it has not been widely deployed in practice.

2.3 Partial Programming
Through experiments with flash memory chips, we ob-
served that SLC-mode NAND flash memory can readily
support partial programming, i.e., different portions
in an SLC flash memory page can be programmed at
different time. This feature can be explained as follows.
Each SLC flash memory cell can operate in either erased
state or programmed state, corresponding to the storage
of ‘1’ and ‘0’, respectively. At the beginning, all the
memory cells within the same flash memory page are
erased simultaneously, i.e., the storage of each memory
cell is reset to be ‘1’. During runtime, if we write a
‘1’ to one memory cell, memory chip internal circuits
simply apply a prohibitive bit-line voltages to prevent
this cell from being programmed; if we write a ‘0’ to
one memory cell, memory chip internal circuits apply
a programming bit-line voltage to program this cell
(i.e., move from erased state to programmed state).
Meanwhile, a series of high voltage are applied to the
word-line to enable programming. This can directly
enable partial programming as illustrated in Figure 3: At
the beginning of T0, all the four memory cells m1, m2,

3
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m3 and m4 are in the erased state, and we write ‘0’ to
memory cell m3 and write ‘1’ to the others. Internally,
the memory chip applies programming bit-line voltage
to m3 and prohibitive bit-line voltage to the others, hence
the storage content becomes {‘1’, ‘1’, ‘0’, ‘1’}. Later at
time T1, if we want to switch memory cell m1 from ‘1’ to
‘0’, we write ‘0’ to memory cell m1 and ‘1’ to the others.
Accordingly, memory chip applies prohibitive bit-line
voltage to the other three cells so that their states remain
unchanged. As a result, the storage content becomes
{‘0’, ‘1’, ‘0’, ‘1’}.


 










  

  

  

 

Figure 3: Illustration of the underlying physics enabling
SLC-mode flash memory partial programming.

Therefore, we can carry out partial programming
to SLC-mode flash memory pages as illustrated in
Figure 4. Let Is denote an all-one bit vector with the
length of s. Given an erased SLC flash memory page
with the size of L, we first write [d1, · · · ,dn,IL−n] to
partially program the first n memory cells and leave the
rest L− n memory cells intact. Later on, we can write
[In,c1, · · · ,cm,IL−n−m] to partially program the next m
memory cells and leave all the other memory cells intact.
The same process can continue until the entire page has
been programmed.

 … 



 …  …

 … 





 …  
… … …





Figure 4: Illustration of SLC-mode flash memory partial
programming.

Using 20nm MLC NAND flash memory chips, we car-
ried out experiments and the results verify that the chips

can support the partial programming when being oper-
ated in the SLC mode. In our experiments, we define
“one cycle” as progressively applying partial program-
ming for 8 times before one entire page is filled up and
then being erased. In contrast, the conventional “one cy-
cle” is to fully erase before each programming. Figure 5
demonstrates the bit error rate comparison of these two
schemes. The flash memory can be used for 8000 cy-
cles with the conventional way. The progressive partial
programming can work for more than 7100 cycles. And
this modest endurance reduction indicates that the partial
programming mechanism does not bring noticeable extra
physical damage to flash memory cells.
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Figure 5: Comparison of the bit error rate of conventional
programming and progressive partial programming.

3 Proposed Design Solution
Leveraging the partial programmability of SLC-mode
flash memory, very intuitively we can deploy in-place
delta compression, as illustrated in Figure 6, to eliminate
the read latency penalty inherent to conventional design
practice as described in Section 2.2. As shown in
Figure 6, the original data content C0 and all the
subsequent deltas di’s are progressively programmed
into a single physical page. Once the physical page is
full after the k-th update, or the number of deltas reaches
a threshold T (we don’t expect to accumulate too many
deltas in case of a larger retrieval latency), we allocate a
new physical page, write the latest version data Ck+1 to
the new physical page, and reset the delta compression
for subsequent updates. This mechanism can guarantee
that we only need to read a single flash memory page to
retrieve the current data content.

