
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

WiscKey: Separating Keys from Values
in SSD-conscious Storage

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 133

WiscKey: Separating Keys from Values in SSD-Conscious Storage

Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison

Abstract

We present WiscKey, a persistent LSM-tree-based
key-value store with a performance-oriented data layout
that separates keys from values to minimize I/O amplifi-
cation. The design of WiscKey is highly SSD optimized,
leveraging both the sequential and random performance
characteristics of the device. We demonstrate the ad-
vantages of WiscKey with both microbenchmarks and
YCSB workloads. Microbenchmark results show that
WiscKey is 2.5×–111× faster than LevelDB for load-
ing a database and 1.6×–14× faster for random lookups.
WiscKey is faster than both LevelDB and RocksDB in
all six YCSB workloads.

1 Introduction
Persistent key-value stores play a critical role in a va-
riety of modern data-intensive applications, including
web indexing [16, 48], e-commerce [24], data dedupli-
cation [7, 22], photo stores [12], cloud data [32], so-
cial networking [9, 25, 51], online gaming [23], messag-
ing [1, 29], software repository [2] and advertising [20].
By enabling efficient insertions, point lookups, and range
queries, key-value stores serve as the foundation for this
growing group of important applications.

For write-intensive workloads, key-value stores based
on Log-Structured Merge-Trees (LSM-trees) [43] have
become the state of the art. Various distributed and local
stores built on LSM-trees are widely deployed in large-
scale production environments, such as BigTable [16]
and LevelDB [48] at Google, Cassandra [33], HBase [29]
and RocksDB [25] at Facebook, PNUTS [20] at Yahoo!,
and Riak [4] at Basho. The main advantage of LSM-
trees over other indexing structures (such as B-trees) is
that they maintain sequential access patterns for writes.
Small updates on B-trees may involve many random
writes, and are hence not efficient on either solid-state
storage devices or hard-disk drives.

To deliver high write performance, LSM-trees batch
key-value pairs and write them sequentially. Subse-
quently, to enable efficient lookups (for both individual
keys as well as range queries), LSM-trees continuously
read, sort, and write key-value pairs in the background,
thus maintaining keys and values in sorted order. As a
result, the same data is read and written multiple times

throughout its lifetime; as we show later (§2), this I/O
amplification in typical LSM-trees can reach a factor of
50x or higher [39, 54].

The success of LSM-based technology is tied closely
to its usage upon classic hard-disk drives (HDDs). In
HDDs, random I/Os are over 100× slower than sequen-
tial ones [43]; thus, performing additional sequential
reads and writes to continually sort keys and enable effi-
cient lookups represents an excellent trade-off.

However, the storage landscape is quickly changing,
and modern solid-state storage devices (SSDs) are sup-
planting HDDs in many important use cases. As com-
pared to HDDs, SSDs are fundamentally different in
their performance and reliability characteristics; when
considering key-value storage system design, we believe
the following three differences are of paramount impor-
tance. First, the difference between random and sequen-
tial performance is not nearly as large as with HDDs;
thus, an LSM-tree that performs a large number of se-
quential I/Os to reduce later random I/Os may be wast-
ing bandwidth needlessly. Second, SSDs have a large
degree of internal parallelism; an LSM built atop an
SSD must be carefully designed to harness said paral-
lelism [53]. Third, SSDs can wear out through repeated
writes [34, 40]; the high write amplification in LSM-
trees can significantly reduce device lifetime. As we will
show in the paper (§4), the combination of these factors
greatly impacts LSM-tree performance on SSDs, reduc-
ing throughput by 90% and increasing write load by a
factor over 10. While replacing an HDD with an SSD un-
derneath an LSM-tree does improve performance, with
current LSM-tree technology, the SSD’s true potential
goes largely unrealized.

In this paper, we present WiscKey, an SSD-conscious
persistent key-value store derived from the popular LSM-
tree implementation, LevelDB. The central idea behind
WiscKey is the separation of keys and values [42]; only
keys are kept sorted in the LSM-tree, while values are
stored separately in a log. In other words, we decou-
ple key sorting and garbage collection in WiscKey while
LevelDB bundles them together. This simple technique
can significantly reduce write amplification by avoid-
ing the unnecessary movement of values while sorting.
Furthermore, the size of the LSM-tree is noticeably de-
creased, leading to fewer device reads and better caching

1

134 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

during lookups. WiscKey retains the benefits of LSM-
tree technology, including excellent insert and lookup
performance, but without excessive I/O amplification.

Separating keys from values introduces a number
of challenges and optimization opportunities. First,
range query (scan) performance may be affected be-
cause values are not stored in sorted order anymore.
WiscKey solves this challenge by using the abundant
internal parallelism of SSD devices. Second, WiscKey
needs garbage collection to reclaim the free space used
by invalid values. WiscKey proposes an online and
lightweight garbage collector which only involves se-
quential I/Os and impacts the foreground workload min-
imally. Third, separating keys and values makes crash
consistency challenging; WiscKey leverages an interest-
ing property in modern file systems, that appends never
result in garbage data on a crash. WiscKey optimizes
performance while providing the same consistency guar-
antees as found in modern LSM-based systems.

We compare the performance of WiscKey with
LevelDB [48] and RocksDB [25], two popular LSM-
tree key-value stores. For most workloads, WiscKey
performs significantly better. With LevelDB’s own
microbenchmark, WiscKey is 2.5×–111× faster than
LevelDB for loading a database, depending on the size
of the key-value pairs; for random lookups, WiscKey is
1.6×–14× faster than LevelDB. WiscKey’s performance
is not always better than standard LSM-trees; if small
values are written in random order, and a large dataset
is range-queried sequentially, WiscKey performs worse
than LevelDB. However, this workload does not reflect
real-world use cases (which primarily use shorter range
queries) and can be improved by log reorganization. Un-
der YCSB macrobenchmarks [21] that reflect real-world
use cases, WiscKey is faster than both LevelDB and
RocksDB in all six YCSB workloads, and follows a trend
similar to the load and random lookup microbenchmarks.

The rest of the paper is organized as follows. We first
describe the background and motivation in Section 2.
Section 3 explains the design of WiscKey, and Section 4
analyzes its performance. We briefly describe related
work in Section 5, and conclude in Section 6.

2 Background and Motivation
In this section, we first describe the concept of a Log-
Structured Merge-tree (LSM-tree). Then, we explain the
design of LevelDB, a popular key-value store based on
LSM-tree technology. We investigate read and write am-
plification in LevelDB. Finally, we describe the charac-
teristics of modern storage hardware.

2.1 Log-Structured Merge-Tree
An LSM-tree is a persistent structure that provides effi-
cient indexing for a key-value store with a high rate of



 

 























  








Figure 1: LSM-tree and LevelDB Architecture. This
figure shows the standard LSM-tree and LevelDB architecture.
For LevelDB, inserting a key-value pair goes through many
steps: (1) the log file; (2) the memtable; (3) the immutable
memtable; (4) a SSTable in L0; (5) compacted to further levels.

inserts and deletes [43]. It defers and batches data writes
into large chunks to use the high sequential bandwidth
of hard drives. Since random writes are nearly two or-
ders of magnitude slower than sequential writes on hard
drives, LSM-trees provide better write performance than
traditional B-trees, which require random accesses.

An LSM-tree consists of a number of components
of exponentially increasing sizes, C0 to Ck, as shown
in Figure 1. The C0 component is a memory-resident
update-in-place sorted tree, while the other components
C1 to Ck are disk-resident append-only B-trees.

During an insert in an LSM-tree, the inserted key-
value pair is appended to an on-disk sequential log file,
so as to enable recovery in case of a crash. Then, the
key-value pair is added to the in-memory C0, which is
sorted by keys; C0 allows efficient lookups and scans on
recently inserted key-value pairs. Once C0 reaches its
size limit, it will be merged with the on-disk C1 in an
approach similar to merge sort; this process is known as
compaction. The newly merged tree will be written to
disk sequentially, replacing the old version of C1. Com-
paction (i.e., merge sorting) also happens for on-disk
components, when each Ci reaches its size limit. Note
that compactions are only performed between adjacent
levels (Ci and Ci+1), and they can be executed asyn-
chronously in the background.

To serve a lookup operation, LSM-trees may need to
search multiple components. Note that C0 contains the
freshest data, followed by C1, and so on. Therefore, to
retrieve a key-value pair, the LSM-tree searches com-
ponents starting from C0 in a cascading fashion until it
locates the desired data in the smallest component Ci.
Compared with B-trees, LSM-trees may need multiple
reads for a point lookup. Hence, LSM-trees are most
useful when inserts are more common than lookups [43].

