
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

The Composite-file File System:
Decoupling the One-to-One Mapping

of Files and Metadata for Better Performance
Shuanglong Zhang, Helen Catanese, and An-I Andy Wang, Florida State University

https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-shuanglong

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 15

The Composite-file File System: Decoupling the One-to-one Mapping
of Files and Metadata for Better Performance

Shuanglong Zhang, Helen Catanese, and An-I Andy Wang
Computer Science Department, Florida State University

Abstract
Traditional file system optimizations typically use a one-
to-one mapping of logical files to their physical metadata
representations. This mapping results in missed
opportunities for a class of optimizations in which such
coupling is removed.

We have designed, implemented, and evaluated a
composite-file file system, which allows many-to-one
mappings of files to metadata, and we have explored the
design space of different mapping strategies. Under
webserver and software development workloads, our
empirical evaluation shows up to a 27% performance
improvement. This result demonstrates the promise of
composite files.

1. Introduction
File system performance optimization is a well-
researched area. However, most optimization techniques
(e.g., caching, better data layout) retain the one-to-one
mapping of logical files to their physical metadata
representations (i.e., each file is associated with its own
i-node on UNIX platforms). Such mapping is desirable
because metadata constructs are deep-rooted data
structures, and many storage components and
mechanisms—such as VFS API [MCK90], prefetching,
and metadata caching—rely on such constructs.
However, this rigid mapping also presents a blind spot
for a class of performance optimizations.

We have designed, implemented, and evaluated the
composite-file file system (CFFS), where many logical
files can be grouped together and associated with a single
i-node (plus extra information stored as extended
attributes). Such an arrangement is possible because
many files accessed together share similar metadata
subfields [EDL04], which can be deduplicated. Thus, the
CFFS can yield fewer metadata accesses to storage, a
source of significant overhead for accessing small files,
which still dominates the majority of file references for
modern workloads [ROS00; HAR11].

Based on web server and software development
workloads, the CFFS can outperform ext4 by up to 27%,
suggesting that the approach of relaxing the file-to-
metadata mapping is promising.

2. Observations
The following observations led to the CFFS design:

Frequent access to small files: Studies [ROS00;
HAR11] show that small files receive the majority of file

references. Our in-house analyses of a desktop file
system confirmed that >80% of accesses are to files
smaller than 32 bytes. Further, ~40% of the access time
to access a small file on a disk can be attributable to
metadata access. Thus, reducing this access overhead
may lead to a large performance gain.

Redundant metadata information: A traditional file
is associated with its own physical metadata, which
tracks information such as the locations of file blocks,
access permissions, etc. However, many files share
similar file attributes, as the number of file owners,
permission patterns, etc. are limited. Edel et al. [2004]
showed up to a 75% metadata compression ratio for a
typical workstation. Thus, we see many opportunities to
reduce redundant metadata information.

Files accessed in groups: Files tend to be accessed
together, as shown by [KRO01, LI04, DIN07, and
JIA13]. For example, web access typically involves
accessing many associated files. However, optimizations
that exploit file grouping may not yield automatic
performance gains, as the process of identifying and
grouping files incurs overhead.

Limitations of prefetching: While prefetching is an
effective optimization, the separate act of fetching each
file and associated metadata access can impose a high
overhead. For example, accessing 32 small files can
incur 50% higher latency than accessing a single file
with a size equal to the sum of the 32 files, even with
warm caches.

This observation begs the question of whether we
can improve performance by consolidating small files
that are accessed together. This is achieved through our
approach of decoupling the one-to-one mapping of
logical files to their physical representation of metadata.

3. Composite-file File System
We introduce the CFFS, which allows multiple small
files to be combined and share a single i-node.

3.1. Design Overview
The CFFS introduces an internal physical representation
called a composite file, which holds the content of small
files that are often accessed together. A composite file is
invisible to end users and is associated with a single
composite i-node shared among small files. The original
information stored in small files’ inodes are deduplicated
and stored as extended attributes of a composite file. The
metadata attributes of individual small files can still be

16 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

reconstructed, checked, and updated, so that legacy
access semantics (e.g., types, permissions, timestamps)
are unchanged. The extended attributes also record the
locations within the composite file for individual small
files. With this representation, the CFFS can translate a
physical composite file into logical files.