In spite of the very simple basic concept, its practical
implementation is subject to several non-trivial issues:
(i) Storage capacity utilization: Suppose each flash
memory page can store m (e.g., 4 or 8) 4kB sectors.
The straightforward implementation of in-place delta
compression explicitly reserves certain storage capacity
within each SLC flash memory page for storing deltas.
As a result, we can only store at most m−1 4kB sectors
per page at the very beginning. Due to the runtime

4
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Figure 7: Illustration of opportunistic in-place delta compression and two different data placement strategies.



























 

   




Figure 6: Illustration of the basic concept of in-place
delta compression.

variation of the delta compressibility among all the
data, these explicitly reserved storage space may not be
highly utilized. This clearly results in storage capacity
penalty. In addition, by changing the number of 4kB
sectors per page, it may complicate the design of FTL.
(ii) Error correction: All the data in flash memory must
be protected by ECC. Due to the largely different size
among the original data and all the deltas, the ECC
must be devised differently. In particular, the widely
used low-density parity-check (LDPC) codes are only
suitable for protecting large data chunk size (e.g., 2kB
or 4kB), while each delta can only be a few tens of
bytes. In the remainder of this section, we present
design techniques to address these issues and discuss the
involved trade-offs.

3.1 Opportunistic In-place Delta Com-
pression

To eliminate the storage capacity penalty, we propose to
complement delta compression with intra-sector lossless
data compression. In particular, we apply lossless data
compression to each individual 4kB sector being written
to an SLC-mode flash memory page, and opportunisti-
cally utilize the storage space left by compression for s-

toring subsequent deltas. This is referred to as oppor-
tunistic in-place delta compression. This is illustrated in
Figure 7, where we assume the flash memory page size
is 16kB. Given four 4kB sectors denoted as A, B, C, and
D, we first apply lossless data compression to each sector
individually and obtain Ac, Bc, Cc, and Dc. As shown in
Figure 7, we can place these four compressed sectors in-
to a 16kB SLC-mode flash memory page in two different
ways:

1. Clustered placement: All the four compressed sec-
tors are stored consecutively, and the remaining s-
pace within the 16kB page can store any deltas as-
sociated with these four sectors.

2. Segmented placement: Each 16kB SLC-mode flash
memory page is partitioned into four 4kB segments,
and each segment is dedicated for storing one com-
pressed sector and its subsequent deltas.

These two different placement strategies have different
trade-offs between delta compression efficiency and read
latency. For the clustered placement, the four sectors
share a relatively large residual storage space for storing
subsequent deltas. Hence, we may expect that more
deltas can be accumulated within the same physical
page, leading to a higher delta compression efficiency.
However, since the storage of original content and deltas
of all the four sectors are mixed together, we have to
transfer the entire 16kB from flash memory to SSD
controller in order to reconstruct the current version of
any one sector, leading to a longer flash-to-controller
data transfer latency. On the other hand, in the case of
segmented placement, we only need to transfer a 4kB
segment from flash memory to SSD controller to serve
one read request. Meanwhile, since the deltas associated
with each sector can only stored within one 4kB
segment, leading to lower delta compression efficiency
compared with the case of clustered placement. In
addition, segmented placement tends to have lower
computational complexity than clustered placement,
which will be further elaborated later in Section 3.3.

5
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3.2 Hybrid ECC and Data Structure
The above opportunistic in-place delta compression de-
mands a careful design of data error correction and over-
all data structure. As illustrated in Figure 8, we must s-
tore three types of data elements: (1) compressed sector,
(2) delta, and (3) header. Each compressed sector and
delta follows one header that contains all the necessary
metadata (e.g., element length and ECC configuration).
Each element must be protected individually by one EC-
C codeword. In addition, each header should contain an
unique marker to identify a valid header. Since all the
unwritten memory cells have the value of 1, we can use
an all-zero bit vector as the header marker.













Figure 8: Illustration of three types of data elements, all
of which must be protected by ECC.