2.2 LevelDB
LevelDB is a widely used key-value store based on LSM-
trees that is inspired by BigTable [16, 48]. LevelDB sup-

2

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 135

ports range queries, snapshots, and other features that are
useful in modern applications. In this section, we briefly
describe the core design of LevelDB.

The overall architecture of LevelDB is shown in Fig-
ure 1. The main data structures in LevelDB are an on-
disk log file, two in-memory sorted skiplists (memtable
and immutable memtable), and seven levels (L0 to L6)
of on-disk Sorted String Table (SSTable) files. LevelDB
initially stores inserted key-value pairs in a log file and
the in-memory memtable. Once the memtable is full,
LevelDB switches to a new memtable and log file to
handle further inserts from the user. In the background,
the previous memtable is converted into an immutable
memtable, and a compaction thread then flushes it to the
disk, generating a new SSTable file (about 2 MB usually)
at level 0 (L0); the previous log file is discarded.

The size of all files in each level is limited, and in-
creases by a factor of ten with the level number. For
example, the size limit of all files at L1 is 10 MB, while
the limit of L2 is 100 MB. To maintain the size limit,
once the total size of a level Li exceeds its limit, the
compaction thread will choose one file from Li, merge
sort with all the overlapped files of Li+1, and generate
new Li+1 SSTable files. The compaction thread con-
tinues until all levels are within their size limits. Also,
during compaction, LevelDB ensures that all files in a
particular level, except L0, do not overlap in their key-
ranges; keys in files of L0 can overlap with each other
since they are directly flushed from memtable.

To serve a lookup operation, LevelDB searches the
memtable first, immutable memtable next, and then files
L0 to L6 in order. The number of file searches required to
locate a random key is bounded by the maximum number
of levels, since keys do not overlap between files within
a single level, except in L0. Since files in L0 can con-
tain overlapping keys, a lookup may search multiple files
at L0. To avoid a large lookup latency, LevelDB slows
down the foreground write traffic if the number of files
at L0 is bigger than eight, in order to wait for the com-
paction thread to compact some files from L0 to L1.

2.3 Write and Read Amplification
Write and read amplification are major problems in
LSM-trees such as LevelDB. Write (read) amplification
is defined as the ratio between the amount of data writ-
ten to (read from) the underlying storage device and the
amount of data requested by the user. In this section, we
analyze the write and read amplification in LevelDB.

To achieve mostly-sequential disk access, LevelDB
writes more data than necessary (although still sequen-
tially), i.e., LevelDB has high write amplification. Since
the size limit of Li is 10 times that of Li−1, when merg-
ing a file from Li−1 to Li during compaction, LevelDB
may read up to 10 files from Li in the worst case, and

1

10

100

1000

Am
pl

ifi
ca

tio
n

R
at

io

3.1

14

1 GB

8.2

327

100 GB

Write Read

Figure 2: Write and Read Amplification. This fig-
ure shows the write amplification and read amplification of
LevelDB for two different database sizes, 1 GB and 100 GB.
Key size is 16 B and value size is 1 KB.

write back these files to Li after sorting. Therefore, the
write amplification of moving a file across two levels can
be up to 10. For a large dataset, since any newly gen-
erated table file can eventually migrate from L0 to L6

through a series of compaction steps, write amplification
can be over 50 (10 for each gap between L1 to L6).

Read amplification has been a major problem for
LSM-trees due to trade-offs made in the design. There
are two sources of read amplification in LevelDB. First,
to lookup a key-value pair, LevelDB may need to check
multiple levels. In the worst case, LevelDB needs
to check eight files in L0, and one file for each of
the remaining six levels: a total of 14 files. Sec-
ond, to find a key-value pair within a SSTable file,
LevelDB needs to read multiple metadata blocks within
the file. Specifically, the amount of data actually read
is given by (index block + bloom-filter blocks +

data block). For example, to lookup a 1-KB key-value
pair, LevelDB needs to read a 16-KB index block, a 4-
KB bloom-filter block, and a 4-KB data block; in total,
24 KB. Therefore, considering the 14 SSTable files in
the worst case, the read amplification of LevelDB is 24
× 14 = 336. Smaller key-value pairs will lead to an even
higher read amplification.

To measure the amount of amplification seen in prac-
tice with LevelDB, we perform the following experi-
ment. We first load a database with 1-KB key-value
pairs, and then lookup 100,000 entries from the database;
we use two different database sizes for the initial load,
and choose keys randomly from a uniform distribution.
Figure 2 shows write amplification during the load phase
and read amplification during the lookup phase. For a 1-
GB database, write amplification is 3.1, while for a 100-
GB database, write amplification increases to 14. Read
amplification follows the same trend: 8.2 for the 1-GB
database and 327 for the 100-GB database. The rea-
son write amplification increases with database size is
straightforward. With more data inserted into a database,
the key-value pairs will more likely travel further along

3

136 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

1KB 4KB 16KB 64KB 256KB
0

100

200

300

400

500

600

Request size: 1KB to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

Sequential Rand-1thread Rand-32threads

Figure 3: Sequential and Random Reads on SSD. This
figure shows the sequential and random read performance for
various request sizes on a modern SSD device. All requests are
issued to a 100-GB file on ext4.

the levels; in other words, LevelDB will write data many
times when compacting from low levels to high levels.
However, write amplification does not reach the worst-
case predicted previously, since the average number of
files merged between levels is usually smaller than the
worst case of 10. Read amplification also increases with
the dataset size, since for a small database, all the index
blocks and bloom filters in SSTable files can be cached
in memory. However, for a large database, each lookup
may touch a different SSTable file, paying the cost of
reading index blocks and bloom filters each time.

It should be noted that the high write and read am-
plifications are a justified tradeoff for hard drives. As an
example, for a given hard drive with a 10-ms seek latency
and a 100-MB/s throughput, the approximate time re-
quired to access a random 1K of data is 10 ms, while that
for the next sequential block is about 10 µs – the ratio be-
tween random and sequential latency is 1000:1. Hence,
compared to alternative data structures such as B-Trees
that require random write accesses, a sequential-write-
only scheme with write amplification less than 1000 will
be faster on a hard drive [43, 49]. On the other hand,
the read amplification for LSM-trees is still comparable
to B-Trees. For example, considering a B-Tree with a
height of five and a block size of 4 KB, a random lookup
for a 1-KB key-value pair would require accessing six
blocks, resulting in a read amplification of 24.

2.4 Fast Storage Hardware
Many modern servers adopt SSD devices to achieve high
performance. Similar to hard drives, random writes are
considered harmful also in SSDs [10, 31, 34, 40] due to
their unique erase-write cycle and expensive garbage col-
lection. Although initial random-write performance for
SSD devices is good, the performance can significantly
drop after the reserved blocks are utilized. The LSM-tree
characteristic of avoiding random writes is hence a nat-

ural fit for SSDs; many SSD-optimized key-value stores
are based on LSM-trees [25, 50, 53, 54].

However, unlike hard-drives, the relative performance
of random reads (compared to sequential reads) is sig-
nificantly better on SSDs; furthermore, when random
reads are issued concurrently in an SSD, the aggregate
throughput can match sequential throughput for some
workloads [17]. As an example, Figure 3 shows the
sequential and random read performance of a 500-GB
Samsung 840 EVO SSD, for various request sizes. For
random reads by a single thread, the throughput in-
creases with the request size, reaching half the sequential
throughput for 256 KB. With concurrent random reads
by 32 threads, the aggregate throughput matches sequen-
tial throughput when the size is larger than 16 KB. For
more high-end SSDs, the gap between concurrent ran-
dom reads and sequential reads is much smaller [3, 39].

As we showed in this section, LSM-trees have a high
write and read amplification, which is acceptable for hard
drives. Using LSM-trees on a high-performance SSD
may waste a large percentage of device bandwidth with
excessive writing and reading. In this paper, our goal is to
improve the performance of LSM-trees on SSD devices
to efficiently exploit device bandwidth.

3 WiscKey
The previous section explained how LSM-trees maintain
sequential I/O access by increasing I/O amplification.
While this trade-off between sequential I/O access and
I/O amplification is justified for traditional hard disks,
they are not optimal for modern hardware utilizing SSDs.
In this section, we present the design of WiscKey, a key-
value store that minimizes I/O amplification on SSDs.

To realize an SSD-optimized key-value store,
WiscKey includes four critical ideas. First, WiscKey
separates keys from values, keeping only keys in the
LSM-tree and the values in a separate log file. Second,
to deal with unsorted values (which necessitate random
access during range queries), WiscKey uses the parallel
random-read characteristic of SSD devices. Third,
WiscKey utilizes unique crash-consistency and garbage-
collection techniques to efficiently manage the value log.
Finally, WiscKey optimizes performance by removing
the LSM-tree log without sacrificing consistency, thus
reducing system-call overhead from small writes.

