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Abstract 
Traditional file system optimizations typically use a one-
to-one mapping of logical files to their physical metadata 
representations. This mapping results in missed 
opportunities for a class of optimizations in which such 
coupling is removed. 

We have designed, implemented, and evaluated a 
composite-file file system, which allows many-to-one 
mappings of files to metadata, and we have explored the 
design space of different mapping strategies. Under 
webserver and software development workloads, our 
empirical evaluation shows up to a 27% performance 
improvement. This result demonstrates the promise of 
composite files. 

1. Introduction 
File system performance optimization is a well-
researched area. However, most optimization techniques 
(e.g., caching, better data layout) retain the one-to-one 
mapping of logical files to their physical metadata 
representations (i.e., each file is associated with its own 
i-node on UNIX platforms). Such mapping is desirable 
because metadata constructs are deep-rooted data 
structures, and many storage components and 
mechanisms—such as VFS API [MCK90], prefetching, 
and metadata caching—rely on such constructs. 
However, this rigid mapping also presents a blind spot 
for a class of performance optimizations. 

We have designed, implemented, and evaluated the 
composite-file file system (CFFS), where many logical 
files can be grouped together and associated with a single 
i-node (plus extra information stored as extended 
attributes). Such an arrangement is possible because 
many files accessed together share similar metadata 
subfields [EDL04], which can be deduplicated. Thus, the 
CFFS can yield fewer metadata accesses to storage, a 
source of significant overhead for accessing small files, 
which still dominates the majority of file references for 
modern workloads [ROS00; HAR11]. 

Based on web server and software development 
workloads, the CFFS can outperform ext4 by up to 27%, 
suggesting that the approach of relaxing the file-to-
metadata mapping is promising. 

2. Observations 
The following observations led to the CFFS design:  

Frequent access to small files: Studies [ROS00; 
HAR11] show that small files receive the majority of file 

references. Our in-house analyses of a desktop file 
system confirmed that >80% of accesses are to files 
smaller than 32 bytes. Further, ~40% of the access time 
to access a small file on a disk can be attributable to 
metadata access. Thus, reducing this access overhead 
may lead to a large performance gain. 

Redundant metadata information: A traditional file 
is associated with its own physical metadata, which 
tracks information such as the locations of file blocks, 
access permissions, etc. However, many files share 
similar file attributes, as the number of file owners, 
permission patterns, etc. are limited. Edel et al. [2004] 
showed up to a 75% metadata compression ratio for a 
typical workstation. Thus, we see many opportunities to 
reduce redundant metadata information. 

Files accessed in groups: Files tend to be accessed 
together, as shown by [KRO01, LI04, DIN07, and 
JIA13]. For example, web access typically involves 
accessing many associated files. However, optimizations 
that exploit file grouping may not yield automatic 
performance gains, as the process of identifying and 
grouping files incurs overhead. 

Limitations of prefetching: While prefetching is an 
effective optimization, the separate act of fetching each 
file and associated metadata access can impose a high 
overhead. For example, accessing 32 small files can 
incur 50% higher latency than accessing a single file 
with a size equal to the sum of the 32 files, even with 
warm caches. 

This observation begs the question of whether we 
can improve performance by consolidating small files 
that are accessed together. This is achieved through our 
approach of decoupling the one-to-one mapping of 
logical files to their physical representation of metadata. 

3. Composite-file File System 
We introduce the CFFS, which allows multiple small 
files to be combined and share a single i-node. 

3.1. Design Overview 
The CFFS introduces an internal physical representation 
called a composite file, which holds the content of small 
files that are often accessed together. A composite file is 
invisible to end users and is associated with a single 
composite i-node shared among small files. The original 
information stored in small files’ inodes are deduplicated 
and stored as extended attributes of a composite file. The 
metadata attributes of individual small files can still be 
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reconstructed, checked, and updated, so that legacy 
access semantics (e.g., types, permissions, timestamps) 
are unchanged. The extended attributes also record the 
locations within the composite file for individual small 
files. With this representation, the CFFS can translate a 
physical composite file into logical files. 