Since all the elements have different different size, the
ECC coding must natively support variable ECC code-
word length, for which we can use the codeword punc-
turing [18]. Given an (n,k) ECC that protects k-bit user
data with (n− k)-bit redundancy. If we want to use this
ECC to protect m-bit user data um (where m< k), we first
pad (k−m)-bit all-zero vector Ok−m to form a k-bit vec-
tor [um,Ok−m]. We encode the k-bit vector to generate
(n− k)-bit rn−k of redundancy, leading to an n-bit code-
word [um,Ok−m,rn−k]. Then we remove the (k−m)-bit
all-zero vector Ok−m from the codeword to form an (n+
m− k)-bit punctured ECC codeword [um,rn−k], which is
stored into flash memory. To read the data, we retrieve
the noisy version of the codeword, denoted as [ũm, r̃n−k],
and insert (k−m)-bit all-zero vector Ok−m back to form
an n-bit vector [ũm,Ok−m, r̃n−k], to which we apply ECC
decoding to recover the user data um.

In order to avoid wasting too much coding redun-
dancy, the ratio of m/k in ECC puncturing should not
be too small (i.e., we should not puncture too many
bits). Hence, instead of using a single ECC, we should
use multiple ECCs with different codeword length to
accommodate the large variation of data element length.
To protect relatively long data elements (in particular the
compressed 4kB sectors), we can use three LDPC codes
with different codeword length, denoted as LDPC4kB,
LDPC2kB, and LDPC1kB. The code LDPC4kB protects
all the elements with the length bigger than 2kB, the
code LDPC2kB protects all the elements with the length

within 1kB and 2kB, and the code LDPC1kB protects
all the elements with the length within 512B and 1kB.
Thanks to recent work on versatile LDPC coding system
design [19, 20], all the three LDPC codes can share the
same silicon encoder and decoder, leading to negligible
silicon penalty in support of multiple LDPC codes.
Since LDPC codes can only work with relatively large
codeword length (i.e., 1kB and beyond) due to the error
floor issue [21], we have to use a set of BCH codes
to protect all the elements with the length less than
512B. BCH codes with different codeword length are
constructed under different Galois Fields, hence cannot
share the same silicon encoder and decoder. In this work,
we propose to use three different BCH codes, denoted
as BCH4B, BCH128B, and BCH512B, which can protect
4B, 128B, and 512B, respectively. We fix the size of
element header as 4B, and the BCH4B aims to protect
each element header. The code BCH512B protects all the
elements with the length within 128B and 512B, and the
code BCH128B protects all the non-header elements with
the length of less than 128B.

3.3 Overall Implementation

Based upon the above discussions, this subsection
presents the overall implementation flow of the proposed
opportunistic in-place delta compression design frame-
work. Figure 9 shows the flow diagram for realizing
delta compression to reduce write stress. Upon a request
of writing 4kB sector Ck at a given LBA within the SLC-
mode flash memory region, we retrieve and re-construct
the current version of the data Ck−1 from an SLC-mode
physical page. Then we obtain the compressed delta
between Ck and Ck−1, denoted as dk. Accordingly we
generate its header and apply ECC encoding to both the
header and compressed delta dk, which altogether form
a bit-vector denoted as pk. If there is enough space in
this SLC-mode page and the number of existing deltas is
smaller than the threshold T , we write pk into the page
through partial programming; otherwise we allocate a
new physical page, compress the current version Ck and
write it to this new page to reset the delta compression.
In addition, if the original sector is not compressible, like
video or photos, we simply write the original content
to flash memory without adding a header. Meanwhile,
we write a special marker bit to the reserved flash page
metadata area [22]. During the read operation, if the
controller detected the marker, it will know that this
sector is written uncompressed.

The key operation in the process shown in Figure 9
is the data retrieval and reconstruction. As discussed
in Section 3.1, we can use two different intra-page
data placement strategies, i.e., clustered placement
and segmented placement, for which the data retrieval

6
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Figure 9: Flow diagram for realizing delta compression.

and reconstruction operation involves different la-
tency overhead and computational complexity. In
short, compared with clustered placement, segmented
placement has shorter latency and less computational
complexity. This can be illustrated through the following
example. Suppose a single 16kB flash page contains four
compressed 4kB sectors, Ac, Bc, Cc, and Dc. Associated
with each sector, there is one compressed delta, dA,1,
dB,1, dC,1, and dD,1. Each of these eight data elements
follows a header, hence we have total eight headers.
Suppose we need to read the current content of sector
B, the data retrieval and reconstruction process can be
described as follows:
• In the case of clustered placement, the SSD

controller must retrieve and scan the entire 16kB
flash memory page. It must decode and analyze all
the eight headers to determine whether to decode
or skip the next data element (compressed sector
or delta). During the process, it carries out further
ECC decoding to obtain Bc and dB,1, based upon
which it performs decompression and accordingly
reconstruct the current content of sector B.