Which files to combine into a composite file is an
important workload-dependent policy decision. As an
example, the CFFS has been configured three ways. The
first scheme is directory-based consolidation, where all
files within a directory (excluding subdirectories) form a
composite file. The second scheme is embedded-
reference consolidation, where file references within
file contents are extracted to identify files that can form
composite files. The third is frequency-mining-based
consolidation, where file references are analyzed
through set frequency mining [AGR94], so that files that
are accessed together frequently form composite files.

A composite file exploits legacy VFS prefetching
mechanisms because the entire composite file may be
prefetched as a unit in a similar manner to the benefit
FFS achieved by combining small data blocks into fewer
larger blocks [MCK84].

3.2. Data Representation
The content of a composite file is formed by
concatenating small files, referred to as subfiles. All
subfiles within a composite file share the same i-node, as
well as indirect blocks, doubly indirect blocks, etc. The
maximum size limit of a composite file is not a concern,
as composite files are designed to group small files. If
the sum of subfile sizes exceeds the maximum file size
limit, we can resort to the use of multiple composite files.

Often, the first subfile in a composite file is the
entry point, whose access will trigger the prefetching of
the remaining subfiles. For example, when a browser
accesses an html file, it loads a css file and flash script.
The html file can serve as the entry point and
prefetching trigger of this three-subfile composite file.
For the frequency-based consolidation, the ordering of
subfiles reflects how they are accessed. Although the
same group of files may have different access patterns
with different entry points, the data layout is based on the
most prevalent access pattern.

3.3. Metadata Representations and Operations
Composite file creation: When a composite file is
created, the CFFS allocates an i-node and copies and
concatenates the contents of the subfiles as its data. The
composite file records the composite file offsets and
sizes of individual subfiles as well as their deduplicated
i-node information into its extended attributes. The
original subfiles then are truncated, with their directory
entries remapped to the i-node of the composite file

extended to also include the subfile ID and their original
i-nodes deallocated. Thus, end users still perceive
individual logical files in the name space, while
individual subfiles can still be located (Figure 3.3.1).

I-node content reconstruction: Deduplicated
subfile i-nodes are reconstructed on the fly. By default, a
subfile’s i-node field inherits the value of the composite
file’s i-node field, unless otherwise specified in the
extended attributes.

Figure 3.3.1: Creation of the internal composite file
(bottom) from the two original files (top).

Permissions: At file open, the permission test is
first checked based on the composite i-node. If this fails,
no further check is needed. Otherwise, if a subfile has a
different permission stored as an extended attribute, the
permission will be checked again. Therefore, the
composite i-node will have the broadest permissions
across all subfiles. For example, if within a composite
file, we have a read-only subfile A, and a writable subfile
B, the permission for the composite i-node will be read-
write. However, when opening subfile A with a write
permission, the read-only permission restriction in the
extended attribute will catch the violation.

Timestamps: The timestamps of individual subfiles
and the composite file are updated with each file
operation. However, during checks (e.g., stat system
calls), we return the timestamps of the subfiles.

Sizes: For data accesses, the offsets are translated
and bound-checked via subfile offsets and sizes encoded
in the extended attributes. The size of a composite file is
the length of the composite file, which can be greater
than the total size of its subfiles. For example, if a subfile
in the middle of a composite file is deleted, the region is
freed, without changing the size of the composite file.

i-node namespace: For i-node numbers larger than
a threshold X, upper zero-extended N bits are used for
composite i-node numbers, and lower M bits are
reserved for subfile IDs. We refer this range of i-node
numbers as CFFS unique IDs (CUIDs).

Subfile lookups and renames: If a name in a
directory is mapped to a CUID, a subfile’s attributes can
be looked up via the subfile ID. Renaming will proceed
as if a CUID were an i-node number in a non-CFFS

File 1 i-node 1 Indirect 1 Data 1

File 2 i-node 2 Indirect 2 Data 2

File 1 i-node C Indirect 1 Data 1

File 2 Deduplicated metadata

Data 2

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 17

system. Since moving a subfile in and out of a composite
file will change its CUID, we need to store backpointers
[CHI12], to update all names mapped to the CUID.

The changes in CUID may break applications (e.g.,
backups) that uniquely identify a file by its i-node
number. However, today’s file systems can also lead to
different files sharing the same i-node number at
different times; the CFFS design amplifies the reasons
that applications should not assume that an i-node
number is a unique property of a file.

Subfile and subfile membership updates: When a
subfile is added to a composite file, it is appended to the
composite file. When a subfile is deleted from a
composite file, the corresponding data region within the
composite file is marked freed in the extended attributes.