Which files to combine into a composite file is an 
important workload-dependent policy decision. As an 
example, the CFFS has been configured three ways. The 
first scheme is directory-based consolidation, where all 
files within a directory (excluding subdirectories) form a 
composite file. The second scheme is embedded-
reference consolidation, where file references within 
file contents are extracted to identify files that can form 
composite files. The third is frequency-mining-based 
consolidation, where file references are analyzed 
through set frequency mining [AGR94], so that files that 
are accessed together frequently form composite files.  

A composite file exploits legacy VFS prefetching 
mechanisms because the entire composite file may be 
prefetched as a unit in a similar manner to the benefit 
FFS achieved by combining small data blocks into fewer 
larger blocks [MCK84]. 

3.2. Data Representation 
The content of a composite file is formed by 
concatenating small files, referred to as subfiles. All 
subfiles within a composite file share the same i-node, as 
well as indirect blocks, doubly indirect blocks, etc. The 
maximum size limit of a composite file is not a concern, 
as composite files are designed to group small files. If 
the sum of subfile sizes exceeds the maximum file size 
limit, we can resort to the use of multiple composite files.  

Often, the first subfile in a composite file is the 
entry point, whose access will trigger the prefetching of 
the remaining subfiles. For example, when a browser 
accesses an html file, it loads a css file and flash script. 
The html file can serve as the entry point and 
prefetching trigger of this three-subfile composite file. 
For the frequency-based consolidation, the ordering of 
subfiles reflects how they are accessed. Although the 
same group of files may have different access patterns 
with different entry points, the data layout is based on the 
most prevalent access pattern. 

3.3. Metadata Representations and Operations 
Composite file creation: When a composite file is 
created, the CFFS allocates an i-node and copies and 
concatenates the contents of the subfiles as its data. The 
composite file records the composite file offsets and 
sizes of individual subfiles as well as their deduplicated 
i-node information into its extended attributes. The 
original subfiles then are truncated, with their directory 
entries remapped to the i-node of the composite file 

extended to also include the subfile ID and their original 
i-nodes deallocated. Thus, end users still perceive 
individual logical files in the name space, while 
individual subfiles can still be located (Figure 3.3.1).  

I-node content reconstruction: Deduplicated 
subfile i-nodes are reconstructed on the fly. By default, a 
subfile’s i-node field inherits the value of the composite 
file’s i-node field, unless otherwise specified in the 
extended attributes. 

Figure 3.3.1: Creation of the internal composite file 
(bottom) from the two original files (top). 

Permissions: At file open, the permission test is 
first checked based on the composite i-node. If this fails, 
no further check is needed. Otherwise, if a subfile has a 
different permission stored as an extended attribute, the 
permission will be checked again. Therefore, the 
composite i-node will have the broadest permissions 
across all subfiles. For example, if within a composite 
file, we have a read-only subfile A, and a writable subfile 
B, the permission for the composite i-node will be read-
write. However, when opening subfile A with a write 
permission, the read-only permission restriction in the 
extended attribute will catch the violation. 

Timestamps: The timestamps of individual subfiles 
and the composite file are updated with each file 
operation. However, during checks (e.g., stat system 
calls), we return the timestamps of the subfiles. 

Sizes: For data accesses, the offsets are translated 
and bound-checked via subfile offsets and sizes encoded 
in the extended attributes. The size of a composite file is 
the length of the composite file, which can be greater 
than the total size of its subfiles. For example, if a subfile 
in the middle of a composite file is deleted, the region is 
freed, without changing the size of the composite file. 

i-node namespace: For i-node numbers larger than 
a threshold X, upper zero-extended N bits are used for 
composite i-node numbers, and lower M bits are 
reserved for subfile IDs. We refer this range of i-node 
numbers as CFFS unique IDs (CUIDs). 

Subfile lookups and renames: If a name in a 
directory is mapped to a CUID, a subfile’s attributes can 
be looked up via the subfile ID. Renaming will proceed 
as if a CUID were an i-node number in a non-CFFS 

File 1 i-node 1 Indirect 1 Data 1 

File 2 i-node 2 Indirect 2 Data 2 

File 1 i-node C Indirect 1 Data 1 

File 2 Deduplicated metadata 

Data 2 
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system. Since moving a subfile in and out of a composite 
file will change its CUID, we need to store backpointers 
[CHI12], to update all names mapped to the CUID.  