3.1 Design Goals
WiscKey is a single-machine persistent key-value store,
derived from LevelDB. It can be deployed as the stor-
age engine for a relational database (e.g., MySQL) or
a distributed key-value store (e.g., MongoDB). It pro-
vides the same API as LevelDB, including Put(key,

value), Get(key), Delete(key) and Scan(start,

end). The design of WiscKey follows these main goals.

4

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 137

Low write amplification. Write amplification intro-
duces extra unnecessary writes. Even though SSD de-
vices have higher bandwidth compared to hard drives,
large write amplification can consume most of the write
bandwidth (over 90% is not uncommon) and decrease the
SSD’s lifetime due to limited erase cycles. Therefore, it
is important to minimize write amplification, so as to im-
prove workload performance and SSD lifetime.
Low read amplification. Large read amplification
causes two problems. First, the throughput of lookups is
significantly reduced by issuing multiple reads for each
lookup. Second, the large amount of data loaded into
memory decreases the efficiency of the cache. WiscKey
targets a small read amplification to speedup lookups.
SSD optimized. WiscKey is optimized for SSD devices
by matching its I/O patterns with the performance char-
acteristics of SSD devices. Specifically, sequential writes
and parallel random reads are effectively utilized so that
applications can fully utilize the device’s bandwidth.
Feature-rich API. WiscKey aims to support modern fea-
tures that have made LSM-trees popular, such as range
queries and snapshots. Range queries allow scanning a
contiguous sequence of key-value pairs. Snapshots allow
capturing the state of the database at a particular time and
then performing lookups on the state.
Realistic key-value sizes. Keys are usually small in
modern workloads (e.g., 16 B) [7, 8, 11, 22, 35], though
value sizes can vary widely (e.g., 100 B to larger than
4 KB) [6, 11, 22, 28, 32, 49]. WiscKey aims to provide
high performance for this realistic set of key-value sizes.

3.2 Key-Value Separation
The major performance cost of LSM-trees is the com-
paction process, which constantly sorts SSTable files.
During compaction, multiple files are read into memory,
sorted, and written back, which could significantly af-
fect the performance of foreground workloads. However,
sorting is required for efficient retrieval; with sorting,
range queries (i.e., scan) will result mostly in sequen-
tial access to multiple files, while point queries would
require accessing at most one file at each level.

WiscKey is motivated by a simple revelation. Com-
paction only needs to sort keys, while values can be
managed separately [42]. Since keys are usually smaller
than values, compacting only keys could significantly re-
duce the amount of data needed during the sorting. In
WiscKey, only the location of the value is stored in the
LSM-tree with the key, while the actual values are stored
elsewhere in an SSD-friendly fashion. With this design,
for a database with a given size, the size of the LSM-tree
of WiscKey is much smaller than that of LevelDB. The
smaller LSM-tree can remarkably reduce the write am-
plification for modern workloads that have a moderately
large value size. For example, assuming a 16-B key, a 1-





 



  



Figure 4: WiscKey Data Layout on SSD. This figure
shows the data layout of WiscKey on a single SSD device. Keys
and value’s locations are stored in LSM-tree while values are
appended to a separate value log file.

KB value, and a write amplification of 10 for keys (in the
LSM-tree) and 1 for values, the effective write amplifica-
tion of WiscKey is only (10 × 16 + 1024) / (16 + 1024)
= 1.14. In addition to improving the write performance
of applications, the reduced write amplification also im-
proves an SSD’s lifetime by requiring fewer erase cycles.

WiscKey’s smaller read amplification improves
lookup performance. During lookup, WiscKey first
searches the LSM-tree for the key and the value’s
location; once found, another read is issued to retrieve
the value. Readers might assume that WiscKey will be
slower than LevelDB for lookups, due to its extra I/O
to retrieve the value. However, since the LSM-tree of
WiscKey is much smaller than LevelDB (for the same
database size), a lookup may search fewer levels of table
files in the LSM-tree and a significant portion of the
LSM-tree can be easily cached in memory. Hence, each
lookup only requires a single random read (for retrieving
the value) and thus achieves a lookup performance better
than LevelDB. For example, assuming 16-B keys and
1-KB values, if the size of the entire key-value dataset
is 100 GB, then the size of the LSM-tree is only around
2 GB (assuming a 12-B cost for a value’s location and
size), which can be easily cached in modern servers
which have over 100-GB of memory.

WiscKey’s architecture is shown in Figure 4. Keys are
stored in an LSM-tree while values are stored in a sep-
arate value-log file, the vLog. The artificial value stored
along with the key in the LSM-tree is the address of the
actual value in the vLog.

When the user inserts a key-value pair in WiscKey, the
value is first appended to the vLog, and the key is then
inserted into the LSM tree along with the value’s address
(<vLog-offset, value-size>). Deleting a key simply
deletes it from the LSM tree, without touching the vLog.
All valid values in the vLog have corresponding keys in
the LSM-tree; the other values in the vLog are invalid
and will be garbage collected later (§ 3.3.2).

When the user queries for a key, the key is first
searched in the LSM-tree, and if found, the correspond-
ing value’s address is retrieved. Then, WiscKey reads the
value from the vLog. Note that this process is applied to

5

138 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

both point queries and range queries.
Although the idea behind key-value separation is sim-

ple, it leads to many challenges and optimization oppor-
tunities described in the following subsections.

3.3 Challenges
The separation of keys and values makes range queries
require random I/O. Furthermore, the separation makes
both garbage collection and crash consistency challeng-
ing. We now explain how we solve these challenges.

3.3.1 Parallel Range Query

Range queries are an important feature of modern key-
value stores, allowing users to scan a range of key-value
pairs. Relational databases [26], local file systems [30,
46, 50], and even distributed file systems [37] use key-
value stores as their storage engines, and range queries
are a core API requested in these environments.

For range queries, LevelDB provides the user with an
iterator-based interface with Seek(key), Next(), Prev(),
Key() and Value() operations. To scan a range of key-
value pairs, users can first Seek() to the starting key, then
call Next() or Prev() to search keys one by one. To re-
trieve the key or the value of the current iterator position,
users call Key() or Value(), respectively.

In LevelDB, since keys and values are stored together
and sorted, a range query can sequentially read key-value
pairs from SSTable files. However, since keys and values
are stored separately in WiscKey, range queries require
random reads, and are hence not efficient. As we see in
Figure 3, the random read performance of a single thread
on SSD cannot match the sequential read performance.
However, parallel random reads with a fairly large re-
quest size can fully utilize the device’s internal paral-
lelism, getting performance similar to sequential reads.

To make range queries efficient, WiscKey leverages
the parallel I/O characteristic of SSD devices to prefetch
values from the vLog during range queries. The under-
lying idea is that, with SSDs, only keys require special
attention for efficient retrieval. So long as keys are re-
trieved efficiently, range queries can use parallel random
reads for efficiently retrieving values.

The prefetching framework can easily fit with the cur-
rent range query interface. In the current interface, if
the user requests a range query, an iterator is returned to
the user. For each Next() or Prev() requested on the
iterator, WiscKey tracks the access pattern of the range
query. Once a contiguous sequence of key-value pairs is
requested, WiscKey starts reading a number of following
keys from the LSM-tree sequentially. The corresponding
value addresses retrieved from the LSM-tree are inserted
into a queue; multiple threads will fetch these addresses
from the vLog concurrently in the background.





 

Figure 5: WiscKey New Data Layout for Garbage
Collection. This figure shows the new data layout of WiscKey
to support an efficient garbage collection. A head and tail
pointer are maintained in memory and stored persistently in
the LSM-tree. Only the garbage collection thread changes the
tail, while all writes to the vLog are append to the head.

3.3.2 Garbage Collection
Key-value stores based on standard LSM-trees do not
immediately reclaim free space when a key-value pair
is deleted or overwritten. Rather, during compaction, if
data relating to a deleted or overwritten key-value pair is
found, the data is discarded and space is reclaimed. In
WiscKey, only invalid keys are reclaimed by the LSM-
tree compaction. Since WiscKey does not compact val-
ues, it needs a special garbage collector to reclaim free
space in the vLog.

Since we only store the values in the vLog file (§ 3.2),
a naive way to reclaim free space from the vLog is to first
scan the LSM-tree to get all the valid value addresses;
then, all the values in the vLog without any valid ref-
erence from the LSM-tree can be viewed as invalid and
reclaimed. However, this method is too heavyweight and
is only usable for offline garbage collection.