Subfile open/close operations: An open/close call
to a subfile is the same as an open/close call to the
composite file, with the file-position pointer translated.

Subfile write operations: In-place updates are
handled the same way as those in a traditional file
system. However, if an update involves growing a
subfile in the middle of a composite file and no free space
is available at the end of the subfile, we move the
updated subfile to the end of the composite file. This
scheme exploits the potential temporal locality that a
growing subfile is likely to grow again in the near future.

Hardlinks: Different names in directories can be
mapped to the same i-node number or CUID.

Space compaction: The composite file compacts its
space when half of its allotted size contains no useful
data.

Concurrent updates to subfiles within a composite
file: Concurrent updates to subfiles within a composite
file carry the same semantics as concurrent updates to a
normal file. To avoid lock contention, files detected to
be involved in concurrent updates might have to be
extracted into multiple regular files.

Locking and consistency: The CFFS does not
support flock, but we believe it is possible to implement
a subfile locking subsystem.

3.4. Identifying Composite File Membership

3.4.1 Directory-based Consolidation
Given that legacy file systems have deep-rooted spatial
locality optimizations revolving around directories, a
directory is a good approximation of file access patterns
and for forming composite files. Currently, this
consolidation scheme excludes subdirectories.

The directory-based consolidation can be performed
on all directories without tracking and analyzing file
references. However, it will not capture file relationships
across directories.

3.4.2 Embedded-reference-based Consolidation
Embedded-reference-based consolidation identifies
composite file memberships based on embedded file
references in files. For example, hyperlinks may be
embedded in an html file, and a web crawler is likely to
access each web page via these links. In this case, we
consolidate the original html file and the referenced
files. Similar ideas apply to compilation. We can extract
the dependency rules from Makefile and consolidate
source files that lead to the generation of the same
binary. As file updates may break a dependency, the
CFFS could sift periodically through modified files to
reconcile composite file membership.

The embedded-reference-based scheme can identify
related files accessed across directories, but it may not
be easy to extract embedded file references beyond text-
based file formats (e.g., html, source code). In addition,
it requires knowledge of specific file formats.

{A} 5 {A, B} 2 {A, B, C} 5
{B} 2  {A, C} 2  {A, B, D}
{C} 2 {A, D} 6 {A, C, D}
{D} 4 {B, C} 2 {B, C, D}
{E} 1 {B, D} 0

 {C, D} 0
Figure 3.4.3.1: Steps for the Apriori algorithm to identify
frequently accessed file sets for a file reference stream E,
D, A, D, A, D, A, B, C, A, B, C, A, D.

3.4.3 Frequency-mining-based Consolidation
In our exploration of a frequency-mining-based
consolidation, we use a variant of the Apriori algorithm
[AGR94]. The key observation is that if a set of files is
accessed frequently, its subsets must be as well (the
Apriori property). Figure 3.4.3.1 illustrates the algorithm
with an access stream to files A, B, C, D, and E.

Initial pass: First, we count the number of accesses
for each file, and then we remove files with counts less
than a threshold (say two) for further analysis.

Second pass: For the remaining files, we permute,
build, and count all possible two-file reference sets.
Whenever file A is accessed right after B, or vice versa,
we increment the count for file set {A, B}. Sets with
counts less than the threshold are removed (e.g., {B, D}).

Third pass: We can generate all three-file reference
sets based on the remaining two-file reference sets.
However, if a three-file reference set occurs frequently,
all its two-file reference sets also need to occur
frequently. Thus, file sets such as {A, B, D} are pruned,
since {B, D} is eliminated in the second pass.

Termination: As we can no longer generate four-file
reference sets, the algorithm ends. Now, if a file can
belong to multiple file sets, we return sets {A, B, C} and
{A, D} as two frequently accessed sets. Sets such as {A,
B} are removed as they are subsets of {A, B, C}.

18 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Variations: An alternative is to use a normalized
threshold, or support, which is the percentage of set
occurrences (number of the occurrences of a set divided
by the total occurrences, ranged between 0 and 1).

Instead of tracking file sets, we can also track file
reference sequences to determine the entry point and the
content layout of the composite file.

We currently disallow overlapping file sets to avoid
the complexity of replication and maintaining
consistency. To choose a subfile’s membership between
two composite files, the decision depends on whether a
composite file has more subfiles, higher support, and
more recent creation timestamps.