The changes in CUID may break applications (e.g., 
backups) that uniquely identify a file by its i-node 
number. However, today’s file systems can also lead to 
different files sharing the same i-node number at 
different times; the CFFS design amplifies the reasons 
that applications should not assume that an i-node 
number is a unique property of a file. 

Subfile and subfile membership updates: When a 
subfile is added to a composite file, it is appended to the 
composite file. When a subfile is deleted from a 
composite file, the corresponding data region within the 
composite file is marked freed in the extended attributes. 

Subfile open/close operations: An open/close call 
to a subfile is the same as an open/close call to the 
composite file, with the file-position pointer translated. 

Subfile write operations: In-place updates are 
handled the same way as those in a traditional file 
system. However, if an update involves growing a 
subfile in the middle of a composite file and no free space 
is available at the end of the subfile, we move the 
updated subfile to the end of the composite file. This 
scheme exploits the potential temporal locality that a 
growing subfile is likely to grow again in the near future. 

Hardlinks: Different names in directories can be 
mapped to the same i-node number or CUID. 

Space compaction: The composite file compacts its 
space when half of its allotted size contains no useful 
data.  

Concurrent updates to subfiles within a composite 
file: Concurrent updates to subfiles within a composite 
file carry the same semantics as concurrent updates to a 
normal file. To avoid lock contention, files detected to 
be involved in concurrent updates might have to be 
extracted into multiple regular files. 

Locking and consistency: The CFFS does not 
support flock, but we believe it is possible to implement 
a subfile locking subsystem. 

3.4. Identifying Composite File Membership 

3.4.1 Directory-based Consolidation 
Given that legacy file systems have deep-rooted spatial 
locality optimizations revolving around directories, a 
directory is a good approximation of file access patterns 
and for forming composite files. Currently, this 
consolidation scheme excludes subdirectories. 

The directory-based consolidation can be performed 
on all directories without tracking and analyzing file 
references. However, it will not capture file relationships 
across directories. 

 

3.4.2 Embedded-reference-based Consolidation 
Embedded-reference-based consolidation identifies 
composite file memberships based on embedded file 
references in files. For example, hyperlinks may be 
embedded in an html file, and a web crawler is likely to 
access each web page via these links. In this case, we 
consolidate the original html file and the referenced 
files. Similar ideas apply to compilation. We can extract 
the dependency rules from Makefile and consolidate 
source files that lead to the generation of the same 
binary. As file updates may break a dependency, the 
CFFS could sift periodically through modified files to 
reconcile composite file membership. 

The embedded-reference-based scheme can identify 
related files accessed across directories, but it may not 
be easy to extract embedded file references beyond text-
based file formats (e.g., html, source code). In addition, 
it requires knowledge of specific file formats. 

{A} 5  {A, B} 2  {A, B, C} 5 
{B} 2  {A, C} 2  {A, B, D}  
{C} 2  {A, D} 6  {A, C, D}  
{D} 4  {B, C} 2  {B, C, D}  
{E} 1  {B, D} 0    

   {C, D} 0    
Figure 3.4.3.1: Steps for the Apriori algorithm to identify 
frequently accessed file sets for a file reference stream E, 
D, A, D, A, D, A, B, C, A, B, C, A, D. 

3.4.3 Frequency-mining-based Consolidation 
In our exploration of a frequency-mining-based 
consolidation, we use a variant of the Apriori algorithm 
[AGR94]. The key observation is that if a set of files is 
accessed frequently, its subsets must be as well (the 
Apriori property). Figure 3.4.3.1 illustrates the algorithm 
with an access stream to files A, B, C, D, and E. 

Initial pass: First, we count the number of accesses 
for each file, and then we remove files with counts less 
than a threshold (say two) for further analysis. 

Second pass: For the remaining files, we permute, 
build, and count all possible two-file reference sets. 
Whenever file A is accessed right after B, or vice versa, 
we increment the count for file set {A, B}. Sets with 
counts less than the threshold are removed (e.g., {B, D}). 