• In the case of segmented placement, the SSD con-
troller only retrieves and scans the second 4kB from
from the 16kB flash memory page. As a result, it
only decodes and analyzes two headers, and accord-
ingly decodes and decompresses Bc and dB,1, and
finally reconstructs the current content of sector B.

From above simple example, it is clear that, compared
with clustered placement, segmented placement largely
reduces the amount of data being transferred from flash
memory chips to SSD controller, and involves a fewer
number of header ECC decoding. This leads to lower
latency and less computation. On the other hand, clus-

tered placement tends to have a better storage efficiency
by allowing different sectors to share the same storage
region for storing deltas.

Thus the proposed design solution essentially elimi-
nates read amplification and filesystem/firmware design
overhead, which are two fundamental drawbacks inher-
ent to conventional practice. Meanwhile, by opportunis-
tically exploiting lossless compressibility inherent to da-
ta content itself, this design solution does not incur a s-
torage capacity penalty on the SLC-mode flash memory
region in SSDs.

Based upon the above discussions, we may find that a
noticeable write traffic reduction could be expected with
a good compression efficiency and delta compression
efficiency. So if the data content is not compressible (like
multimedia data or encrypted data), the reduction would
be limited. In addition, another application condition is
that the proposed design solution favors update-in-place
file system because only the write requests to the same
LBA have a chance to be combined to the same physical
page. Therefore, the proposed technique could not be
very conveniently applied to some log-structured file
system like F2FS, LFS because the in-place update is
not inherently supported in the logging area of these
file systems. And besides, the proposed design solution
can be integrated with other appearing features of SSD
such as encryption. SSDs are using high performance
hardware modules to implement encryption. And
the data/delta compression will not be affected if the
encryption module is placed after compression.

4 Evaluations
This section presents our experimental and simulation
results to quantitatively demonstrate the effectiveness
and involved trade-offs of our proposed design solution.

4.1 Per-sector Compressibility

To evaluate the potential of compressing each original
4kB sector to opportunistically create space for deltas,
we measured the per-4kB-sector data compressibility on
different data types. We collected a large amount of 4kB
data sectors from various database files, document files,
and filesystem metadata. These types of data tend to be
relatively hot and frequently updated, hence more likely
reside in the SLC-mode region in SSDs.

We use the sample databases from [23, 24] to test
the compressibility of MySQL database files. MySQL
database uses pre-allocated data file, hence we ignored
the unfilled data segments when we measured the
compression ratio distribution. The Excel/Text datasets
were collected from an internal experiment lab server.
We used Linux Kernel 3.11.10 source [25] as the source
code dataset. We collected the metadata (more than
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34MB) of files in an ext4 partition as the metadata
dataset. Figure 10 shows the compressibility of different
data types with LZ77 compression algorithm. The
compression ratio is defined as the ratio of the size
after compression to before compression, thus a smaller
ratio means a better compressibility. As shown in
Figure 10, data compression ratio tends to follow a
Gaussian-like distribution, while different datasets have
largely different mean and variation. Because each delta
tends to be much smaller than 4kB, the results show
that the simple LZ77 compression is sufficient to leave
enough storage space for storing multiple deltas.
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Figure 10: Compression ratio distribution of different
data types with LZ77 compression.

4.2 Write Stress Reduction
We further evaluated the effectiveness of using the
proposed opportunistic in-place delta compression to
reduce the flash memory write stress. Clearly, the
effectiveness heavily depends on the per-sector data
compressibility and delta compressibility. Although
per-sector data compressibility can be relatively easily
obtained as shown in Section 4.1, empirical measure-
ment of the delta compressibility is non-trivial. Due
to the relative update regularity and controllability of
filesystem metadata, we empirically measured the delta
compressibility of metadata, based upon which we
analyzed the write stress reduction for metadata. To
cover the other types of data, we carried out analysis by
assuming a range of Gaussian-like distributions of delta
compressibility following prior work [10, 13].

