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Abstract

In a data center, an IO from an application to distributed

storage traverses not only the network, but also several

software stages with diverse functionality. This set of or-

dered stages is known as the storage or IO stack. Stages

include caches, hypervisors, IO schedulers, file systems,

and device drivers. Indeed, in a typical data center, the

number of these stages is often larger than the number of

network hops to the destination. Yet, while packet rout-

ing is fundamental to networks, no notion of IO routing

exists on the storage stack. The path of an IO to an end-

point is predetermined and hard-coded. This forces IO

with different needs (e.g., requiring different caching or

replica selection) to flow through a one-size-fits-all IO

stack structure, resulting in an ossified IO stack.

This paper proposes sRoute, an architecture that pro-

vides a routing abstraction for the storage stack. sRoute

comprises a centralized control plane and “sSwitches”

on the data plane. The control plane sets the forward-

ing rules in each sSwitch to route IO requests at runtime

based on application-specific policies. A key strength of

our architecture is that it works with unmodified appli-

cations and VMs. This paper shows significant benefits

of customized IO routing to data center tenants (e.g., a

factor of ten for tail IO latency, more than 60% better

throughput for a customized replication protocol and a

factor of two in throughput for customized caching).

1 Introduction

An application’s IO stack is rich in stages providing

compute, network, and storage functionality. These

stages include guest OSes, file systems, hypervisors, net-

work appliances, and distributed storage with caches and

schedulers. Indeed, there are over 18+ types of stages

on a typical data center IO stack [53]. Furthermore,

most IO stacks support the injection of new stages with

new functionality using filter drivers common in most

OSes [18, 34, 38], or appliances over the network [48].

Controlling or programming how IOs flow through

this stack is hard if not impossible, for tenants and ser-

vice providers alike. Once an IO enters the system, the

path to its endpoint is pre-determined and static. It must

pass through all stages on the way to the endpoint. A new

stage with new functionality means a longer path with

added latency for every IO. As raw storage and network-

ing speeds improve, the length of the IO stack is increas-

ingly becoming a new bottleneck [43]. Furthermore, the

IO stack stages have narrow interfaces and operate in iso-

lation. Unlocking functionality often requires coordinat-

ing the functionality of multiple such stages. These rea-

sons lead to applications running on a general-purpose

IO stack that cannot be tuned to any of their specific

needs, or to one-off customized implementations that re-

quire application and system rewrite.

This paper’s main contribution is experimenting with

applying a well-known networking primitive, routing, to

the storage stack. IO routing provides the ability to dy-

namically change the path and destination of an IO, like

a read or write, at runtime. Control plane applications

use IO routing to provide customized data plane func-

tionality for tenants and data center services.

Consider three specific examples of how routing is

useful. In one example, a load balancing service selec-

tively routes write requests to go to less-loaded servers,

while ensuring read requests are always routed to the

latest version of the data (§5.1). In another example, a

control application provides per-tenant throughput ver-

sus latency tradeoffs for replication update propagation,

by using IO routing to set a tenant’s IO read- and write-

set at runtime (§5.2). In a third example, a control appli-

cation can route requests to per-tenant caches to maintain

cache isolation (§5.3).

IO routing is challenging because the storage stack is

stateful. Routing a write IO through one path to end-

point A and a subsequent read IO through a different

path or to a different endpoint B needs to be mindful of

application consistency needs. Another key challenge is
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data plane efficiency. Changing the path of an IO at run-

time requires determining where on the data plane to in-

sert sSwitches to minimize the number of times an IO tra-

verses them, as well as to minimize IO processing times.

sRoute’s approach builds on the IOFlow storage ar-

chitecture [53]. IOFlow already provides a separate

control plane for storage traffic and a logically central-

ized controller with global visibility over the data center

topology. As an analogy to networking, sRoute builds

on IOFlow just like software-defined networking (SDN)

functions build on OpenFlow [35]. IOFlow also made

a case for request routing. However, it only explored

the concept of bypassing stages along the IO path, and

did not consider the full IO routing spectrum where the

path and endpoint can also change, leading to consis-

tency concerns. This paper provides a more complete

routing abstraction.

This paper makes the following contributions:

• We propose an IO routing abstraction for the IO stack.

• sRoute provides per-IO and per-flow routing configu-

ration updates with strong semantic guarantees.

• sRoute provides an efficient control plane. It does so

by distributing the control plane logic required for IO

routing using delegate functions.

• We report on our experience in building three con-

trol applications using IO routing: tail latency control,

replica set control, and file caching control.

The results of our evaluation demonstrate that data

center tenants benefit significantly from IO stack cus-

tomization. The benefits can be provided to today’s un-

modified tenant applications and VMs. Furthermore,

writing specialized control applications is straightfor-

ward because they use a common IO routing abstraction.

2 Routing types and challenges

The data plane, or IO stack comprises all the stages an

IO request traverses from an application until it reaches

its destination. For example, a read to a file will tra-

verse a guest OS’ file system, buffer cache, scheduler,

then similar stages in the hypervisor, followed by OSes,

file systems, caches and device drivers on remote storage

servers. We define per-IO routing in this context as the

ability to control the IO’s endpoint as well as the path to

that endpoint. The first question is what the above defi-

nition means for storage semantics. A second question is

whether IO routing is a useful abstraction.

To address the first question, we looked at a large set

of storage system functionalities and distilled from them
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Figure 1: Three types of IO routing: endpoint, way-

point and scatter. p,r refer to sources such as VMs or

containers. X ,Y,Z are endpoints such as files. W rep-

resents a waypoint stage with specialized functional-

ity, for example a file cache or scheduler.

Functionality How IO routing helps

E Tail latency control Route IO to less loaded servers

Copy-on-write Route writes to new location

File versioning Route IO to right version

W Cache size guarantee Route IO to specialized cache

Deadline policies Route IO to specialized scheduler

S Maximize throughput Route reads to all replicas

Minimize latency Route writes to replica subset

Logging/Debugging Route selected IOs to loggers

Table 1: Examples of specialized functionality and

the type of IO routing (E)ndpoint, (W)aypoint and

(S)catter that enables them.

three types of IO routing that make sense semantically in

the storage stack. Figure 1 illustrates these three types.