Third pass: We can generate all three-file reference 
sets based on the remaining two-file reference sets. 
However, if a three-file reference set occurs frequently, 
all its two-file reference sets also need to occur 
frequently. Thus, file sets such as {A, B, D} are pruned, 
since {B, D} is eliminated in the second pass. 

Termination: As we can no longer generate four-file 
reference sets, the algorithm ends. Now, if a file can 
belong to multiple file sets, we return sets {A, B, C} and 
{A, D} as two frequently accessed sets. Sets such as {A, 
B} are removed as they are subsets of {A, B, C}. 
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Variations: An alternative is to use a normalized 
threshold, or support, which is the percentage of set 
occurrences (number of the occurrences of a set divided 
by the total occurrences, ranged between 0 and 1). 

Instead of tracking file sets, we can also track file 
reference sequences to determine the entry point and the 
content layout of the composite file. 

We currently disallow overlapping file sets to avoid 
the complexity of replication and maintaining 
consistency. To choose a subfile’s membership between 
two composite files, the decision depends on whether a 
composite file has more subfiles, higher support, and 
more recent creation timestamps. 

The frequency-mining-based consolidation can 
identify composite file candidates based on dynamic file 
references. However, the cost of running it limits its 
application to more popular file reference sequences. 

4. Implementation 
The two major components of our prototype are the 
composite file membership generator tool and the CFFS.  

We prototyped the CFFS in user space via the FUSE 
(v2.9.3) framework [SZE05] (Figure 4.1) running on top 
of Linux 3.16.7. The CFFS is stacked on ext4, so that we 
can leverage legacy tools and features such as 
persistence bootstrapping (e.g., file-system creation 
utilities), extended attributes, and journaling. 

The CFFS periodically consults with the generator 
tool to create new composite files. We leveraged 
mechanisms similar to hardlinks to allow multiple file 
names to be mapped to the same composite i-node. We 
intercepted all file-system-related calls due to the need 
to update the timestamps of individual subfiles. We also 
need to ensure that various accesses use the correct 
permissions (e.g., open and readdir), translated 
subfile offsets and sizes (e.g., read and write), and 
timestamps (e.g., getattr and setattr). The actual 
composite file, its i-node, and its extended attributes are 
stored by the underlying ext4 file system. The CFFS is 
implemented in C++ with ~1,600 semicolons. 

For directory-based consolidation, we used a Perl 
script to list all the files in a directory as composite file 
members. For the embedded-reference-based scheme, 
we focus on two scenarios. For the web server workload, 
we consolidate html files and their immediately 
referenced files. In the case of conflicting composite file 
memberships, preference is given to index.html, and 
then the html that first includes a file. The other is the 
source code compilation. We used Makefile as a 
guide to consolidate source code files. For the frequency-
mining-based scheme, the membership generator tool 
takes either a http access log or a strace output. The 
generator implements the Apriori algorithm, with the 
support parameter set to 5%. The analysis batch size is 

set to 50K references. The parameters were chosen based 
on empirical experience to limit the amount of memory 
and processing overhead. The generator code contains 
~1,200 semicolons. 

Figure 4.1: CFFS components (shaded) and data path 
from applications to the underlying ext4. 

Table 5.1: Experimental platform. 
Processor 2.8GHz Intel® Xeon® E5-1603, L1 cache 64KB, 

L2 cache 256KB, L3 cache 10MB 
Memory 2GBx4, Hyundai, 1067MHz, DDR3 

Disk 250GB, 7200 RPM, WD2500AAKX with 16MB 
cache 

Flash 200GB, Intel SSD DC S3700 

5. Performance Evaluation 
We compared the performance of the CFFS stacked on 
ext4 via FUSE with the baseline ext4 file system (with 
the requests routed through an empty FUSE module). 

We evaluated our system via replaying two traces. 
The first is an http log gathered from our departmental 
web server (01/01/2015-03/18/2015). The trace contains 
14M file references to 1.0TB of data; of this, 3.1M files 
are unique, holding 76GB of data. The second trace was 
gathered via strace from a software development 
workstation (11/20/2014 – 11/30/2014). The trace 
contained over 240M file-system-related system calls to 
24GB of data; of this, 291,133 files are unique with 
2.9GB bytes. Between read and write operations, 59% 
are reads, and 41% are writes. 