4.2.1 A Special Case Study: Filesystem Metadata

To measure the metadata delta compressibility, we
modified Mobibench [26] to make it work as the
I/O workload benchmark under Linux Ubuntu 14.04
Desktop. We use a large set of SQLite workloads
(create, insert, update, delete) and general
filesystem tasks (file read, update, append) to

trigger a large amount of file metadata updates. To
monitor the characteristics of metadata, based upon the
existing tool debugfs [27], we implemented a metadata
analyzer tool [28] to track, extract, and analyze the
filesystem metadata. We use an ext4 filesystem as the
experimental environment and set the system page cache
write back period as 500ms. Every time before we
collect the file metadata, we wait for 1s to ensure that
file metadata are flushed back to the storage device. For
each workload, we collected 1000 consecutive versions
of metadata.
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Figure 11: Delta compression ratio of consecutive
versions of metadata for different workloads.

Based on the collected consecutive versions of meta-
data, we measured the delta compressibility as shown in
Figure 11. The number inside the bar indicates the av-
erage number of bytes needed to store the difference be-
tween two consecutive versions of metadata, while the
complete size of ext4 file metadata is 256 byte. The av-
erage delta compression ratio is 1:0.087 with the stan-
dard deviation of 0.0096. The results indicate that the
delta compression ratio is quite stable with a very small
deviation.
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Figure 12: Number of flash memory pages being
programmed for storing 1000 consecutive versions of
metadata. (In comparison with conventional practice, we
need at most 1000 pages to store these versions. )

The results in Figure 11 clearly suggest the significant
data volume reduction potential by applying delta com-
pression for metadata. To estimate the corresponding
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Figure 13: Reduction of the number of programmed flash memory pages under different workloads and over different
data compressibility.

write stress reduction, we set that each SLC-mode flash
memory page is 16kB and stores four compressed 4kB
sectors and their deltas. Figure 12 shows the average
number of flash memory pages that must be programmed
in order to store 1000 consecutive versions of metadata
pages. We considered the use of both segmented
placement and clustered placement design strategies
as presented in Section 3.1. Thanks to the very good
per-sector compressibility and delta compressibility of
metadata, the flash memory write stress can be reduced
by over 20×. In addition, by allowing all the four sectors
share the space for storing deltas, clustered placement
can achieve higher write stress reduction than segmented
placement, as shown in Figure 12.

4.2.2 Analytical Results for General Cases

Prior work [10, 13, 14] modeled delta compressibility to
follow Gaussian-like distributions. To facilitate the eval-
uation over a broader range of data types, we follow this
Gaussian distribution based model in these work as well.
Let Rdata denote the mean of the per-sector compression
ratio of original data, and let Rdelta denote the mean of
delta compression ratio. Based upon the results shown
in Section 4.1, we considered three different values of
Rdata, i.e., 0.2, 0.4, and 0.7. scenarios. According to pri-
or work [10,13,14], we considered three different values
of Rdelta, i.e., 0.1, 0.3, and 0.6. Meanwhile, we set the
value of deviation to 10% of the corresponding value of

mean according to our measurements in Section 4.1.
In this section, we carried out simulations to estimate

the flash memory write stress reduction over different
workloads, and the results are shown in Figure 13. We
chose the following four representative workloads:
• Webmail Server: We used Webmail Server block

trace from [16], which was obtained from a
department mail sever and the activities include
mail editing, saving, backing up, etc.

• Repeated File Update: We enhanced the benchmark
in [26] to generate a series of file updating in an
Android Tablet, and accordingly captured the block
IO traces.

• Home: We used the Homes Traces in [16], which
include a research group activities of developing,
testing, experiments, technical writing, plotting,
etc.

• Transaction: We executed TPC-C benchmarks (10
warehouses) for transaction processing on MySQL
5.1 database system. We ran the benchmarks and
use blktrace tool to obtain the corresponding traces.