In endpoint routing, IO from a source p to a destination

file X is routed to another destination file Y . In waypoint

routing, IOs from sources p and r to a file X are first

routed to a specialized stage W . In scatter routing, IOs

from p and r are routed to a subset of data replicas.

This paper makes the case that IO routing is a useful

abstraction. We show that many specialized functions

on the storage stack can be recast as routing problems.

Our hypothesis when we started this work was that, be-

cause routing is inherently programmable and dynamic,

we could substitute hard-coded one-off implementations

with one common routing core. Table 1 shows a diverse

set of such storage stack functionalities, categorized ac-

cording to the type of IO routing that enables them.

Endpoint routing. Routes IO from a single-source

application p to a file X to another file Y . The timing

of the routing and operation semantics is dictated by the

control logic. For example, write requests could go to the

new endpoint and reads could be controlled to go to the

old or new endpoints. Endpoint routing enables func-

tionality such as improving tail latency [14, 41], copy-

on-write [21, 42, 46], file versioning [37], and data re-

encoding [1]. These policies have in common the need
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for a dynamic mechanism that changes the endpoint of

new data and routes IO to the appropriate endpoint. Sec-

tion §5.1 shows how we implement tail latency control

using endpoint routing.

Waypoint routing. Routes IO from a multi-source ap-

plication {p,r} to a file X through an intermediate way-

point stage W . W could be a file cache or scheduler.

Waypoint routing enables specialized appliance process-

ing [48]. These policies need a dynamic mechanism to

inject specialized waypoint stages or appliances along

the stack and to selectively route IO to those stages. Sec-

tion §5.3 shows how we implement file cache control us-

ing waypoint routing.

Scatter routing. Scatters IO from file X to additional

endpoints Y and Z. The control logic dictates which sub-

set of endpoints to read data from and write data to. Scat-

ter routing enables specialized replication and erasure

coding policies [33, 51] These policies have in common

the need for a dynamic mechanism to choose which end-

point to write to and read from. This control enables

programmable tradeoffs around throughput and update

propagation latency. Section §5.2 shows how we imple-

ment replica set control using scatter routing.

2.1 Challenges

IO routing is challenging for several reasons:

Consistent system-wide configuration updates. IO

routing requires a control-plane mechanism for changing

the path of an IO request. The mechanism needs to co-

ordinate the forwarding rules in each sSwitch in the data

plane. Any configuration changes must not lead to sys-

tem instability, where an IO’s semantic guarantees are

violated by having it flow through an incorrect path.

Metadata consistency. IO routing allows read and

write IOs to be sent to potentially different endpoints.

Several applications benefit from this flexibility. Some

applications, however, have stricter consistency require-

ments and require, for example, that a read always fol-

low the path of a previous write. A challenge is keeping

track of the data’s latest location. Furthermore, IO rout-

ing metadata needs to coexist consistently with metadata

in the rest of the system. The guest file system, for exam-

ple, has a mapping of files to blocks and the hypervisor

has a mapping of blocks to virtual disks on an (often)

remote storage backend. The backend could be a dis-

tributed system of its own with a metadata service map-

ping files or chunks to file systems to physical drives.

File system semantics. Some file system functional-

ity (such as byte-range file locking when multiple clients

access the same file) depends on consulting file system

state to determine the success and semantics of individ-

ual IO operations. The logic and state that dictates the

semantics of these operations resides inside the file sys-

tem, at the destination endpoint of these IOs. IO routing

needs to maintain the same file system functionality and

semantics in the storage stack.

Efficiency. Providing IO stack customization requires

a different way of building specialized functionality. We

move away from an architecture that hard-codes func-

tionality on the IO stack to an architecture that dynami-

cally directs IOs to specialized stages. Any performance

overheads incurred must be minimal.

3 Design

Figure 2 shows sRoute’s architecture. It is composed of

sSwitches on the data plane, that change the route of

IOs according to forwarding rules. sSwitches are pro-

grammable through a simple API with four calls shown

in Table 2. The sSwitches forward IOs to other file desti-

nations, the controller, or to specialized stages (e.g., one

that implements a particular caching algorithm). A con-

trol plane with a logically-centralized controller speci-

fies the location of the sSwitches and inserts forwarding

rules in them. Specialized stages take an IO as an input,

perform operations on its payload and return the IO back

to the sSwitch for further forwarding.

3.1 Baseline architecture

The baseline system architecture our design builds on is

that of an enterprise data center. Each tenant is allocated

VMs or containers1 and runs arbitrary applications or

services in them. Network and storage are virtualized

and VMs are unaware of their topology and properties.

The baseline system is assumed to already have sep-

arate control and data planes and builds on the IOFlow

architecture [53]. That architecture provides support for

flow-based classification and queuing and communica-

tion of basic per-flow statistics to a controller.

3.2 Design goals

sRoute’s design targets several goals. First, we want a so-

lution that does not involve application or VM changes.

Applications have limited visibility of the data center’s

IO stack. This paper takes the view that data center

services are better positioned for IO stack customiza-

tion. These are then exposed to applications through new

1This paper’s implementation uses VMs.
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Figure 2: System architecture. sSwitches can route

IO within a physical machine’s IO stack and across

machines over the network.

types of service level agreements (SLA), e.g., guarantee-

ing better throughput and latency. Second, data-plane

performance overheads should be minimal. Third, the

control plane should be flexible and allow for a diverse

set of application policies.

The rest of this section focuses on the sSwitches and

the control plane interfaces to them. Section 5 focuses

on control applications. Figure 3 provides the construct

definitions used in the rest of the paper.