WiscKey targets a lightweight and online garbage col-
lector. To make this possible, we introduce a small
change to WiscKey’s basic data layout: while storing
values in the vLog, we also store the corresponding key
along with the value. The new data layout is shown
in Figure 5: the tuple (key size, value size, key,

value) is stored in the vLog.
WiscKey’s garbage collection aims to keep valid val-

ues (that do not correspond to deleted keys) in a contigu-
ous range of the vLog, as shown in Figure 5. One end of
this range, the head, always corresponds to the end of the
vLog where new values will be appended. The other end
of this range, known as the tail, is where garbage collec-
tion starts freeing space whenever it is triggered. Only
the part of the vLog between the head and the tail con-
tains valid values and will be searched during lookups.

During garbage collection, WiscKey first reads a
chunk of key-value pairs (e.g., several MBs) from the
tail of the vLog, then finds which of those values are
valid (not yet overwritten or deleted) by querying the
LSM-tree. WiscKey then appends valid values back to
the head of the vLog. Finally, it frees the space occupied
previously by the chunk, and updates the tail accordingly.

6

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 139

To avoid losing any data if a crash happens dur-
ing garbage collection, WiscKey has to make sure that
the newly appended valid values and the new tail are
persistent on the device before actually freeing space.
WiscKey achieves this using the following steps. Af-
ter appending the valid values to the vLog, the garbage
collection calls a fsync() on the vLog. Then, it adds
these new value’s addresses and current tail to the LSM-
tree in a synchronous manner; the tail is stored in the
LSM-tree as <‘‘tail’’, tail-vLog-offset>. Finally,
the free space in the vLog is reclaimed.

WiscKey can be configured to initiate and continue
garbage collection periodically or until a particular
threshold is reached. The garbage collection can also run
in offline mode for maintenance. Garbage collection can
be triggered rarely for workloads with few deletes and
for environments with overprovisioned storage space.

3.3.3 Crash Consistency

On a system crash, LSM-tree implementations usually
guarantee atomicity of inserted key-value pairs and in-
order recovery of inserted pairs. Since WiscKey’s ar-
chitecture stores values separately from the LSM-tree,
obtaining the same crash guarantees can appear compli-
cated. However, WiscKey provides the same crash guar-
antees by using an interesting property of modern file
systems (such as ext4, btrfs, and xfs). Consider a file that
contains the sequence of bytes �b1b2b3...bn�, and the user
appends the sequence �bn+1bn+2bn+3...bn+m� to it. If a
crash happens, after file-system recovery in modern file
systems, the file will be observed to contain the sequence
of bytes �b1b2b3...bnbn+1bn+2bn+3...bn+x� ∃ x < m,
i.e., only some prefix of the appended bytes will be added
to the end of the file during file-system recovery [45]. It
is not possible for random bytes or a non-prefix subset
of the appended bytes to be added to the file. Since val-
ues are appended sequentially to the end of the vLog file
in WiscKey, the aforementioned property conveniently
translates as follows: if a value X in the vLog is lost in a
crash, all future values (inserted after X) are lost too.

When the user queries a key-value pair, if WiscKey
cannot find the key in the LSM-tree because the key had
been lost during a system crash, WiscKey behaves ex-
actly like traditional LSM-trees: even if the value had
been written in vLog before the crash, it will be garbage
collected later. If the key could be found in the LSM tree,
however, an additional step is required to maintain con-
sistency. In this case, WiscKey first verifies whether the
value address retrieved from the LSM-tree falls within
the current valid range of the vLog, and then whether the
value found corresponds to the queried key. If the ver-
ifications fail, WiscKey assumes that the value was lost
during a system crash, deletes the key from the LSM-
tree, and informs the user that the key was not found.

0
50

100
150
200
250
300
350
400

To
ta

l T
im

e
(s

)

Write Unit Size
64B 256B 1KB 4KB 16KB 64KB

Figure 6: Impact of Write Unit Size. This figure shows
the total time to write a 10-GB file to an ext4 file system on an
SSD device, followed by a fsync() at the end. We vary the size
of each write() system call.

Since each value added to the vLog has a header includ-
ing the corresponding key, verifying whether the key and
the value match is straightforward; if necessary, a magic
number or checksum can be easily added to the header.

LSM-tree implementations also guarantee the user
durability of key value pairs after a system crash if the
user specifically requests synchronous inserts. WiscKey
implements synchronous inserts by flushing the vLog be-
fore performing a synchronous insert into its LSM-tree.

3.4 Optimizations
Separating keys from values in WiscKey provides an op-
portunity to rethink how the value log is updated and the
necessity of the LSM-tree log. We now describe how
these opportunities can lead to improved performance.

3.4.1 Value-Log Write Buffer

For each Put(), WiscKey needs to append the value to
the vLog by using a write() system call. However, for
an insert-intensive workload, issuing a large number of
small writes to a file system can introduce a noticeable
overhead, especially on a fast storage device [15, 44].
Figure 6 shows the total time to sequentially write a 10-
GB file in ext4 (Linux 3.14). For small writes, the over-
head of each system call aggregates significantly, leading
to a long run time. With large writes (larger than 4 KB),
the device throughput is fully utilized.

To reduce overhead, WiscKey buffers values in a
userspace buffer, and flushes the buffer only when the
buffer size exceeds a threshold or when the user requests
a synchronous insertion. Thus, WiscKey only issues
large writes and reduces the number of write() sys-
tem calls. For a lookup, WiscKey first searches the vLog
buffer, and if not found there, actually reads from the
vLog. Obviously, this mechanism might result in some
data (that is buffered) to be lost during a crash; the crash-
consistency guarantee obtained is similar to LevelDB.

7

140 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

3.4.2 Optimizing the LSM-tree Log

As shown in Figure 1, a log file is usually used in LSM-
trees. The LSM-tree tracks inserted key-value pairs in
the log file so that, if the user requests synchronous in-
serts and there is a crash, the log can be scanned after
reboot and the inserted key-value pairs recovered.

In WiscKey, the LSM-tree is only used for keys and
value addresses. Moreover, the vLog also records in-
serted keys to support garbage collection as described in
the previous section. Hence, writes to the LSM-tree log
file can be avoided without affecting correctness.

If a crash happens before the keys are persistent in the
LSM-tree, they can be recovered by scanning the vLog.
However, a naive algorithm would require scanning the
entire vLog for recovery. So as to require scanning only
a small portion of the vLog, WiscKey records the head
of the vLog periodically in the LSM-tree, as a key-value
pair <‘‘head’’, head-vLog-offset>. When a database
is opened, WiscKey starts the vLog scan from the most
recent head position stored in the LSM-tree, and con-
tinues scanning until the end of the vLog. Since the
head is stored in the LSM-tree, and the LSM-tree inher-
ently guarantees that keys inserted into the LSM-tree will
be recovered in the inserted order, this optimization is
crash consistent. Therefore, removing the LSM-tree log
of WiscKey is a safe optimization, and improves perfor-
mance especially when there are many small insertions.

3.5 Implementation
WiscKey is based on LevelDB 1.18. WiscKey creates
a vLog when creating a new database, and manages the
keys and value addresses in the LSM-tree. The vLog is
internally accessed by multiple components with differ-
ent access patterns. For example, a lookup is served by
randomly reading the vLog, while the garbage collector
sequentially reads from the tail and appends to the head
of the vLog file. We use posix fadvise() to predeclare
access patterns for the vLog under different situations.

For range queries, WiscKey maintains a background
thread pool with 32 threads. These threads sleep on a
thread-safe queue, waiting for new value addresses to
arrive. When prefetching is triggered, WiscKey inserts
a fixed number of value addresses to the worker queue,
and then wakes up all the sleeping threads. These threads
will start reading values in parallel, caching them in the
buffer cache automatically.

To efficiently garbage collect the free space of the
vLog, we use the hole-punching functionality of modern
file systems (fallocate()). Punching a hole in a file can
free the physical space allocated, and allows WiscKey to
elastically use the storage space. The maximal file size
on modern file systems is big enough for WiscKey to run
a long time without wrapping back to the beginning of

the file; for example, the maximal file size is 64 TB on
ext4, 8 EB on xfs and 16 EB on btrfs. The vLog can be
trivially adapted into a circular log if necessary.

4 Evaluation
In this section, we present evaluation results that demon-
strate the benefits of the design choices of WiscKey.

All experiments are run on a testing machine with
two Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz pro-
cessors and 64-GB of memory. The operating system
is 64-bit Linux 3.14, and the file system used is ext4.
The storage device used is a 500-GB Samsung 840 EVO
SSD, which has 500 MB/s sequential-read and 400 MB/s
sequential-write maximal performance. Random read
performance of the device is shown in Figure 3.

4.1 Microbenchmarks
We use db bench (the default microbenchmarks in
LevelDB) to evaluate LevelDB and WiscKey. We al-
ways use a key size of 16 B, but perform experiments
for different value sizes. We disable data compression
for easier understanding and analysis of performance.