The frequency-mining-based consolidation can
identify composite file candidates based on dynamic file
references. However, the cost of running it limits its
application to more popular file reference sequences.

4. Implementation
The two major components of our prototype are the
composite file membership generator tool and the CFFS.

We prototyped the CFFS in user space via the FUSE
(v2.9.3) framework [SZE05] (Figure 4.1) running on top
of Linux 3.16.7. The CFFS is stacked on ext4, so that we
can leverage legacy tools and features such as
persistence bootstrapping (e.g., file-system creation
utilities), extended attributes, and journaling.

The CFFS periodically consults with the generator
tool to create new composite files. We leveraged
mechanisms similar to hardlinks to allow multiple file
names to be mapped to the same composite i-node. We
intercepted all file-system-related calls due to the need
to update the timestamps of individual subfiles. We also
need to ensure that various accesses use the correct
permissions (e.g., open and readdir), translated
subfile offsets and sizes (e.g., read and write), and
timestamps (e.g., getattr and setattr). The actual
composite file, its i-node, and its extended attributes are
stored by the underlying ext4 file system. The CFFS is
implemented in C++ with ~1,600 semicolons.

For directory-based consolidation, we used a Perl
script to list all the files in a directory as composite file
members. For the embedded-reference-based scheme,
we focus on two scenarios. For the web server workload,
we consolidate html files and their immediately
referenced files. In the case of conflicting composite file
memberships, preference is given to index.html, and
then the html that first includes a file. The other is the
source code compilation. We used Makefile as a
guide to consolidate source code files. For the frequency-
mining-based scheme, the membership generator tool
takes either a http access log or a strace output. The
generator implements the Apriori algorithm, with the
support parameter set to 5%. The analysis batch size is

set to 50K references. The parameters were chosen based
on empirical experience to limit the amount of memory
and processing overhead. The generator code contains
~1,200 semicolons.

Figure 4.1: CFFS components (shaded) and data path
from applications to the underlying ext4.

Table 5.1: Experimental platform.
Processor 2.8GHz Intel® Xeon® E5-1603, L1 cache 64KB,

L2 cache 256KB, L3 cache 10MB
Memory 2GBx4, Hyundai, 1067MHz, DDR3

Disk 250GB, 7200 RPM, WD2500AAKX with 16MB
cache

Flash 200GB, Intel SSD DC S3700

5. Performance Evaluation
We compared the performance of the CFFS stacked on
ext4 via FUSE with the baseline ext4 file system (with
the requests routed through an empty FUSE module).

We evaluated our system via replaying two traces.
The first is an http log gathered from our departmental
web server (01/01/2015-03/18/2015). The trace contains
14M file references to 1.0TB of data; of this, 3.1M files
are unique, holding 76GB of data. The second trace was
gathered via strace from a software development
workstation (11/20/2014 – 11/30/2014). The trace
contained over 240M file-system-related system calls to
24GB of data; of this, 291,133 files are unique with
2.9GB bytes. Between read and write operations, 59%
are reads, and 41% are writes.

We conducted multi-threaded, zero-think-time trace
replays on a storage device. We also skipped trace
intervals with no activities. The replay experiments were
performed on a Dell workstation (Table 5.1). Each
experiment was repeated 5 times, and results are
presented at 90% confidence intervals.

Prior to each experiment, we rebuilt the file system
with dummy content. For directory- and embedded-
reference-based schemes, composite file memberships
are updated continuously. For the frequency-mining-
based consolidation, the analysis is performed in
batches, but the composite files are updated daily.

5.2. Web Server Trace Replay
HDD performance: Figure 5.2.1 shows the CDF of web
server request latency for a disk, measured from the time
a request is sent to the time a request is completed.

VFS FUSE

ext4

user space
kernel space

CFFS applications

composite file membership generator tool

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 19

The original intent of our work is to reduce the
number of IOs for small files that are frequently accessed
together. However, the benefit of fewer accesses to
consolidated metadata displays itself as metadata
prefetching for all subfiles, and the composite-file
semantics enable cross-file prefetching, resulting in
much higher cache-hit rates.

The embedded-reference-based consolidation
performed the best, with 62% of requests serviced from
the cache, which is 20% higher than ext4. Thus,
composite files created based on embedded references
capture the access pattern more accurately. The overall
replay time was also reduced by ~20%.