3.3 sSwitches on the data plane

An sSwitch is a special stage that is inserted into the

IO stack (data plane) to provide IO routing. An sS-

witch forwards IO according to rules specified by the

control plane. A forwarding rule contains two parts: an

IO header and an action or delegate function2. IO pack-

ets are matched against the IO header, and the associ-

ated delegate in the first successful rule match executes

(hence, the order of installed rules matters). In the sim-

plest form, this delegate returns a set of stages where the

IO should next be directed. For example, routing all traf-

fic from V M1 for file X on server S1 to file Y on server S2

can be represented with this rule:

1: <V M1,∗, //S1/X >→ (return < IO, //S2/Y >)

An sSwitch implements four control plane API calls

as shown in Table 2. The APIs allow the control plane

to Insert a forwarding rule, or Delete it. Rules can

be changed dynamically by two entities on the control

plane: the controller, or a control Delegate function.

As defined in Figure 3, the IO header is a tuple con-

taining the source of an IO, the operation, and the file

2The reason the second part of the rule is a function (as opposed to

simply a set of routing locations) is for control plane efficiency in some

situations, as is explained further in this section.

Insert (IOHeader, Delegate)

Creates a new fwd. rule matching the IO header,

using dynamic control delegate to look up destination

Delete (IOHeader)

Deletes all rules matching the header

Quiesce (IOHeader, Boolean)

Blocks or unblocks incoming IO matching IO header

when Boolean is true or false respectively

Drain (IOHeader)

Drains all pending IOs matching the IO header

Table 2: Control API to the sSwitch.

Rule := IOHeader → Delegate(IOHeader)
IOHeader := < Source,Operation,File >
Delegate := F(IOHeader);return{Detour}

Source := Unique Security Identifier

Operation := read|write|create|delete

File := < FileName,O f f set,Length >
Detour := < IO|IOHeader,DetourLoc >
DetourLoc := File|Stage|Controller

Stage := < HostName,DriverName >
F := Restricted code

Figure 3: Construct definitions.

affected. The source of an IO can be a process or a

VM uniquely authenticated through a security identifier.

The destination is a file in a (possibly remote) share or

directory. Building on IOFlow’s classification mecha-

nism [53] allows an sSwitch to have visibility over all the

above and other relevant IO header entries at any point in

the IO stack (without IOFlow, certain header entries such

as the source, could be lost or overwritten as IO flows

through the system).

The operation can be one of read, write, create or

delete. Wildcards and longest prefix matching can be

used to find a match on the IO header. A default match

rule sends an IO to its original destination. A detour loca-

tion could be a file (e.g., another file on a different server

from the original IO’s destination), a stage on the path

to the endpoint (example rule 1 below), or the central-

ized controller (example rule 2 below that sends the IO

header for all writes from V M2 to the controller):

1: <V M1,∗, //S1/X >→ (return < IO, //S2/C >)
2: <V M2,w,∗>→ (return < IOHeader, Controller >)

The sSwitch is responsible for transmitting the full IO

or just its header to a set of stages. The response does

not have to flow through the same path as the request, as

4
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long as it reaches the initiating source3.

Unlike in networking, the sSwitch needs to perform

more work than just forwarding. It also needs to pre-

pare the endpoint stages to accept IO, which is unique to

storage. When a rule is first installed, the sSwitch needs

to open a file connection to the endpoint stages, in an-

ticipation of IO arriving. The sSwitch needs to create

it and take care of any namespace conflicts with exist-

ing files (§4). Open and create operations are expensive

synchronous metadata operations. There is an inherent

tradeoff between lazy file creation upon the first IO arriv-

ing and file creation upon rule installation. The former

avoids unnecessarily creating files for rules that do not

have any IO matching them, but upon a match the first

IO incurs a large latency. The latter avoids the latency

but could create several empty files. The exact tradeoff

penalties depend on the file systems used. By default

this paper implements the latter, but ideally this decision

would also be programmable (but it is not so yet.)

sSwitches implement two additional control plane

APIs. A Quiesce call is used to block any further re-

quests with the same IO header from propagating fur-

ther. The implementation of this call builds on the lower-

level IOFlow API that sets the token rate on a queue [53].

Drain is called on open file handles to drain any pend-

ing IO requests downstream. Both calls are synchronous.

These calls are needed to change the path of IOs in a con-

sistent manner, as discussed in the next section.

3.4 Controller and control plane

A logically centralized controller has global visibility

over the stage topology of the data center. This topol-

ogy comprises of all physical servers, network and stor-

age components as well as the software stages within a

server. Maintaining this topology in a fault-tolerant man-

ner is already feasible today [24].

The controller is responsible for three tasks. First, it

takes a high level tenant policy and translates it into sS-

witch API calls. Second, it decides where to insert the

sSwitches and specialized stages in the IO stack to im-

plement the policy. Third, it disseminates the forwarding

rules to the sSwitches. We show these tasks step-by-step

for two simple control applications below.

The first control application directs a tenant’s IO to a

specialized file cache. This policy is part of a case study

detailed in Section 5.3. The tenant is distributed over

10 VMs on 10 different hypervisors and accesses a read-

only dataset X . The controller forwards IO from this set

3sSwitches cannot direct IO responses to sources that did not ini-

tiate the IO. Finding scenarios that need such source routing and the

mechanism for doing so is future work.

of VMs to a specialized cache C residing on a remote ma-

chine connected to the hypervisors through a fast RDMA

network. The controller knows the topology of the data

paths from each VM to C and injects sSwitches at each

hypervisor. It then programs each sSwitch as follows:

1: for i ← 1,10 do

2: Quiesce (<V Mi, *, //S1/X>, true)

3: Drain (<V Mi, *, //S1/X>)

4: Insert (<V Mi, *, //S1/X>, (return <IO, //server S2/C>))

5: Quiesce (<V Mi, *, //S1/X>, false)

The first two lines are needed to complete any IOs in-

flight. This is done so that the sSwitch does not need to

keep any extra metadata to know which IOs are on the

old path. That metadata would be needed, for example,

to route a newly arriving read request to the old path

since a previous write request might have been buffered

in an old cache on that path. The delegate in line 4 simply

returns the cache stage. The controller also injects an

sSwitch at server S2 where the specialized cache resides,

so that any requests that miss in cache are sent further to

the file system of server S1. The rule at S2 matches IOs

from C for file X and forwards them to server S1:

1: Insert (<C, *, //S1/X>, (return <IO, //S1/X>))

The second control application improves a tenant’s tail

latency and illustrates a more complex control delegate.