We conducted multi-threaded, zero-think-time trace 
replays on a storage device. We also skipped trace 
intervals with no activities. The replay experiments were 
performed on a Dell workstation (Table 5.1). Each 
experiment was repeated 5 times, and results are 
presented at 90% confidence intervals. 

Prior to each experiment, we rebuilt the file system 
with dummy content. For directory- and embedded-
reference-based schemes, composite file memberships 
are updated continuously. For the frequency-mining-
based consolidation, the analysis is performed in 
batches, but the composite files are updated daily. 

5.2. Web Server Trace Replay 
HDD performance: Figure 5.2.1 shows the CDF of web 
server request latency for a disk, measured from the time 
a request is sent to the time a request is completed. 

VFS FUSE 

ext4 

user space 
kernel space 

CFFS applications 

composite file membership generator tool 
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The original intent of our work is to reduce the 
number of IOs for small files that are frequently accessed 
together. However, the benefit of fewer accesses to 
consolidated metadata displays itself as metadata 
prefetching for all subfiles, and the composite-file 
semantics enable cross-file prefetching, resulting in 
much higher cache-hit rates. 

The embedded-reference-based consolidation 
performed the best, with 62% of requests serviced from 
the cache, which is 20% higher than ext4. Thus, 
composite files created based on embedded references 
capture the access pattern more accurately. The overall 
replay time was also reduced by ~20%. 

The directory-based composite files can also 
improve the cache-hit rate by 15%, reflecting the 
effectiveness of directories to capture spatial localities. 

The frequency-mining-based consolidation 
performed worse than the directory-based. We examined 
the trace and found that 48% of references are made by 
crawlers, and the rest by users. Thus, the bifurcated 
traffic patterns for the mining algorithm form less 
aggressive file groupings, yielding reduced benefits. 

SSD Performance: Figure 5.2.2 shows the CDF of 
web server request latency for an SSD. Compared to a 
disk, the relative trends are similar, with request latency 
times for cache misses reduced by two orders of 
magnitude due to the speed of the SSD. As the main 
performance gains are caused by higher cache-hit rates 
and IO avoidance, this 20% benefit is rather independent 
of the underlying storage media. 

5.3. Software Development File-system Trace Replay 
For the software development workload replay, it is 
more difficult to capture the latency of individual file-
system call requests, as many are asynchronous (e.g., 
writes), and calls like mmap do not know the number of 
requests sent to the underlying storage. Thus, we 
summarize our results with overall elapsed times, which 
include all overheads of composite file operations, 
excluding the initial setup cost for the directory- and 
embedded-reference-based schemes (Figure 5.3.1). 

HDD performance: The embedded-reference-based 
scheme has poor coverage, as many references are 
unrelated to compilation. Therefore, the elapsed time is 
closer to that of ext4. Directory-based consolidation 
achieves a 17% elapsed time reduction, but the 
frequency-mining-based scheme can achieve 27% 
because composite files include files across directories. 

SSD performance: The relative performance trend 
for different consolidation settings is similar to that of 
HDD. Similar to the web traces, the gain is up to 20%. 

When comparing the performance improvement 
gaps between the HDD and SSD experiments, up to an 
11% performance gain under HDD cannot be realized by 

SSD, as an SSD does not incur disk seek overheads. 

Figure 5.2.1: Web server request latency for HDD. 

Figure 5.2.2: Web server request latency for SSD. 

 
Figure 5.3.1: Elapsed times for 5 runs of the software 
development file system trace replay. Error bars show 
90% confidence intervals. 

5.4. Overheads 
Directory- and embedded-reference-based schemes: 
Directory- and embedded-reference-based schemes 
incur an initial deployment cost to create composite files 
based on directories and embedded file references. The 
initial cost of the embedded-reference scheme depends 
on the number of file types from which file references 
can be extracted. For our workloads, this cost is 
anywhere from 1 to 14 minutes (Figure 5.3.1). 