As shown in Figure 13, the write stress can be
noticeably reduced by using the proposed design
solution (a smaller value in figure indicates a better
stress reduction). In the “Repeated File Update” and
TPC-C workloads, the number of programmed flash
memory pages can be reduced by over 80%. The results
clearly show that the flash memory write stress reduction
is reversely proportional to Rdata and Rdelta, which can
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be intuitively justified. When both the original data and
delta information cannot be compressed efficiently (such
as Rdata is 0.7 and Rdelta is 0.6), the write stress can be
hardly reduced because the compressed delta cannot be
placed in the same page with the original data. However,
with the clustered data placement strategy, some deltas
could be placed because of a larger shared spare space.
Thus the clustered data placement strategy has a better
performance than the segmented approach in most of
the cases, especially when the compression efficiency is
relatively poor.

The write stress reduction varies among different
workloads and strongly depends on the data update op-
eration frequency. For example, with a large percentage
of data updates than “Homes”, “Repeated File Update”
can achieve noticeably better write stress reduction as
shown in Figure 13. In essence, there exists a upper
bound of write stress reduction, which is proportional to
the percentage of update operations. This explains why
the write stress reduction cannot be further noticeably
reduced even with better data compressibility, as shown
in Figure 13.

4.3 Implementation Overhead Analysis
This subsection discusses and analyzes the overhead
caused by the proposed design solution in terms of read
latency, update latency, and SSD controller silicon cost.

4.3.1 Read Latency Overhead

Figure 14 illustrates the read process to recover the
latest data content. After the flash memory sensing
and flash-to-controller data transfer, the SSD controller
parses the data elements and accordingly carries out
the ECC decoding and data/delta decompression, based
upon which it combines the original data and all the
subsequent deltas to obtain the latest data content.
As explained in Section 3.2, different segments are
protected by different ECC codes (LDPC codes or
BCH codes) according to the length of information bits.
Hence the controller must contain several different ECC
decoders.

Memory
Sensing

Data
Transfer

LDPC
Decodesen xfer Decompress

BCH
Decode Decompress

Combine

dececc

SATA
Transfer

com sata

Figure 14: Illustration the process to obtain the latest data
content.

Let τsen denote the flash memory sensing latency(the
latency to read out the data content from flash cells us-

ing sensing circuits [29]), τx f er(Ω) denote the latency of
transferring Ω amount of data from flash memory chip to
SSD controller, τ(dec)

LDPC and τ(dec)
BCH denote the LDPC and

BCH decoding latency, τ(dec)
sec and τ(dec)

delta denote the la-
tency of decompressing the original data and deltas, τcom
denote the latency to combine the original data and all
the deltas to obtain the latest data content, and τsata de-
note the latency of transferring 4kB from SSD to host.
In the conventional design practice without delta com-
pression, to serve a single 4kB read request, the overall
latency can be expressed as:

τread = τsen + τx f er(4kB)+ τ(dec)
LDPC + τsata. (1)

When using the proposed design solution to realize
delta compression, the read latency can be expressed as:

τread =τsen + τx f er(n ·4kB)+max(τ(dec)
LDPC,τ

(dec)
BCH )

+max(τ(dec)
sec ,τ(dec)

delta )+ τcom + τsata,
(2)

where n denotes the number of 4kB sectors being
transferred from flash memory chip to SSD controller.
We have that n = 1 in the case of segmented placement,
and n is the number of 4kB in each flash memory
physical page in the case of clustered placement. Since
there could be multiple elements that are decoded by
the LDPC decoder or the same BCH decoder, τ (dec)

LDPC

and τ(dec)
BCH in Eq. 2 are the aggregated LDPC and BCH

decoding latency. In addition, τ(dec)
delta in Eq. 2 is the

aggregated delta decompression latency because there
could be multiple deltas to be decompressed by the same
decompression engine.

We can estimate the read latency based on the follow-
ing configurations. The SLC-mode sensing latency τsen
is about 40µs in sub-20nm NAND flash memory. We set
the flash memory physical page size as 16kB. Under the
latest ONFI 4.0 flash memory I/O specification with the
throughput of 800MB/s, the transfer latency τx f er(4kB)
is 5µs. We set the throughput of both LDPC and BCH
decoding as 1GBps. Data decompression throughput is
set as 500MBps, and delta decompression throughput is
set as 4GBps due to its very simple operations. When
combining the original data and all the deltas, we simply
use parallel XOR operations and hence set τcom as 1µs.
Under the SATA 3.0 I/O specification with the through-
put of 6Gbps, the SSD-to-host data transfer latency τsata
is set as 5.3µs.