The policy states that queue sizes across servers should

be balanced. This policy is part of a case study detailed in

Section 5.1. When a load burst arrives at a server S1 from

a source V M1 the control application decides to tem-

porarily forward that load to a less busy server S2. The

controller can choose to insert an sSwitch in the V M1’s

hypervisor or at the storage server S1. The latter means

that IOs go to S1 as before and S1 forwards them to S2.

To avoid this extra network hop the controller chooses

the former. It then calls the following functions to insert

rules in the sSwitch:

1: Insert (<VM1, w, //S1/X>, (F(); return <IO, //S2/X>))

2: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>))

The rules specify that writes “w” are forwarded to

the new server, whereas reads “r” are still forwarded to

the old server. This application demands that reads re-

turn the latest version of the data. When subsequently

a write for the first 512KB of data arrives4, the dele-

gate function updates the read rule through function F()
whose body is shown below:

1: Delete (<VM1, r, //S1/X>)

2: Insert (<VM1, r, //S1/X,0,512KB >, (return <IO, //S2/X>))

3: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>)

Note that quiescing and draining are not needed in this

4The request’s start offset and data length are part of the IO header.
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scenario since the sSwitch is keeping the metadata nec-

essary (in the form of new rules) to route a request cor-

rectly. A subsequent read for a range between 0 and

512KB will match the rule in line 2 and will be sent to

S2. Note that sSwitch matches on byte ranges as well,

so a read for a range between 0 and 1024KB will be

now split into two reads. The sSwitch maintains enough

buffer space to coalesce the responses.

3.4.1 Delegates

The above examples showed instances of control dele-

gates. Control delegates are restricted control plane func-

tions that are installed at sSwitches for control plane ef-

ficiency. In the second example above, the path of an IO

depends on the workload. Write requests can potentially

change the location of a subsequent read. One way to

handle this would be for all requests to be sent by the sS-

witch to the controller using the following alternate rules

and delegate function:

1: Insert (<VM1, w, //S1/X>, (return <IO, Controller>))

2: Insert (<VM1, r, //S1/X>, (return <IO, Controller>))

The controller would then serialize and forward them

to the appropriate destination. Clearly, this is inefficient,

bottlenecking the IO stack at the controller. Instead, the

controller uses restricted delegate functions that make

control decisions locally at the sSwitches.

This paper assumes a non-malicious controller, how-

ever the design imposes certain functionality restrictions

on the delegates to help guard against accidental errors.

In particular, delegate functions may only call the APIs

in Table 2 and may not otherwise keep or create any other

state. They may insert or delete rules, but may not rewrite

the IO header or IO data. That is important since the IO

header contains entries such as source security descrip-

tor that are needed for file access control to work in the

rest of the system. These restrictions allow us to con-

sider the delegates as a natural extension of the central-

ized controller. Simple programming language checks

and passing the IO as read-only to the delegate enforce

these restrictions. As part of future work we intend to

explore stronger verification of control plane correctness

properties, much like similar efforts in networking [27].

3.5 Consistent rule updates

Forwarding rule updates could lead to instability in the

system. This section introduces the notion of consis-

tent rule updates. These updates preserve well-defined

storage-specific properties. Similar to networking [45]

storage has two different consistency requirements: per-

IO and per-flow.

Per-IO consistency. Per-IO consistent updates re-

quire that each IO flows either through an old set of rules

or an updated set of rules, but not through a stack that is

composed of old and new paths. The Quiesce and Drain

calls in the API in Table 2 are sufficient to provide per-IO

consistent updates.

Per-flow consistency. Many application require a

stream of IOs to behave consistently. For example, an

application might require that a read request obtains

the data from the latest previous write request. In

cases where the same source sends both requests, then

per-IO consistency also provides per-flow consistency.

However, the second request can arrive from a differ-

ent source, like a second VM in the distributed system.

In several basic scenarios, it is sufficient for the central-

ized controller to serialize forwarding rule updates. The

controller disseminates the rules to all sSwitches in two

phases. In the first phase, the controller quiesces and

drains requests going to the old paths and, in the second

phase, the controller updates the forwarding rules.

However, a key challenge are scenarios where dele-

gate functions create new rules. This complicates update

consistency since serializing these new rules through the

controller is inefficient when rules are created frequently

(e.g., for every write request). In these cases, control

applications attempt to provide all serialization through

the sSwitches themselves. They do so as follows. First,

they consult the topology map to identify points of seri-

alization along the IO path. The topology map identifies

common stages among multiple IO sources on their IO

stack. For example, if two clients are reading and writing

to the same file X , the control application has the option

of inserting two sSwitches with delegate functions close

to the two sources to direct both clients’ IOs to Y . This

option is shown in Figure 4(a). The sSwitches would

then need to use two-phase commit between themselves

to keep rules in sync, as shown in the Figure. This local-

izes updates to participating sSwitches, thus avoiding the

need for the controller to get involved.

A second option would be to insert a single sSwitch

close to X (e.g., at the storage server) that forwards IO to

Y . This option is shown in Figure 4(b). A third option

would be to insert an sSwitch at Y that forwards IO back

to X if the latest data is not on Y . This type of forward-

ing rule can be thought of as implementing backpointers.

Note that two additional sSwitches are needed close to

the source to forward all traffic, i.e., reads and writes, to

Y , however these sSwitches do not need to perform two-

phase commit. The choice between the last two options

6
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Figure 4: Three possible options for placing sSwitches

for consistent rule updates. Either can be chosen pro-

grammatically at runtime.

depends on the workload. If the control application ex-

pects that most IO will go to the new file the third option

would eliminate an extra network hop.

3.6 Fault tolerance and availability

This section analyzes new potential risks on fault toler-

ance and availability induced by our system. Data con-

tinues to be N-way replicated for fault tolerance and its

fault tolerance is the same as in the original system.

First, the controller service is new in our architecture.