The directory-based composite files can also
improve the cache-hit rate by 15%, reflecting the
effectiveness of directories to capture spatial localities.

The frequency-mining-based consolidation
performed worse than the directory-based. We examined
the trace and found that 48% of references are made by
crawlers, and the rest by users. Thus, the bifurcated
traffic patterns for the mining algorithm form less
aggressive file groupings, yielding reduced benefits.

SSD Performance: Figure 5.2.2 shows the CDF of
web server request latency for an SSD. Compared to a
disk, the relative trends are similar, with request latency
times for cache misses reduced by two orders of
magnitude due to the speed of the SSD. As the main
performance gains are caused by higher cache-hit rates
and IO avoidance, this 20% benefit is rather independent
of the underlying storage media.

5.3. Software Development File-system Trace Replay
For the software development workload replay, it is
more difficult to capture the latency of individual file-
system call requests, as many are asynchronous (e.g.,
writes), and calls like mmap do not know the number of
requests sent to the underlying storage. Thus, we
summarize our results with overall elapsed times, which
include all overheads of composite file operations,
excluding the initial setup cost for the directory- and
embedded-reference-based schemes (Figure 5.3.1).

HDD performance: The embedded-reference-based
scheme has poor coverage, as many references are
unrelated to compilation. Therefore, the elapsed time is
closer to that of ext4. Directory-based consolidation
achieves a 17% elapsed time reduction, but the
frequency-mining-based scheme can achieve 27%
because composite files include files across directories.

SSD performance: The relative performance trend
for different consolidation settings is similar to that of
HDD. Similar to the web traces, the gain is up to 20%.

When comparing the performance improvement
gaps between the HDD and SSD experiments, up to an
11% performance gain under HDD cannot be realized by

SSD, as an SSD does not incur disk seek overheads.

Figure 5.2.1: Web server request latency for HDD.

Figure 5.2.2: Web server request latency for SSD.

Figure 5.3.1: Elapsed times for 5 runs of the software
development file system trace replay. Error bars show
90% confidence intervals.

5.4. Overheads
Directory- and embedded-reference-based schemes:
Directory- and embedded-reference-based schemes
incur an initial deployment cost to create composite files
based on directories and embedded file references. The
initial cost of the embedded-reference scheme depends
on the number of file types from which file references
can be extracted. For our workloads, this cost is
anywhere from 1 to 14 minutes (Figure 5.3.1).

As for the incremental cost of updating composite
file memberships, adding members involves appending
to the composite files. Removing members involves

0 0.2 0.4 0.6 0.8 1 1.2

frequency-mining
embedded-reference

directory
ext4
SSD

frequency-mining
embedded-reference

directory
ext4
HDD

normalized elapsed time

replay time

initial overhead

0
10
20
30
40
50
60
70
80
90

100

1.E-06 1.E-04 1.E-02

percentage of
requests

latency (seconds)

ext4

directory

embedded-
reference

frequency-
mining

0
10
20
30
40
50
60
70
80
90

100

1.E-06 1.E-04 1.E-02

percentage of
requests

latency (seconds)

ext4

directory

embedded-
reference

frequency-
mining

20 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

mostly metadata updates. A composite file is not
compacted until half its allotted space is unused. As the
trace replay numbers already include this overhead, this
cost is offset by the benefits.

Frequency-mining-based scheme: The trace
gathering overhead is below 0.6%, and the memory
overhead for trace analyses is within 200MB for an
average of 15M lines of daily logs.

The frequency-mining-based scheme involves
learning from recent file references, and it took a few
replay days to reap the full benefit of this scheme.

5.5. Discussion and Future Work
Composite files can benefit both read-dominant and
read-write workloads using different storage media,
suggesting that the performance gains are mostly due to
the reduction in the number of IOs (~20%). The
performance improvement gaps between the SSD and
HDD suggest the performance gains due to reduced disk
seeks and modified data layouts are up to ~10%.

Overall, we are intrigued by the relationship among
ways to form composite files, the performance effects of
consolidating metadata and prefetching enabled by the
composite files. Future work will explore additional
ways to form composite files and quantify their interplay
with different components of performance contributions.
Additionally, future work will more fully explore the
ramifications of metadata compression, concurrency,
and security.