As for the incremental cost of updating composite 
file memberships, adding members involves appending 
to the composite files. Removing members involves 
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mostly metadata updates. A composite file is not 
compacted until half its allotted space is unused. As the 
trace replay numbers already include this overhead, this 
cost is offset by the benefits. 

Frequency-mining-based scheme: The trace 
gathering overhead is below 0.6%, and the memory 
overhead for trace analyses is within 200MB for an 
average of 15M lines of daily logs. 

The frequency-mining-based scheme involves 
learning from recent file references, and it took a few 
replay days to reap the full benefit of this scheme. 

5.5. Discussion and Future Work 
Composite files can benefit both read-dominant and 
read-write workloads using different storage media, 
suggesting that the performance gains are mostly due to 
the reduction in the number of IOs (~20%). The 
performance improvement gaps between the SSD and 
HDD suggest the performance gains due to reduced disk 
seeks and modified data layouts are up to ~10%. 

Overall, we are intrigued by the relationship among 
ways to form composite files, the performance effects of 
consolidating metadata and prefetching enabled by the 
composite files. Future work will explore additional 
ways to form composite files and quantify their interplay 
with different components of performance contributions. 
Additionally, future work will more fully explore the 
ramifications of metadata compression, concurrency, 
and security. 

6. Related Work 
Small file optimizations: While our research focuses on 
the many-to-one mapping of logical files and physical 
metadata, this work is closely related to ways to optimize 
small file accesses by reducing the number of storage 
accesses. Early work on this area involve collocating a 
file’s i-node with its first data block [MUL84] and 
embedding i-nodes in directories [GAN97]. Later, hFS 
[ZHA07] used separate storage areas to optimize small 
file and metadata accesses. Btrfs [ROD13] packs 
metadata and small files into copy-on-write b-trees. 
TableFS [REN13] packs metadata and small files into a 
table and flushes 2MB logs of table entry modifications, 
organized as a log-structured merge tree. The CFFS 
complements many existing approaches by 
consolidating i-nodes for files that are often accessed 
together.  

The idea of accessing subfile regions and 
consolidating metadata is also explored in the parallel 
and distributed computing domain, where CPUs on 
multiple computers need to access the same large data 
file [YU07]. Facebook’s photo storage [BEA10] 
leverages the observation that the permissions of images 
are largely the same and can be consolidated. However, 

these mechanisms are tailored for very homogeneous 
data types. With different ways to form composite files, 
the CFFS can work with subfiles with more diverse 
content and access semantics.  

Prefetching: While a large body of work can be 
found to improve prefetching, perhaps C-Miner [LI04] is 
closest to our work. In particular, C-Miner applied 
frequent-sequence mining at the block level to optimize 
the layout of the file and metadata blocks and improve 
prefetching. However, the CFFS reduces the number of 
frequently accessed metadata blocks and avoids the need 
for a large table to map logical to physical blocks. In 
addition, our file-system-level mining deals with 
significantly fewer objects and associated overheads. 
DiskSeen [DIN07] incorporates the knowledge of disk 
layout to improve prefetching, and the prefetching can 
cross file and metadata boundaries. The CFFS 
proactively reduces the number of physical metadata 
items and alters the storage layout to promote sequential 
prefetching. Soundararajan et al. [2008] observed that by 
passing high-level execution contexts (e.g., thread, 
application ID) to the block layer, the resulting data 
mining can generate prefetching rules with longer runs 
under concurrent workloads. Since the CFFS performs 
data mining at the file-system level, we can use PIDs and 
IP addresses to detangle concurrent file references. 
Nevertheless, the CFFS’s focus on altering the mapping 
of logical files to their physical representations, and it 
can adopt various mining algorithms to consolidate 
metadata and improve storage layouts. 

7. Conclusions 
We have presented the design, implementation, and 
evaluation of a composite-file file system, which 
explores the many-to-one mapping of logical files and 
metadata. The CFFS can be configured differently to 
identify files that are frequently accessed together, and it 
can consolidate their metadata. The results show up to a 
27% performance improvement under two real-world 
workloads. The CFFS experience shows that the 
approach of decoupling the one-to-one mapping of files 
and metadata is promising and can lead to many new 
optimization opportunities. 
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