The service can be replicated for availability using stan-

dard Paxos-like techniques [31]. If the controller is tem-

porarily unavailable, the implication on the rest of the

system is at worst slower performance, but correctness is

not affected. For example, IO that matches rules that re-

quire transmission to the controller will be blocked until

the controller recovers.

Second, our design introduces new metadata in the

form of forwarding rules at sSwitches. It is a design goal

to maintain all state at sSwitches as soft-state to simplify

recovery — also there are cases where sSwitches do not

have any local storage available to persist data. The con-

troller itself persists all the forwarding rules before in-

stalling them at sSwitches. The controller can choose to

replicate the forwarding rules, e.g., using 3-way replica-

tion (using storage space available to the controller —

either locally or remotely).

However, forwarding rules created at the control del-

egates pose a challenge because they need persisting.

sRoute has two options to address this challenge. The

first is for the controller to receive all delegate updates

synchronously, ensure they are persisted and then return

control to the delegate function. This option involves the

controller on the critical path. The second option (the

default) is for the delegate rules to be stored with the for-

warded IO data. A small header is prepended to each

IO containing the updated rule. On sSwitch failure, the

controller knows which servers IO has been forwarded to

and recovers all persisted forwarding rules from them.

Third, sSwitches introduce new code along the IO

stack, thus increasing its complexity. When sSwitches

are implemented in the kernel (see Section 4), an sSwitch

failure may cause the entire server to fail. We have kept

the code footprint of sSwitches small and we plan to in-

vestigate software verification techniques in the future to

guard against such failures.

3.7 Design limitations

In the course of working with sRoute we have identi-

fied several design limitations. First, sRoute currently

lacks any verification tools that could help programmers.

For example, it is possible to write incorrect control ap-

plications that route IOs to arbitrary locations, resulting

in data loss. Thus, the routing flexibility is powerful,

but unchecked. There are well-known approaches in net-

working, such as header space analysis [27], that we be-

lieve could also apply to storage, but we have not inves-

tigated them yet.

Second, we now have experience with SDN con-

trollers and SDS controllers like the one in this paper.

It would be desirable to have a control plane that un-

derstands both the network and storage. For example,

it is currently possible to get into inconsistent end-to-end

policies when the storage controller decides to send data

from server A to B while the network controller decides

to block any data from A going to B. Unifying the con-

trol plane across resources is an important area for future

work.

4 Implementation

An sSwitch is implemented partly in kernel-level and

partly in user-level. The kernel part is written in C

and its functionality is limited to partial IO classification

through longest prefix matching and forwarding within

the same server. The user-level part implements further

sub-file-range classification using hash tables. It also im-

plements forwarding IO to remote servers. An sSwitch

is a total of 25 kLOC.

Routing within a server’s IO stack. Our implemen-

tation makes use of the filter driver architecture in Win-

dows [39]. Each filter driver implements a stage in the

kernel and is uniquely identified using an altitude ID in

the IO stack. The kernel part of the sSwitch automati-

cally attaches control code to the beginning of each filter

driver processing. Bypassing a stage is done by simply

returning from the driver early. Going through a stage

means going through all the driver code.

7
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Routing across remote servers. To route an IO to

an arbitrary remote server’s stage, the kernel part of the

sSwitch first performs an upcall sending the IO to the

user-level part of the sSwitch. That part then transmits

the IO to a remote detour location using TCP or RDMA

(default) through the SMB file system protocol. On the

remote server, an sSwitch intercepts the arriving packet

and routes it to a stage within that server.

sSwitch and stage identifiers. An sSwitch is a stage

and has the same type of identifier. A stage is identified

by a server host name and a driver name. The driver

name is a tuple of <device driver name, device name,

altitude>. The altitude is an index into the set of drivers

or user-level stages attached to a device.

Other implementation details. For the case studies

in this paper, it has been sufficient to inject one sSwitch

inside the Hyper-V hypervisor in Windows and another

on the IO stack of a remote storage server just above

the NTFS file system using file system filter drivers [39].

Specialized functionality is implemented entirely in user-

level stages in C#. For example, we have implemented

a user-level cache (Section 5.3). The controller is also

implemented in user-level and communicates with both

kernel- and user-level stages through RPCs over TCP.

Routing happens on a per-file basis, at block granu-

larity. Our use cases do not employ any semantic infor-

mation about the data stored in each block. For control

applications that require such information, the function-

ality would be straightforward to implement, using mini-

port drivers, instead of filter drivers.

Applications and VMs always run unmodified on our

system. However, some applications pass several static

hints such as “write through” to the OS using hard-coded

flags. The sSwitches intercept open/create calls and

can change these flags. In particular, for specialized

caching (Section 5.3) the sSwitches disable OS caching

by specifying Write-through and No-buffering flags.

Caching is then implemented through the control appli-

cation. To avoid namespace conflict with existing files,

sRoute stores files in a reserved “sroute-folder” directory

on each server. That directory is exposed to the cluster

as an SMB share writable by internal processes only.

Implementation limitations. A current limitation of

the implementation is that sSwitches cannot intercept in-

dividual IO to memory mapped files. However, they can

intercept bulk IO that loads a file to memory and writes

pages to disk, which is sufficient for most scenarios.

Another current limitation of our implementation is

that it does not support byte-range file locking for mul-

tiple clients accessing the same file, while performing

endpoint routing. The state to support this functional-

Figure 5: Current performance range of an sSwitch.

ity is kept in the file system, at the original endpoint of

the flow. When the endpoint is changed, this state is un-

available. To support this functionality, the sSwitches

can intercept lock/unlock calls and maintain the neces-

sary state, however this is not currently implemented.

The performance range of the current implementation

of an sSwitch is illustrated in Figure 5. This through-

put includes passing an IO through both kernel and user-

level. Two scenarios are shown. In the “Only IO routed”

scenario, each IO has a routing rule but an IO’s re-

sponse is not intercepted by the sSwitch (the response

goes straight to the source). In the “Both IO and re-

sponse routed” scenario both an IO and its response are

intercepted by the sSwitch. Intercepting responses is im-

portant when the response needs to be routed to a non-

default source as well (one of our case studies for caches

in Section 5.3 requires response routing). Intercepting

an IO’s response in Windows is costly (due to interrupt

handling logic beyond the scope of this paper) and the

performance difference is a result of the OS, not of the

sSwitch. Thus the performance range for small IO is be-

tween 50,000-180,000 IOPS which makes sSwitches ap-

propriate for an IO stack that uses disk or SSD backends,

but not yet a memory-based stack.