6. Related Work
Small file optimizations: While our research focuses on
the many-to-one mapping of logical files and physical
metadata, this work is closely related to ways to optimize
small file accesses by reducing the number of storage
accesses. Early work on this area involve collocating a
file’s i-node with its first data block [MUL84] and
embedding i-nodes in directories [GAN97]. Later, hFS
[ZHA07] used separate storage areas to optimize small
file and metadata accesses. Btrfs [ROD13] packs
metadata and small files into copy-on-write b-trees.
TableFS [REN13] packs metadata and small files into a
table and flushes 2MB logs of table entry modifications,
organized as a log-structured merge tree. The CFFS
complements many existing approaches by
consolidating i-nodes for files that are often accessed
together.

The idea of accessing subfile regions and
consolidating metadata is also explored in the parallel
and distributed computing domain, where CPUs on
multiple computers need to access the same large data
file [YU07]. Facebook’s photo storage [BEA10]
leverages the observation that the permissions of images
are largely the same and can be consolidated. However,

these mechanisms are tailored for very homogeneous
data types. With different ways to form composite files,
the CFFS can work with subfiles with more diverse
content and access semantics.

Prefetching: While a large body of work can be
found to improve prefetching, perhaps C-Miner [LI04] is
closest to our work. In particular, C-Miner applied
frequent-sequence mining at the block level to optimize
the layout of the file and metadata blocks and improve
prefetching. However, the CFFS reduces the number of
frequently accessed metadata blocks and avoids the need
for a large table to map logical to physical blocks. In
addition, our file-system-level mining deals with
significantly fewer objects and associated overheads.
DiskSeen [DIN07] incorporates the knowledge of disk
layout to improve prefetching, and the prefetching can
cross file and metadata boundaries. The CFFS
proactively reduces the number of physical metadata
items and alters the storage layout to promote sequential
prefetching. Soundararajan et al. [2008] observed that by
passing high-level execution contexts (e.g., thread,
application ID) to the block layer, the resulting data
mining can generate prefetching rules with longer runs
under concurrent workloads. Since the CFFS performs
data mining at the file-system level, we can use PIDs and
IP addresses to detangle concurrent file references.
Nevertheless, the CFFS’s focus on altering the mapping
of logical files to their physical representations, and it
can adopt various mining algorithms to consolidate
metadata and improve storage layouts.

7. Conclusions
We have presented the design, implementation, and
evaluation of a composite-file file system, which
explores the many-to-one mapping of logical files and
metadata. The CFFS can be configured differently to
identify files that are frequently accessed together, and it
can consolidate their metadata. The results show up to a
27% performance improvement under two real-world
workloads. The CFFS experience shows that the
approach of decoupling the one-to-one mapping of files
and metadata is promising and can lead to many new
optimization opportunities.

Acknowledgement
We thank our shepherd Garth Gibson and anonymous
reviewers for their invaluable feedback. We also thank
Britton Dennis for contributing some of the preliminary
numbers. This work is sponsored by FSU and NSF CNS-
144387. Opinions, findings, conclusions, or
recommendations expressed in this document do not
necessarily reflect the views of FSU, NSF, or the U.S.
Government.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 21

References
[ADB05] Abd-El-Malek M, Courtright WV, Cranor C,

Ganger GR, Hendricks J, CKlosterman AJ, Mesnier
M, Prasad M, Salmon B, Sambasivan RR,
Sinnamohideen S, Strunk JD, Thereska E, Wachs
M, Wylie JJ. Ursa Minor: Versatile Cluster-based
Storage. Proceedings of the 4th USENIX
Conference on File and Storage Technology
(FAST), 2005.

[AGR94] Agrawal R, Srikant R. Fast Algorithms for
Mining Association Rules, Proceedings of the 20th
VLDB Conference, 1994.

[ALB15] Albrecht R. Web Performance: Cache
Efficiency Exercise.
https://code.facebook.com/posts/964122680272229
/web-performance-cache-efficiency-exercise/,
2015.

[BEA10] Beaver D, Kumar S, Li HC, Vajgel P. Finding
a Needle in Haystack: Facebook’s Photo Storage.
Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), 2010.

[BLO70] Bloom B. Space/Time Trade-offs in Hash
Coding with Allowable Errors. Communications of
the ACM (CACM), 13(7):422-426, July 1970

[CHA13] Chandrasekar S, Dakshinamurthy R,
Seshakumar PG, Prabavathy B, Chitra B. A Novel
Indexing Scheme for Efficient Handling of Small
Files in Hadoop Distributed File System.
Proceedings of 2013 International Conference on
Computer Communication and Information, 2013.