Based upon the above configurations, we have that, to
serve a 4kB read request, the overall read latency is 54µs
under the conventional practice without delta compres-
sion. When using the proposed design solution, the over-
all latency depends on the number of deltas involved in
the read operation. With the two different data placement
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Table 2: Read/Update latency overhead comparison of
different cases.

Operation Technique
Average-case

( sµ )
Worst-case

( sµ )

Read

Conventional 54

Clustered 76 102

Segmented 56 63

Update

Conventional 186

Clustered 246 272

Segmented 226 233

 

strategies, we estimate the worst-case and average-case
read latency as shown in Table 2:

• Clustered placement: In this case, the flash-to-
controller data transfer latency is τx f er(16kB)=20µs.
In the worse case, the compressed 4kB sector being
requested and all its deltas almost completely
occupy the entire 16kB flash memory physical
page, and are all protected by the same ECC
(LDPC or BCH). And the total information bit
length will be nearly 32kB at most due to ECC
code word puncturing (as explained in Section 3.2).
As a result, the decoding latency is 32µs at
most and delta decompression latency is 4µs.
Hence, the overall worst-case read latency is
102µs, representing a 88% increase compared
with the conventional practice. In the average
case, the latency of decoding/decompressing
the original 4kB sector is longer than that of
its deltas. Assuming the original 4kB sector is
compressed to 3kB, we can estimate the decoding
and decompression latency as 4µs and 6µs. Hence,
the overall average-case read latency is 76µs,
representing a 41% increase compared with the
conventional practice.

• Segmented placement: In this case, the flash-to-
controller data transfer latency is τx f er(4kB)=5µs.
The worst-case scenario occurs when the data
compressibility is low and hence the compressed
sector is close to to 4kB, leading to the decoding
and decompression latency of 4µs (using LDPC4kB)
and 8µs, respectively. Hence, the worst-case
overall read latency is 63µs, representing a 17%
increase compared with the conventional practice.
Under the average case, the compression ratio is
modest and multiple deltas are stored, for which the
latency could be about 2∼4µs. Hence the average-
case overall latency is about 56µs, representing a
4% increase compared with conventional practice.

4.3.2 Update Latency Overhead

In conventional practice without using delta compres-
sion, a data update operation simply invokes a flash
memory write operation. However, in our case, a data
update operation invokes data read, delta compression,
and flash memory page partial programming. Let τread
denote the latency to read and reconstruct one 4kB sector
data (as discussed in the above), τ(enc)

delta denote the delta
compression latency, and τprogram denote the latency
of flash memory page partial programming. Hence the
update latency can be expressed as:

τwrite = τread + τ(enc)
delta + τ(enc)

ecc + τx f er + τprogram (3)

Based upon our experiments with sub-20nm NAND
flash memory, we set τprogram as of 150µs. We set
the delta compression throughput τ(enc)

delta as 4GBps

and the ECC encoding throughput τ(enc)
ecc as 1GBps.

Therefore, the overall of writing one flash memory page
is 186µs. When using the proposed design solution, as
illustrated in Table 2, the value of τread could largely
vary. In the case of clustered placement, the worst-case
and average-case update latency is 272µs and 246µs,
representing 32% and 46% increase compared with
the conventional practice. In the case of segmented
placement, the worst-case and average-case update
latency is 233µs and 226µs, representing 25% and 22%
increase compared with the conventional practice.