5 Control applications

This section makes three points. First, we show that a di-

verse set of control applications can be built on top of IO

routing. Thus, we show that the programmable routing

abstraction can replace one-off hardcoded implementa-

tions. We have built and evaluated three control applica-

tions implementing tail latency control, replica set con-

trol and file cache control. These applications cover each

of the detouring types in Table 1. Second, we show that

tenants benefit significantly from the IO customization

8
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Figure 6: Load on three Exchange server volumes

showing load imbalances.

provided by the control applications. Third, we evaluate

data and control plane performance.

Testbed. The experiments are run on a testbed with

12 servers, each with 16 Intel Xeon 2.4 GHz cores,

384 GB of RAM and Seagate Constellation 2 disks. The

servers run Windows Server 2012 R2 operating system

and can act as either Hyper-V hypervisors or as storage

servers. Each server has a 40 Gbps Mellanox ConnectX-

3 NIC supporting RDMA and connected to a Mellanox

MSX1036B-1SFR switch.

Workloads. We use three different workloads in this

section. The first is TPC-E [55] running over unmodi-

fied SQL Server 2012 R2 databases. TPC-E is a transac-

tion processing OLTP workload with small IO sizes. The

second workload is a public IO trace from an enterprise

Exchange email server [49]. The third workload is IoMe-

ter [23], which we use for controlled micro-benchmarks.

5.1 Tail latency control

Tail latency in data centers can be orders of magnitude

higher than average latency leading to application unre-

sponsiveness [14]. One of the reasons for high tail la-

tency is that IOs often arrive in bursts. Figure 6 illus-

trates this behavior in publicly available Exchange server

traces [49], showing traffic to three different volumes of

the Exchange trace. The difference in load between the

most loaded volume and the least loaded volume is two

orders of magnitude and lasts for more than 15 minutes.

Data center providers have load balancing solutions

for CPU and network traffic [19]. IO to storage on the

other hand is difficult to load balance at short timescales

because it is stateful. An IO to an overloaded server S

must go to S since it changes state there. The first control

application addresses the tail latency problem by tem-

porarily forwarding IOs from loaded servers onto less

loaded ones while ensuring that a read always accesses

the last acknowledged update. This is a type of endpoint

routing. The functionality provided is similar to Ever-

est [41] but written as a control application that decides

when and where to forward to based on global system

visibility.

The control application attempts to balance queue

sizes at each of the storage servers. To do so, for each

storage server, the controller maintains two running av-

erages based on stats it receives5: ReqAvg, and ReqRec.

ReqAvg is an exponential moving average over the last

hour. ReqRec is an average over a sliding window of one

minute, meant to capture the workload’s recent request

rate. The controller then temporarily forwards IO if:

ReqRec > αReqAvg

where α represents the relative increase in request rate

that triggers the forwarding. We evaluate the impact of

this control application on the Exchange server traces

shown in Figure 6, but first we show how we map this

scenario into forwarding rules.

There are three flows in this experiment. Three dif-

ferent VMs V Mmax, V Mmin and V Mmed on different hy-

pervisors access one of the three volumes in the trace

“Max”, “Min” and “Median”. Each volume is mapped to

a VHD file V HDmax, V HDmin and V HDmed residing on

three different servers Smax, Smin and Smed respectively.

When the controller detects imbalanced load, it forwards

write IOs from the VM accessing Smax to a temporary file

T on server Smin:

1: < ∗,w, //Smax/V HDmax >→ (F();return < IO, //Smin/T >)
2: < ∗,r, //Smax/V HDmax >→ (return < IO, //Smax/V HDmax >)

Read IOs follow the path to the most up-to-date data,

whose location is updated by the delegate function F()
as the write IOs flow through the system. We showed

how F() updates the rules in Section 3.4. Thus, the for-

warding rules always point a read to the latest version of

the data. If no writes have happened yet, all reads by

definition go to the old server V Mmax. The control

application may also place a specialized stage O in the

new path that implements an optional log-structured lay-

out that converts all writes to streaming writes by writing

them sequentially to Smin. The layout is optional since

SSDs already implement it internally and it is most use-

ful for disk-based backends6. The control application in-

5The controller uses IOFlow’s getQueueStats API [53] to gather

system-wide statistics for all control applications.
6We have also implemented a 1:1 layout that uses sparse files, but

do not describe it here due to space restrictions.

9
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Figure 7: CDF of response time for baseline system

and with IO routing.

serts a rule forwarding IO from the VM first to O (rule 1

below), and another to route from O to Smin (rule 2).

1: < ∗,∗, //Smax/V HDmax >→ (return < IO, //Smin/O >)
2: < O,∗, //Smax/V HDmax >→ (return < IO, //Smin/T )

Note that in this example data is partitioned across

VMs and no VMs share data. Hence, the delegate func-

tion in the sSwitch is the only necessary point of meta-

data serialization in system. This is a simple version

of case (a) in Figure 4 where sSwitches do not need

two-phase commit. The delegate metadata is temporary.

When the controller detects that a load spike has ended,

it triggers data reclaim. All sSwitch rules for writes are

changed to point to the original file V HDmax. Note that

read rules still point to T until new arriving writes over-

write those rules to point to V HDmax through their del-

egate functions. The controller can optionally speed up

the reclaim process by actively copying forwarded data

to its original location. When the reclaim process ends,

all rules can be deleted, the sSwitches and specialized

stage removed from the IO stack, since all data resides in

and can be accessed again from the original server Smax.

We experiment by replaying the Exchange traces using

a time-accurate trace replayer on the disk-based testbed.