4.1.1 Load Performance
We now describe the results for the sequential-load and
random-load microbenchmarks. The former benchmark
constructs a 100-GB database by inserting keys in a se-
quential order, while the latter inserts keys in a uniformly
distributed random order. Note that the sequential-load
benchmark does not cause compaction in either LevelDB
or WiscKey, while the random-load does.

Figure 7 shows the sequential-load throughput of
LevelDB and WiscKey for a wide range of value sizes:
the throughput of both stores increases with the value
size. But, even for the largest value size considered
(256 KB), LevelDB’s throughput is far from the device
bandwidth. To analyze this further, Figure 8 shows the
distribution of the time spent in different components
during each run of the benchmark, for LevelDB; time
is spent in three major parts: writing to the log file, in-
serting to the memtable, and waiting for the memtable
to be flushed to the device. For small key-value pairs,
writing to the log file accounts for the most significant
percentage of the total time, for the reasons explained in
Figure 6. For larger pairs, log writing and the memtable
sorting are more efficient, while memtable flushes are the
bottleneck. Unlike LevelDB, WiscKey reaches the full
device bandwidth for value sizes more than 4 KB. Since
it does not write to the LSM-tree log and buffers appends
to the vLog, it is 3× faster even for small values.

Figure 9 shows the random-load throughput of
LevelDB and WiscKey for different value sizes.
LevelDB’s throughput ranges from only 2 MB/s (64-
B value size) to 4.1 MB/s (256-KB value size), while

8

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 141

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50
100
150
200
250
300
350
400
450
500

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WhisKey

Figure 7: Sequential-load Performance. This figure
shows the sequential-load throughput of LevelDB and WiscKey
for different value sizes for a 100-GB dataset. Key size is 16 B.

0%

20%

40%

60%

80%

100%

64
B

25
6B 1K

B
4K

B
16

KB
64

KB
25

6K
B

Wait Log Memtable Other

Figure 8: Sequential-load Time Breakup of LevelDB.
This figure shows the percentage of time incurred in different
components during sequential load in LevelDB.

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50
100
150
200
250
300
350
400
450
500

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WhisKey

Figure 9: Random-load Performance. This figure
shows the random-load throughput of LevelDB and WiscKey
for different value sizes for a 100-GB dataset. Key size is 16 B.

64B 256B 1KB 4KB 16KB 64KB 256KB
0
2
4
6
8

10
12
14
16
18
20

Key: 16B, Value: 64B to 256KB

W
rit

e
Am

pl
ifi

ca
tio

n

LevelDB WhisKey

Figure 10: Write Amplification of Random Load.
This figure shows the write amplification of LevelDB and
WiscKey for randomly loading a 100-GB database.

WiscKey’s throughput increases with the value size,
reaching the peak device write throughput after the value
size is bigger than 4 KB. WiscKey’s throughput is 46×
and 111× of LevelDB for the 1-KB and 4-KB value size
respectively. LevelDB has low throughput because com-
paction both consumes a large percentage of the device
bandwidth and also slows down foreground writes (to
avoid overloading the L0 of the LSM-tree, as described
in Section 2.2). In WiscKey, compaction only introduces
a small overhead, leading to the full device bandwidth
being effectively utilized. To analyze this further, Fig-
ure 10 shows the write amplification of LevelDB and
WiscKeyṪhe write amplification of LevelDB is always
more than 12, while that of WiscKey decreases quickly
to nearly 1 when the value size reaches 1 KB, because
the LSM-tree of WiscKey is significantly smaller.

4.1.2 Query Performance

We now compare the random lookup (point query) and
range query performance of LevelDB and WiscKey. Fig-
ure 11 presents the random lookup results of 100,000

operations on a 100-GB random-loaded database. Even
though a random lookup in WiscKey needs to check both
the LSM-tree and the vLog, the throughput of WiscKey
is still much better than LevelDB: for 1-KB value size,
WiscKey’s throughput is 12× of that of LevelDB. For
large value sizes, the throughput of WiscKey is only lim-
ited by the random read throughput of the device, as
shown in Figure 3. LevelDB has low throughput because
of the high read amplification mentioned in Section 2.3.
WiscKey performs significantly better because the read
amplification is lower due to a smaller LSM-tree. An-
other reason for WiscKey’s better performance is that
the compaction process in WiscKey is less intense, thus
avoiding many background reads and writes.

Figure 12 shows the range query (scan) performance
of LevelDB and WiscKey. For a randomly-loaded
database, LevelDB reads multiple files from different
levels, while WiscKey requires random accesses to the
vLog (but WiscKey leverages parallel random reads). As
can be seen from Figure 12, the throughput of LevelDB
initially increases with the value size for both databases.

9

142 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50

100

150

200

250

300

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WhisKey

Figure 11: Random Lookup Performance. This figure
shows the random lookup performance for 100,000 operations
on a 100-GB database that is randomly loaded.

64B 256B 1KB 4KB 16KB 64KB 256KB
0

100

200

300

400

500

600

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB-Rand
WhisKey-Rand

LevelDB-Seq
WhisKey-Seq

Figure 12: Range Query Performance. This figure
shows range query performance. 4 GB of data is queried from
a 100-GB database that is randomly (Rand) and sequentially
(Seq) loaded.

However, beyond a value size of 4 KB, since an SSTable
file can store only a small number of key-value pairs,
the overhead is dominated by opening many SSTable
files and reading the index blocks and bloom filters
in each file. For larger key-value pairs, WiscKey can
deliver the device’s sequential bandwidth, up to 8.4×
of LevelDB. However, WiscKey performs 12× worse
than LevelDB for 64-B key-value pairs due to the de-
vice’s limited parallel random-read throughput for small
request sizes; WiscKey’s relative performance is bet-
ter on high-end SSDs with higher parallel random-read
throughput [3]. Furthermore, this workload represents a
worst-case where the database is randomly-filled and the
data is unsorted in the vLog.

Figure 12 also shows the performance of range
queries when the data is sorted, which corresponds to a
sequentially-loaded database; in this case, both LevelDB
and WiscKey can sequentially scan through data. Per-
formance for sequentially-loaded databases follows the
same trend as randomly-loaded databases; for 64-B
pairs, WiscKey is 25% slower because WiscKey reads
both the keys and the values from the vLog (thus wasting
bandwidth), but WiscKey is 2.8× faster for large key-
value pairs. Thus, with small key-value pairs, log re-
organization (sorting) for a random-loaded database can
make WiscKey’s range-query performance comparable
to LevelDB’s performance.

4.1.3 Garbage Collection
We now investigate WiscKey’s performance while
garbage collection is performed in the background. The
performance can potentially vary depending on the per-
centage of free space found during garbage collection,
since this affects the amount of data written and the
amount of space freed by the garbage collection thread.
We use random-load (the workload that is most af-
fected by garbage collection) as the foreground work-

load, and study its performance for various percentages
of free space. Our experiment specifically involves three
steps: we first create a database using random-load, then
delete the required percentage of key-value pairs, and fi-
nally, we run the random-load workload and measure its
throughput while garbage collection happens in the back-
ground. We use a key-value size of 4 KB and vary the
percentage of free space from 25% to 100%.

Figure 13 shows the results: if 100% of data read by
the garbage collector is invalid, the throughput is only
10% lower. Throughput is only marginally lower be-
cause garbage collection reads from the tail of the vLog
and writes only valid key-value pairs to the head; if the
data read is entirely invalid, no key-value pair needs to
be written. For other percentages of free space, through-
put drops about 35% since the garbage collection thread
performs additional writes. Note that, in all cases, while
garbage collection is happening, WiscKey is at least 70×
faster than LevelDB.

4.1.4 Crash Consistency
Separating keys from values necessitates additional
mechanisms to maintain crash consistency. We verify
the crash consistency mechanisms of WiscKey by us-
ing the ALICE tool [45]; the tool chooses and simu-
lates a comprehensive set of system crashes that have a
high probability of exposing inconsistency. We use a test
case which invokes a few asynchronous and synchronous
Put() calls. When configured to run tests for ext4, xfs,
and btrfs, ALICE checks more than 3000 selectively-
chosen system crashes, and does not report any consis-
tency vulnerability introduced by WiscKey.

The new consistency mechanism also affects
WiscKey’s recovery time after a crash, and we design
an experiment to measure the worst-case recovery time
of WiscKey and LevelDB. LevelDB’s recovery time is
proportional to the size of its log file after the crash;

10

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 143

25% 50% 75% 100%
0

50

100

150

200

250

300

350

400

Percentage of free space (Key: 16B, Value: 4KB)

Th
ro

ug
hp

ut
 (M

B/
s)

WhisKey WhisKey-GC

Figure 13: Garbage Collection. This figure shows the
performance of WiscKey under garbage collection for vari-
ous free-space ratios.