4.3.3 Silicon Cost

Finally, we evaluated the silicon cost overhead when us-
ing the proposed design solution. In particular, the SSD
controller must integrate several new processing engines,
including (1) multiple BCH code encoders/decoders, (2)
per-sector lossless data compression and decompression
engines, and (3) delta compression and decompression
engines. As discussed in Section 3.2, we use three
different BCH codes, BCH4B, BCH128B, and BCH512B,
which protect upto 4B, 128B, and 512B, respectively.
Setting the worst-case SLC-mode flash memory bit error
rate (BER) as 2× 10−3 and the decoding failure rate as
10−15, we constructed the code BCH4B as the (102, 32)
binary BCH code over GF(27), BCH128B as the (1277,
1024) binary BCH code over GF(211), and BCH512B as
the (4642, 4096) binary BCH code over GF(213). To
evaluate the entire BCH coding system silicon cost, we
carried out HDL-based ASIC design using Synopsys
synthesis tool set and results show that the entire BCH
coding system occupies 0.24mm2 of silicon area at the
22nm node, while achieving 1GBps throughput.

Regarding the per-sector lossless data compression
and decompression, we chose the LZ77 compression
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algorithm [30], and designed the LZ77 compression
and decompression engines with HDL-based design
entry and Synopsys synthesis tool set. The results show
that the LZ77 compression and decompression engine
occupies 0.15mm2 of silicon area at the 22nm node
(memory costs included), while achieving 500MBps
throughput. Regarding delta compression and decom-
pression, since they mainly involve simple XOR and
counting operations, it is reasonable to expect that their
silicon implementation cost is negligible compared with
BCH coding and LZ77 compression. Therefore, we
estimate that the overall silicon cost for implementing
the proposed design solution is 0.39mm2 at the 22nm
node. According to our knowledge, the LDPC decoder
module accounts for up to 10% of a typical SSD
controller, meanwhile our silicon cost (including the
logical resources such as gates, registers, memory,
etc) is about 1/3 of an LDPC decoder. Therefore, we
can estimate that the involved silicon area in proposed
solution will occupy less than 5% of the silicon area
of an SSD controller, which is a relatively small cost
compared to the entire SSD controller.

5 Related Work
Aiming to detect the data content similarity and store the
compressed difference, delta compression has been well
studied in the open literature. Dropbox [31] and Github
use delta compression to reduce the network bandwidth
and storage workload using a pure application software
level solution. Design solutions in [10,11,13] reduce the
waste of space by detecting and eliminating the duplicate
content in block device level while the proposed solution
could further reduce the redundancy of similar but not
identical writes. The FTL-level approach presented
in [14] stores the compressed deltas to a temporary
buffer and commits them together to the flash memory
when the buffer is full, thus the number of writes could
be reduced. Authors of [32] proposed a design solution
to extend the NAND flash lifetime by detecting the
identical writes. Authors of [33] developed an approach
to utilize the content similarity to improve the IO
performance while the proposed techniques pay more
attention on the write stress reduction to extend the SSD
lifetime. To improve the performance of data backup
workloads in disks, authors of [9] proposed an approach
to implement delta compression on top of deduplication
to further eliminate redundancy among similar data. The
key difference between proposed solution and existing
solutions is that we can make sure the deltas and original
data content locate in the same physical flash memory
page, which will eliminate the read latency overhead
fundamentally.

General-purpose lossless data compression also has
been widely studied in flash-based storage system.

The authors of [34, 35] presented a solution to realize
transparent compression at the block layer to improve
the space efficiency of SSD based cache. A mathematic
framework to estimate how data compression can
improve NAND flash memory lifetime is presented
in [12]. The authors of [36] proposed to integrate
database compression and flash-aware FTL to effectively
support database compression on SSDs. The authors
of [37] evaluated several existing compression solutions
and compared their performance. Different from all the
prior work, we for the first time present a design solution
that cohesively exploits data compressibility and SLC-
mode flash memory page partial-programmability to
implement delta compression at minimal read latency
and data management overhead.

6 Conclusion
In this paper, we present a simple design solution to
most effectively reduce the write stress on SLC-mode
region inside modern SSDs. The key is to leverage the
fact that SLC-mode flash memory pages can naturally
support partial programming, which makes it possible
to use intra-page delta compression to reduce write
stress without incurring significant read latency and
data management complexity penalties. To further
eliminate the impact on storage capacity, we combine
intra-page delta compression with intra-sector lossless
data compression, leading to the opportunistic in-place
delta compression. Its effectiveness has been well
demonstrated through experiments and simulations.
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