We replay a 30 minute segment of the trace, capturing the

peak interval and allowing for all forwarded data to be

reclaimed. Figure 7 shows the results. IO routing results

in two orders of magnitude improvements in tail latency

for the flow to Smax. The change latency distribution for

Smin (not shown) is negligible.

Overheads. 2.8GB of data was forwarded and the

delegate functions persisted approximately 100,000 new

control plane rules with no noticeable overhead. We ex-

perimentally triggered one sSwitch failure, and measured

that it took approximately 30 seconds to recover the

rules from the storage server. The performance benefit

obtained is similar to specialized implementations [41].

The CPU overhead at the controller was less than 1%.

5.2 Replica set control

No one replication protocol fits all workloads [1, 33, 51].

Data center services tend to implement one particular

choice (e.g, primary-based serialization) and offer it to

all workloads passing through the stack (e.g., [7]). One

particularly important decision that such an implementa-

tion hard-codes is the choice of write-set and read-set for

a workload. The write-set specifies the number of servers

to contact for a write request. The size of the write-set

has implications on request latency (a larger set usually

means larger latency). The read-set specifies the number

of servers to contact for read requests. A larger read-set

usually leads to higher throughput since multiple servers

are read in parallel.

The write- and read-sets need to intersect in certain

ways to guarantee a chosen level of consistency. For

example, in primary-secondary replication, the intersec-

tion of the write- and read-sets contains just the primary

server. The primary then writes the data to a write-set

containing the secondaries. The request is completed

once a subset of the write-set has acknowledged it (the

entire write-set by default).

The replica set control application provides a config-

urable write- and read-set. It uses only scatter routing

to do so, without any specialized stages. In the next

experiment the policy at the control application speci-

fies that if the workload is read-only, then the read-set

should be all replicas. However, for correct serializa-

tion, if the workload contains writes, all requests must be

serialized through the primary, i.e., the read-set should

be just the primary replica. In this experiment, the ap-

plication consists of 10 IoMeters on 10 different hyper-

visors reading and writing to a 16GB file using 2-way

primary-based replication on the disk testbed. IoMe-

ter uses 4KB random-access requests and each IoMeter

maintains 4 requests outstanding (MPL).

The control application monitors the read:write ratio

of the workload through IOFlow and when it detects it

has been read-only for more than 30 seconds (a config-

urable parameter) it switches the read-set to be all repli-

cas. To do that, it injects sSwitches at each hypervisor

and sets up rules to forward reads to a randomly cho-

sen server Srand . This is done through a control delegate

that picks the next server at random. To make the switch

between old and new rule the controller firsts quiesces

10
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during read:write phases (a). The first write needs to block until forwarding rules are changed (b).

writes, then drains them. It then inserts the new read-set

rule (rule 1):

1: < ∗,r, //S1/X >→ (F();return < IO, //Srand/X >)
2: < ∗,w,∗>→ (return < IOHeader, Controller >)

The controller is notified of the arrival of any write

requests by the rule (2). The controller then proceeds to

revert the read-set rule, and restarts the write stream.

Figure 8 shows the results. The performance starts

high since the workload is in a read-only state. When the

first write arrives at time 25, the controller switches the

read-set to contain just the primary. In the third phase

starting at time 90, writes complete and read perfor-

mance improves since reads do not contend with writes.

In the fourth phase at time 125, the controller switches

the read-set to be both replicas, improving read perfor-

mance by 63% as seen in Figure 8(a). The tradeoff is

that the first write requests that arrive incurr a latency

overhead from being temporarily blocked while the write

is signalled to the controller, as shown in Figure 8(b).

Depending on the application performance needs, this

latency overhead can be amortized appropriately by in-

creasing the time interval before assuming the workload

is read-only. The best-case performance improvement

expected is 2x, but the application (IoMeter) has a low

MPL and does not saturate storage in this example.

Overheads. The control application changes the for-

warding rules infrequently at most every 30 seconds. In

an unoptimized implementation, a rule change translated

to 418Bytes/flow for updates (40MB for 100,000 flows).

The control application received stats every second using

302Bytes/flow for statistics (29MB/s for 100,000 flows).

The CPU overhead at the controller is negligible.

5.3 File cache control

File caches are important for performance: access to data

in the cache is more than 3 orders of magnitude faster

than to disks. A well-known problem is that data cen-

ter tenants today have no control over the location of

these caches or their policies [2, 8, 16, 50]. The only ab-

straction the data center provides to a tenant today is a

VMs’s memory size. This is inadequate in capturing all

the places in the IO stack where memory could be allo-

cated. VMs are inadequate even in providing isolation:

an aggressive application within a VM can destroy the

cache locality of another application within that VM.

Previous work [50] has explored the programmability

of caches on the IO stack, and showed that applications

and cloud providers can greatly benefit from the ability

to customize cache size, eviction and write policies, as

well as explicitly control the placement of data in caches

along the IO stack. Such explicit control can be achieved

by using filter rules [50] installed in a cache. All incom-

ing IO headers are matched against installed filter rules,

and an IO is cached if its header matches an installed

rule. However, this type of simple control only allows

IOs to be cached at some point along their fixed path

from the application to the storage server. The ability

to route IOs to arbitrary locations in the system using sS-

witches while maintaining desired consistency semantics

allows disaggregation of cache memory from the rest of

a workload’s allocated resources.

This next file cache control application provides sev-

eral IO stack customizations through waypoint routing.

We focus on one here: cache isolation among tenants.

Cache isolation in this context means that a) the con-
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Figure 9: Controller sets path of an IO through mul-

tiple cache using forwarding rules in sSwitches.

troller determines how much cache each tenant needs

and b) the sSwitches isolate one tenant’s cache from an-

other’s. sRoute controls the path of an IO. It can forward

an IO to a particular cache on the data plane. It can also

forward an IO to bypass a cache as shown in Figure 9.

The experiment uses two workloads, TPC-E and

IoMeter, competing for a storage server’s cache. The

storage backend is disks. The TPC-E workload rep-

resents queries from an SQL Server database with a

footprint of 10GB running within a VM. IoMeter is a

random-access read workload with IO sizes of 512KB.

sRoute’s policy in this example is to maximize the uti-

lization of the cache with the hit rate measured in terms

of IOPS. In the first step, all IO headers are sent to the

controller which computes their miss ratio curves using

a technique similar to SHARDS [56].