64B 256B 1KB 4KB 16KB 64KB 256KB
0

20

40

60

80

100

120

140

160

Key: 16B, Value: 64B to 256KB

D
at

ab
as

e
Si

ze

User-Data
LevelDB

WiscKey-GC
WiscKey

Figure 14: Space Amplification. This figure shows the
actual database size of LevelDB and WiscKey for a random-
load workload of a 100-GB dataset. User-Data represents
the logical database size.

the log file exists at its maximum size just before the
memtable is written to disk. WiscKey, during recovery,
first retrieves the head pointer from the LSM-tree, and
then scans the vLog file from the head pointer till the end
of the file. Since the updated head pointer is persisted
on disk when the memtable is written, WiscKey’s
worst-case recovery time also corresponds to a crash
happening just before then. We measured the worst-case
recovery time induced by the situation described so far;
for 1-KB values, LevelDB takes 0.7 seconds to recover
the database after the crash, while WiscKey takes 2.6
seconds. Note that WiscKey can be configured to persist
the head pointer more frequently if necessary.

4.1.5 Space Amplification

When evaluating a key-value store, most previous work
focused only on read and write amplification. How-
ever, space amplification is important for flash devices
because of their expensive price-per-GB compared with
hard drives. Space amplification is the ratio of the ac-
tual size of the database on disk to the logical size of
the the database [5]. For example, if a 1-KB key-value
pair takes 4 KB of space on disk, then the space ampli-
fication is 4. Compression decreases space amplification
while extra data (garbage, fragmentation, or metadata)
increases space amplification. Compression is disabled
to make the discussion simple.

For a sequential-load workload, the space amplifica-
tion can be near one, given that the extra metadata in
LSM-trees is minimal. For a random-load or overwrite
workload, space amplification is usually more than one
when invalid pairs are not garbage collected fast enough.

Figure 14 shows the database size of LevelDB and
WiscKey after randomly loading a 100-GB dataset (the
same workload as Figure 9). The space overhead of
LevelDB arises due to invalid key-value pairs that are not
garbage collected when the workload is finished. The
space overhead of WiscKey includes the invalid key-

value pairs and the extra metadata (pointers in the LSM-
tree and the tuple in the vLog as shown in Figure 5). Af-
ter garbage collection, the database size of WiscKey is
close to the logical database size when the extra meta-
data is small compared to the value size.

No key-value store can minimize read amplification,
write amplification, and space amplification at the same
time. Tradeoffs among these three factors are balanced
differently in various systems. In LevelDB, the sorting
and garbage collection are coupled together. LevelDB
trades higher write amplification for lower space ampli-
fication; however, the workload performance can be sig-
nificantly affected. WiscKey consumes more space to
minimize I/O amplification when the workload is run-
ning; because sorting and garbage collection are decou-
pled in WiscKey, garbage collection can be done later,
thus minimizing its impact on foreground performance.

4.1.6 CPU Usage
We now investigate the CPU usage of LevelDB and
WiscKey for various workloads shown in previous sec-
tions. The CPU usage shown here includes both the ap-
plication and operating system usage.

As shown in Table 1, LevelDB has higher CPU usage
for sequential-load workload. As we explained in Fig-
ure 8, LevelDB spends a large amount of time writing
key-value pairs to the log file. Writing to the log file
involves encoding each key-value pair, which has high
CPU cost. Since WiscKey removes the log file as an opti-
mization, WiscKey has lower CPU usage than LevelDB.
For the range query workload, WiscKey uses 32 back-
ground threads to do the prefetch; therefore, the CPU
usage of WiscKey is much higher than LevelDB.

We find that CPU is not a bottleneck for both LevelDB
and WiscKey in our setup. The architecture of LevelDB
is based on single writer protocol. The background com-
paction also only uses one thread. Better concurrency
design for multiple cores is explored in RocksDB [25].

11

144 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

0.1

1

10

100

1000
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

(a) Value size: 1KB
LOAD A B C D E F

1.
6

0.
24

0.
18

0.
16 1.
7

0.
01

9

0.
72

0.
74

0.
5

1.
7

1.
3

3.
6

0.
12

0.
76

77

3.
4 3.

5 4.
0

5.
4 0.

12 4.
6

86

4 3.
6 3.
4

6.
9 0.

13 5.
7

LevelDB RocksDB WhisKey-GC WhisKey

0.1

1

10

100

1000

(b) Value size: 16KB
LOAD A B C D E F

0.
2

0.
31

0.
69 0.
8

1.
1

0.
05

9

0.
48

0.
16

0.
26

1.
8 2.
4

3.
2

0.
07

2

0.
46

20
.8

1.
44

2.
3 3.

4

3.
6

0.
07

3

2

23

4

5

4.
7 7.
5

0.
11

5.
7

LevelDB RocksDB WhisKey-GC WhisKey

Figure 15: YCSB Macrobenchmark Performance. This figure shows the performance of LevelDB, RocksDB, and WiscKey
for various YCSB workloads. The X-axis corresponds to different workloads, and the Y-axis shows the performance normalized to
LevelDB’s performance. The number on top of each bar shows the actual throughput achieved (K ops/s). (a) shows performance
under 1-KB values and (b) shows performance under 16-KB values. The load workload corresponds to constructing a 100-GB
database and is similar to the random-load microbenchmark. Workload-A has 50% reads and 50% updates, Workload-B has 95%
reads and 5% updates, and Workload-C has 100% reads; keys are chosen from a Zipf, and the updates operate on already-existing
keys. Workload-D involves 95% reads and 5% inserting new keys (temporally weighted distribution). Workload-E involves 95%
range queries and 5% inserting new keys (Zipf), while Workload-F has 50% reads and 50% read-modify-writes (Zipf).

Workloads Seq Rand Rand Range
Load Load Lookup Query

LevelDB 10.6% 6.3% 7.9% 11.2%
WiscKey 8.2% 8.9% 11.3% 30.1%

Table 1: CPU Usage of LevelDB and WiscKey. This
table compares the CPU usage of four workloads on LevelDB
and WiscKey. Key size is 16 B and value size is 1 KB. Seq-
Load and Rand-Load sequentially and randomly load a 100-
GB database respectively. Given a 100-GB random-filled
database, Rand-Lookup issues 100 K random lookups, while
Range-Query sequentially scans 4-GB data.

4.2 YCSB Benchmarks
The YCSB benchmark [21] provides a framework and a
standard set of six workloads for evaluating the perfor-
mance of key-value stores. We use YCSB to compare
LevelDB, RocksDB [25], and WiscKey, on a 100-GB
database. In addition to measuring the usual-case perfor-
mance of WiscKey, we also run WiscKey with garbage
collection always happening in the background so as to
measure its worst-case performance. RocksDB [25] is a
SSD-optimized version of LevelDB with many optimiza-
tions, including multiple memtables and background
threads for compaction. We use RocksDB with the de-
fault configuration parameters. We evaluated the key-
value stores with two different value sizes, 1 KB and
16 KB (data compression is disabled).

WiscKey performs significantly better than LevelDB
and RocksDB, as shown in Figure 15. For example, dur-
ing load, for 1-KB values, WiscKey performs at least
50× faster than the other databases in the usual case, and
at least 45× faster in the worst case (with garbage col-

lection); with 16-KB values, WiscKey performs 104×
better, even under the worst case.

For reads, the Zipf distribution used in most workloads
allows popular items to be cached and retrieved with-
out incurring disk access, thus reducing WiscKey’s ad-
vantage over LevelDB and RocksDB. Hence, WiscKey’s
relative performance (compared to the LevelDB and
RocksDB) is better in Workload-A (50% reads) than in
Workload-B (95% reads) and Workload-C (100% reads).
However, RocksDB and LevelDB still do not match
WiscKey’s performance in any of these workloads.

The worst-case performance of WiscKey (with
garbage collection switched on always, even for read-
only workloads) is better than LevelDB and RocksDB.
However, the impact of garbage collection on perfor-
mance is markedly different for 1-KB and 16-KB values.
Garbage collection repeatedly selects and cleans a 4-MB
chunk of the vLog; with small values, the chunk will in-
clude many key-value pairs, and thus garbage collection
spends more time accessing the LSM-tree to verify the
validity of each pair. For large values, garbage collection
spends less time on the verification, and hence aggres-
sively writes out the cleaned chunk, affecting foreground
throughput more. Note that, if necessary, garbage collec-
tion can be throttled to reduce its foreground impact.

Unlike the microbenchmark considered previously,
Workload-E has multiple small range queries, with each
query retrieving between 1 and 100 key-value pairs.
Since the workload involves multiple range queries, ac-
cessing the first key in each range resolves to a ran-
dom lookup – a situation favorable for WiscKey. Hence,
WiscKey performs better than RocksDB and LevelDB
even for 1-KB values.