[CHI12] Chidambaram V, Sharma T, Arpaci-Dusseau
AC, Arpaci-Dusseau RH. Consistency without
Ordering. Proceedings of the 10th USENIX
Conference on File and Storage Technologies,
2012.

[DIN07] Ding X, Jiang S, Chen F, Davis K, Zhang X.
DiskSeen: Exploiting Disk Layout and Access
History to Enhance Prefetch. Proceedings of the
2007 USENIX Annual Technical Conference (ATC),
2007.

[DON10] Dong B, Qiu J. Zheng Q, Zhong X, Li J, Li Y.
A Novel Approach to Improving the Efficiency of
Storing and Accessing Smaller Files on Hadoop: a
Case Study by PowerPoint Files. Proceedings of the
2010 IEEE International Conference on Services
Computing, 2010.

[EDE04] Edel NK, Tuteja D, Miller EL, Brandt SA.
Proceedings of the IEEE Computer Society’s 12th
Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.

[GAN97] Ganger GR, Kaashoek MF. Embedded Inode
and Explicit Grouping: Exploiting Disk Bandwidth
for Small Files. Proceedings of the USENIX 1997
Annual Technical Conference (ATC), 1997.

[GAR09] Garrison JA, Reddy ALN. Umbrella File
System: Storage Management across
Heterogeneous Devices. ACM Transactions on
Storage (TOS), 5(1), Article 3, 2009.

[HAR11] Harter T, Dragga C, Vaughn M, Arpaci-
Dusseau AC, Arpaci-Dusseau RH. A File is Not a
File: Understanding the I/O Behavior of Apple
Desktop Applications. Proceedings of 23rd
Symposium on Operating Systems Principles
(SOSP), 2011.

[HEI94] Heidemann JS, Popek GJ. File-System
Development with Stackable Layers. ACM
Transactions on Computer Systems (TOS),
22(1):58-89.

[JIA13] Jiang S, Ding X, Xu Y, Davis K. A Prefetching
Scheme Exploiting Both Data Layout and Access
History on Disk. ACM Transactions on Storage
(TOS), 9(3), Article No. 10.

[KRO01] Kroeger TM, Long DE. Design and
Implementation of a Predictive File Prefetching.
Proceedings of the USENIX 2001 Annual Technical
Conference (ATC), 2001.

[LI04] Li Z, Chen Z, Srinivasan SM, Zhou YY. C-Miner:
Mining Block Correlations in Storage Systems.
Proceedings of the 3rd USENIX Conference on File
and Storage Technologies (FAST), 2004.

[MCK84] McKusick MK, Joy WN, Leffler SJ, Fabry
RS. A Fast File System for Unix. ACM Transactions
on Computer Systems, 2(3):181-197, 1984.

[MCK90] McKusick MK, Karels MJ, Bostic K. A
Pageable Memory Based Filesystem. Proceeding of
the 1990 USENIX Summer Conference, June 1990.

[MUL84] Mullender S, Tanenbaum. Immediate Files,
Software Practice and Experience, 14(4):365-368,
1984.

[REN13] Kai Ren, Garth Gibson. TABLEFS: Enhancing
Metadata Efficiency in the Local File System,
Proceedings of the 2013 USENIX Annual Technical
Conference (ATC), 2013

[ROD13] Rodeh O, Bacik J, Mason C. BTRFS: The
Linux B-Tree File System. ACM Transactions on
Storage (TOS), 9(3), Article No. 9, 2013.

[ROS00] Roselli D, Lorch JR, Anderson TE. A
Comparison of File System Workloads. Proceeding
of 2000 USENIX Annual Technical Conference
(ATC), 2000.

[SOU08] Soundararajan G, Mihailescu M, Amza C.
Context-aware Prefetching at the Storage Server.
Proceedings of the 2008 USENIX Annual Technical
Conference (ATC), 2008.

22 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[SZE05] Szeredi M. Filesystem in Userspace.
http://userspace.fuse.sourceforge.net, 2005.

[YU07] Yu W, Vetter J, Canon RS, Jian S. Exploiting
Lustre File Joining for Effective Collective IO,
Proceedings of the 7th International Symposium on
Cluster Computing and the Grid, 2007.

[ZHA07] Zhihui Zhang, Kanad Ghose. hFS: A Hybrid
File System Prototype fr Improving Small File and
metadata Performance, Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on
Computer Systems, 2007.