Then, the controller sets up sSwitches so that the IO

from IOMeter and from TPC-E go to different caches

CIOMeter and CT PCE with sizes provided by SHARDS re-

spectively (the caches reside at the storage server):

1: < IOMeter,∗,∗>,(return < IO,CIOMeter >)
2: < T PCE,∗,∗>,(return < IO,CT PCE >)

Figure 10 shows the performance of TPC-E when

competing with two bursts of activity from the IoMe-

ter workload, with and without sRoute. When sRoute is

enabled (Figure 10(b)), total throughput increases when

both workloads run. In contrast, with today’s caching

(Figure 10(a)) total throughput actually drops. This is

because IoMeter takes enough cache away from TPC-E

to displace its working set out of the cache. With sRoute,

total throughput improves by 57% when both workloads

run, and TPC-E’s performance improves by 2x.

Figure 10(c) shows the cache allocations output by

our control algorithm when sRoute is enabled. When-

ever IoMeter runs, the controller gives it 3/4 of the cache,

whereas TPC-E receives 1/4 of the cache, based on their

predicted miss ratio curves. This cache allocation leads

to each receiving around 40% cache hit ratio. Indeed, the
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(c) Estimated cache sizes

Figure 10: Maximizing hit rate for two tenants with

different cache miss curves.

allocation follows the miss ratio curve that denotes what

the working set of the TPC-E workload is – after this

point diminishing returns can be achieved by providing

more cache to this workload. Notice that the controller

apportions unused cache to the TPC-E workload 15 sec-

onds after the IoMeter workload goes idle.

Overheads. The control application inserted forward-

ing rules at the storage server. Rule changes were in-

frequent (the most frequent was every 30 seconds). The

control plane uses approximately 178Bytes/flow for rule

updates (17MB for 100,000 flows). The control plane

subsequently collects statistics from sSwitches and cache

stages every control interval (default is 1 second). The

statistics are around 456Bytes/flow (roughly 43MB for

100,000 flows). We believe these are reasonable control

plane overheads. When SHARD ran it consumed 100%

of two cores at the controller.
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6 Open questions

Our initial investigation on treating the storage stack like

a network provided useful insights into the pros and cons

of our approach. We briefly enumerate several open

questions that could make for interesting future work. In

Section 3.7 we already discussed two promising areas of

future work: 1) sRoute currently lacks verification tools

that could help programmers and 2) it would be interest-

ing to merge a typical SDN controller with our storage

controller into one global controller.

Related to the first area above, more experience is

needed, for example, to show whether sRoute rules from

multiple control applications can co-exist in the same

system safely. Another interesting area of exploration

relates to handling policies for storage data at rest. Cur-

rently sRoute operates on IO as it is flowing through the

system. Once the IO reaches the destination it is consid-

ered at rest. It might be advantageous for an sSwitch to

initiate itself data movement for such data at rest. That

would require new forwarding rule types and make an

sSwitch more powerful.

7 Related work

Our work is most related to software-defined networks

(SDNs) [9,13,17,25,28,44,54,58] and software-defined

storage (SDS) [2, 53]. Specifically, our work builds

directly upon the control-data decoupling enabled by

IOFlow [53], and borrows two specific primitives: classi-

fication and rate limiting based on IO headers for quiesc-

ing. IOFlow also made a case for request routing. How-

ever, it only explored the concept for bypassing stages

along the path, and did not consider the full IO routing

spectrum where the path and endpoint can also change,

leading to consistency concerns. This paper provides the

full routing abstraction.

There has been much work in providing applications

with specialized use of system resources [2, 4, 6, 16, 26].

The Exokernel architecture [16, 26] provides applica-

tions direct control over resources with minimal kernel

involvement. SPIN [6] and Vino [47] allow applica-

tions to download code into the kernel, and specialize

resource management for their needs. Another orthogo-

nal approach is to extend existing OS interfaces and pass

hints vertically along the IO stack [2–4,36]. Hints can be

passed in both directions between the application and the

system, exposing application needs and system resource

capabilities to provide a measure of specialization.

In contrast to the above approaches, this paper makes

the observation that modern IO stacks support mecha-

nisms for injecting stages with specialized functionality

(e.g., in Windows [38], FreeBSD [18] and Linux [34]).

sRoute transforms the problem of providing application

flexibility into an IO routing problem. sRoute provides a

control plane to customize an IO stack by forwarding a

tenants’ IO to the right stages without changing the ap-

plication or requiring a different OS structure.

We built three control applications on top of IO rout-

ing. The functionality provided from each has been ex-

tensively studied in isolation. For example, application-

specific file cache management has shown significant

performance benefits [8, 20, 22, 29, 32, 50, 57]. Snap-

shots, copy-on-write and file versioning all have at their

core IO routing. Hard-coded implementations can be

found in file systems like ZFS [42], WAFL [21] and

btrfs [46]. Similarly, Narayanan et al. describe an im-

plementation of load balancing through IO offloading of

write requests [40, 41]. Abd-el-malek et al. describe

a system implementation where data can be re-encoded

and placed on different servers [1]. Finally, several dis-

tributed storage systems each offer different consistency

guarantees [5, 7, 10–12, 15, 30, 33, 51, 52] .

In contrast to these specialized implementations,

sRoute offers a programmable IO routing abstraction that

allows for all this functionality to be specified and cus-

tomized at runtime.

8 Conclusion

This paper presents sRoute, an architecture that enables

an IO routing abstraction, and makes the case that it

is useful. We show that many specialized functions

on the storage stack can be recast as routing prob-

lems. Our hypothesis when we started this work was

that, because routing is inherently programmable and dy-

namic, we could substitute hard-coded one-off imple-

mentations with one common routing core. This paper

shows how sRoute can provide unmodified applications

with specialized tail latency control, replica set control

and achieve file cache isolation, all to substantial benefit.
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