12

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 145

5 Related Work
Various key-value stores based on hash tables have been
proposed for SSD devices. FAWN [8] keeps key-value
pairs in a append-only log on the SSD, and uses an
in-memory hash table index for fast lookups. Flash-
Store [22] and SkimpyStash [23] follow the same de-
sign, but optimize the in-memory hash table; FlashStore
uses cuckoo hashing and compact key signatures, while
SkimpyStash moves a part of the table to the SSD us-
ing linear chaining. BufferHash [7] uses multiple in-
memory hash tables, with bloom filters to choose which
hash table to use for a lookup. SILT [35] is highly
optimized for memory, and uses a combination of log-
structure, hash-table, and sorted-table layouts.WiscKey
shares the log-structure data layout with these key-value
stores. However, these stores use hash tables for index-
ing, and thus do not support modern features that have
been built atop LSM-tree stores, such as range queries or
snapshots. WiscKey instead targets a feature-rich key-
value store which can be used in various situations.

Much work has gone into optimizing the original
LSM-tree key-value store [43]. bLSM [49] presents a
new merge scheduler to bound write latency, thus main-
taining a steady write throughput, and also uses bloom
filters to improve performance. VT-tree [50] avoids sort-
ing any previously sorted key-value pairs during com-
paction, by using a layer of indirection. WiscKey instead
directly separates values from keys, significantly reduc-
ing write amplification regardless of the key distribution
in the workload. LOCS [53] exposes internal flash chan-
nels to the LSM-tree key-value store, which can exploit
the abundant parallelism for a more efficient compaction.
Atlas [32] is a distributed key-value store based on ARM
processors and erasure coding, and stores keys and val-
ues on different hard drives. WiscKey is a standalone
key-value store, where the separation between keys and
values is highly optimized for SSD devices to achieve
significant performance gains. LSM-trie [54] uses a trie
structure to organize keys, and proposes a more effi-
cient compaction based on the trie; however, this de-
sign sacrifices LSM-tree features such as efficient sup-
port for range queries. RocksDB, described previously,
still exhibits high write amplification due to its design
being fundamentally similar to LevelDB; RocksDB’s op-
timizations are orthogonal to WiscKey’s design.

Walnut [18] is a hybrid object store which stores small
objects in a LSM-tree and writes large objects directly
to the file system. IndexFS [47] stores its metadata in a
LSM-tree with the column-style schema to speed up the
throughput of insertion. Purity [19] also separates its in-
dex from data tuples by only sorting the index and storing
tuples in time order. All three systems use similar tech-
niques as WiscKey. However, we solve this problem in

a more generic and complete manner, and optimize both
load and lookup performance for SSD devices across a
wide range of workloads.

Key-value stores based on other data structures have
also been proposed. TokuDB [13, 14] is based on fractal-
tree indexes, which buffer updates in internal nodes; the
keys are not sorted, and a large index has to be main-
tained in memory for good performance. ForestDB [6]
uses a HB+-trie to efficiently index long keys, improv-
ing the performance and reducing the space overhead of
internal nodes. NVMKV [39] is a FTL-aware key-value
store which uses native FTL capabilities, such as sparse
addressing, and transactional supports. Vector interfaces
that group multiple requests into a single operation are
also proposed for key-value stores [52]. Since these key-
value stores are based on different data structures, they
each have different trade-offs relating to performance;
instead, WiscKey proposes improving the widely used
LSM-tree structure.

Many proposed techniques seek to overcome the
scalability bottlenecks of in-memory key-value stores,
such as Mastree [38], MemC3 [27], Memcache [41],
MICA [36] and cLSM [28]. These techniques may be
adapted for WiscKey to further improve its performance.

6 Conclusions
Key-value stores have become a fundamental building
block in data-intensive applications. In this paper, we
propose WiscKey, a novel LSM-tree-based key-value
store that separates keys and values to minimize write
and read amplification. The data layout and I/O pat-
terns of WiscKey are highly optimized for SSD devices.
Our results show that WiscKey can significantly im-
prove performance for most workloads. Our hope is
that key-value separation and various optimization tech-
niques in WiscKey will inspire the future generation of
high-performance key-value stores.

Acknowledgments
We thank the anonymous reviewers and Ethan Miller
(our shepherd) for their feedback. We thank the mem-
bers of the ADSL research group, the RocksDB team
(FaceBook), Yinan Li (Microsoft Research) and Bin Fan
(Tachyon Nexus) for their suggestions and comments on
this work at various stages.

This material was supported by funding from NSF
grants CNS-1419199, CNS-1421033, CNS-1319405,
and CNS-1218405 as well as generous donations from
EMC, Facebook, Google, Huawei, Microsoft, NetApp,
Seagate, Samsung, Veritas, and VMware. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and may not re-
flect the views of NSF or other institutions.

13

146 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

References
[1] Apache HBase. http://hbase.apache.org/,

2007.
[2] Redis. http://redis.io/, 2009.
[3] Fusion-IO ioDrive2. http://www.fusionio.

com/products/iodrive2, 2015.
[4] Riak. http://docs.basho.com/riak/, 2015.
[5] RocksDB Blog. http://rocksdb.org/blog/,

2015.
[6] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram,

Rahim Yaseen, Jin-Soo Kim, and Seungryoul
Maeng. ForestDB: A Fast Key-Value Storage Sys-
tem for Variable-Length String Keys. IEEE Trans-
actions on Computers, Preprint, May 2015.

[7] Ashok Anand, Chitra Muthukrishnan, Steven
Kappes, Aditya Akella, and Suman Nath. Cheap
and Large CAMs for High-performance Data-
intensive Networked Systems. In Proceedings of
the 7th Symposium on Networked Systems Design
and Implementation (NSDI ’10), San Jose, Califor-
nia, April 2010.

[8] David Andersen, Jason Franklin, Michael Kamin-
sky, Amar Phanishayee, Lawrence Tan, and Vijay
Vasudevan. FAWN: A Fast Array of Wimpy Nodes.
In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP ’09), Big Sky,
Montana, October 2009.

[9] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: A
Database Benchmark Based on the Facebook So-
cial Graph. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of
Data (SIGMOD ’13), New York, New York, June
2013.

[10] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.9 edition, 2014.

[11] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg,
Song Jiang, and Mike Paleczny. Workload Anal-
ysis of a Large-Scale Key-Value Store. In Proceed-
ings of the USENIX Annual Technical Conference
(USENIX ’15), Santa Clara, California, July 2015.

[12] Doug Beaver, Sanjeev Kumar, Harry C. Li, Ja-
son Sobel, and Peter Vajgel. Finding a needle in
Haystack: Facebook’s photo storage. In Proceed-
ings of the 9th Symposium on Operating Systems
Design and Implementation (OSDI ’10), Vancou-
ver, Canada, December 2010.

[13] Michael A. Bender, Martin Farach-Colton,
Jeremy T. Fineman, Yonatan Fogel, Bradley
Kuszmaul, and Jelani Nelson. Cache-Oblivious
Streaming B-trees. In Proceedings of the
Nineteenth ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’07), San
Diego, California, June 2007.

[14] Adam L. Buchsbaum, Michael Goldwasser, Suresh
Venkatasubramanian, and Jeffery R. Westbrook.
On External Memory Graph Traversal. In Pro-
ceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’00), San
Francisco, California, January 2000.

[15] Adrian M. Caulfield, Arup De, Joel Coburn,
Todor I. Mollow, Rajesh K. Gupta, and Steven
Swanson. Moneta: A High-Performance Stor-
age Array Architecture for Next-Generation, Non-
volatile Memories. In Proceedings of the 43nd An-
nual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’10), Atlanta, Georgia, De-
cember 2010.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’06), pages 205–218, Seattle, Wash-
ington, November 2006.

[17] Feng Chen, Rubao Lee, and Xiaodong Zhang. Es-
sential Roles of Exploiting Internal Parallelism of
Flash Memory Based Solid State Drives in High-
speed Data Processing. In Proceedings of the
17th International Symposium on High Perfor-
mance Computer Architecture (HPCA-11), San An-
tonio, Texas, February 2011.

[18] Jianjun Chen, Chris Douglas, Michi Mutsuzaki,
Patrick Quaid, Raghu Ramakrishnan, Sriram Rao,
and Russell Sears. Walnut: A Unified Cloud Object
Store. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data
(SIGMOD ’12), Scottsdale, Arizona, May 2012.

[19] John Colgrove, John D. Davis, John Hayes,
Ethan L. Miller, Cary Sandvig, Russell Sears, Ari
Tamches, Neil Vachharajani, and Feng Wang. Pu-
rity: Building Fast, Highly-Available Enterprise
Flash Storage from Commodity Components. In
Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (SIG-
MOD ’15), Melbourne, Australia, May 2015.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. PNUTS: Yahoo!s Hosted
Data Serving Platform. In Proceedings of the
VLDB Endowment (PVLDB 2008), Auckland, New
Zealand, August 2008.

[21] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking Cloud Serving Systems with YCSB. In
Proceedings of the ACM Symposium on Cloud
Computing (SOCC ’10), Indianapolis, Indiana,
June 2010.

[22] Biplob Debnath, Sudipta Sengupta, and Jin Li.
FlashStore: High Throughput Persistent Key-Value
Store. In Proceedings of the 36th Interna-
tional Conference on Very Large Databases (VLDB
2010), Singapore, September 2010.

[23] Biplob Debnath, Sudipta Sengupta, and Jin Li.
SkimpyStash: RAM Space Skimpy Key-value
Store on Flash-based Storage. In Proceedings of
the 2011 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’11), Athens,
Greece, June 2011.

[24] Guiseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Laksh-

14

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 147

man, Alex Pilchin, Swami Sivasubramanian, Pe-
ter Vosshall, and Werner Vogels. Dynamo: Ama-
zon’s Highly Available Key-Value Store. In Pro-
ceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP ’07), Stevenson, Wash-
ington, October 2007.

[25] Facebook. RocksDB. http://rocksdb.org/,
2013.

[26] Facebook. RocksDB 2015 H2 Roadmap. http://
rocksdb.org/blog/2015/rocksdb-2015-h2-
roadmap/, 2015.

[27] Bin Fan, David G. Andersen, and Michael Kamin-
sky. MemC3: Compact and Concurrent MemCache
with Dumber Caching and Smarter Hashing. In
Proceedings of the 10th Symposium on Networked
Systems Design and Implementation (NSDI ’13),
Lombard, Illinois, April 2013.

[28] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hil-
lel, and Idit Keidar. Scaling Concurrent Log-
Structured Data Stores. In Proceedings of the Eu-
roSys Conference (EuroSys ’15), Bordeaux, France,
April 2015.

[29] Tyler Harter, Dhruba Borthakur, Siying Dong,
Amitanand Aiyer, Liyin Tang, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Anal-
ysis of HDFS Under HBase: A Facebook Mes-
sages Case Study. In Proceedings of the 12th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’14), Santa Clara, California, February
2014.

[30] William Jannen, Jun Yuan, Yang Zhan, Amogh Ak-
shintala, John Esmet, Yizheng Jiao, Ankur Mittal,
Prashant Pandey, Phaneendra Reddy, Leif Walsh,
Michael Bender, Martin Farach-Colton, Rob John-
son, Bradley C. Kuszmaul, and Donald E. Porter.
BetrFS: A Right-Optimized Write-Optimized File
System. In Proceedings of the 13th USENIX Sym-
posium on File and Storage Technologies (FAST
’15), Santa Clara, California, February 2015.

[31] Hyojun Kim, Nitin Agrawal, and Cristian Ungure-
anu. Revisiting Storage for Smartphones. In Pro-
ceedings of the 10th USENIX Symposium on File
and Storage Technologies (FAST ’12), San Jose,
California, February 2012.

[32] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding
Lin, Guangyu Sun, Zhenyu Hou, Can Cui, and Ja-
son Cong. Atlas: Baidus Key-value Storage System
for Cloud Data. In Proceedings of the 31st Inter-
national Conference on Massive Storage Systems
and Technology (MSST ’15), Santa Clara, Califor-
nia, May 2015.

[33] Avinash Lakshman and Prashant Malik. Cassandra
– A Decentralized Structured Storage System. In
The 3rd ACM SIGOPS International Workshop on
Large Scale Distributed Systems and Middleware,
Big Sky Resort, Montana, Oct 2009.

[34] Changman Lee, Dongho Sim, Jooyoung Hwang,
and Sangyeun Cho. F2FS: A New File System
for Flash Storage. In Proceedings of the 13th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’15), Santa Clara, California, February
2015.

[35] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: A Memory-efficient,
High-performance Key-value Store. In Proceed-
ings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), Cascais, Portugal,
October 2011.

[36] Hyeontaek Lim, Dongsu Han, David G. Andersen,
and Michael Kaminsky. MICA: A Holistic Ap-
proach to Fast In-Memory Key-Value Storage. In
Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI ’14),
Seattle, Washington, April 2014.

[37] Haohui Mai and Jing Zhao. Scaling HDFS to Man-
age Billions of Files with Key Value Stores. In The
8th Annual Hadoop Summit, San Jose, California,
Jun 2015.

[38] Yandong Mao, Eddie Kohler, and Robert Mor-
ris. Cache Craftiness for Fast Multicore Key-Value
Storage. In Proceedings of the EuroSys Conference
(EuroSys ’12), Bern, Switzerland, April 2012.

[39] Leonardo Marmol, Swaminathan Sundararaman,
Nisha Talagala, and Raju Rangaswami. NVMKV:
A Scalable, Lightweight, FTL-aware Key-Value
Store. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’15), Santa Clara, Cali-
fornia, July 2015.

[40] Changwoo Min, Kangnyeon Kim, Hyunjin Cho,
Sang-Won Lee, and Young Ik Eom. SFS: Random
Write Considered Harmful in Solid State Drives.
In Proceedings of the 10th USENIX Symposium
on File and Storage Technologies (FAST ’12), San
Jose, California, February 2012.

[41] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan
McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling Memcache at Facebook. In
Proceedings of the 10th Symposium on Networked
Systems Design and Implementation (NSDI ’13),
Lombard, Illinois, April 2013.

[42] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim
Gray, and Dave Lomet. AlphaSort: A RISC Ma-
chine Sort. In Proceedings of the 1994 ACM SIG-
MOD International Conference on Management
of Data (SIGMOD ’94), Minneapolis, Minnesota,
May 1994.

[43] Patrick ONeil, Edward Cheng, Dieter Gawlick,
and Elizabeth ONeil. The Log-Structured Merge-
Tree (LSM-tree). Acta Informatica, 33(4):351–385,
1996.

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy, and
Thomas Anderson. Arrakis: The Operating Sys-
tem is the Control Plane. In Proceedings of the
11th Symposium on Operating Systems Design and
Implementation (OSDI ’14), Broomfield, Colorado,
October 2014.

[45] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting

15

148 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Crash-Consistent Applications. In Proceedings of
the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield,
Colorado, October 2014.

[46] Kai Ren and Garth Gibson. TABLEFS: Enhanc-
ing Metadata Efciency in the Local File System. In
Proceedings of the USENIX Annual Technical Con-
ference (USENIX ’13), San Jose, California, June
2013.

[47] Kai Ren, Qing Zheng, Swapnil Patil, and Garth
Gibson. IndexFS: Scaling File System Metadata
Performance with Stateless Caching and Bulk In-
sertion. In Proceedings of the International Confer-
ence for High Performance Computing, Network-
ing, Storage and Analysis (SC ’14), New Orleans,
Louisana, November 2014.

[48] Sanjay Ghemawat and Jeff Dean. LevelDB.
http://code.google.com/p/leveldb, 2011.

[49] Russell Sears and Raghu Ramakrishnan. bLSM:
A General Purpose Log Structured Merge Tree. In
Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (SIG-
MOD ’12), Scottsdale, Arizona, May 2012.

[50] Pradeep Shetty, Richard Spillane, Ravikant Mal-
pani, Binesh Andrews, Justin Seyster, and Erez
Zadok. Building Workload-Independent Stor-
age with VT-Trees. In Proceedings of the 11th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’13), San Jose, California, February
2013.

[51] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Fein-
berg, Chinmay Soman, and Sam Shah. Serv-
ing Large-scale Batch Computed Data with Project
Voldemort. In Proceedings of the 10th USENIX
Symposium on File and Storage Technologies
(FAST ’12), San Jose, California, February 2012.

[52] Vijay Vasudevan, Michael Kaminsky, and David G.
Andersen. Using Vector Interfaces to Deliver Mil-
lions of IOPS from a Networked Key-value Storage
Server. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC ’12), San Jose, Califor-
nia, October 2012.

[53] Peng Wang, Guangyu Sun, Song Jiang, Jian
Ouyang, Shiding Lin, Chen Zhang, and Jason
Cong. An Efficient Design and Implementation
of LSM-Tree based Key-Value Store on Open-
Channel SSD. In Proceedings of the EuroSys Con-
ference (EuroSys ’14), Amsterdam, Netherlands,
April 2014.

[54] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.
LSM-trie: An LSM-tree-based Ultra-Large Key-
Value Store for Small Data. In Proceedings of the
USENIX Annual Technical Conference (USENIX
’15), Santa Clara, California, July 2015.

16

