
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

PCAP: Performance-aware Power Capping
for the Disk Drive in the Cloud

Mohammed G. Khatib and Zvonimir Bandic, WDC Research

https://www.usenix.org/conference/fast16/technical-sessions/presentation/khatib

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 227

PCAP: Performance-Aware Power Capping for the Disk Drive in the Cloud

Mohammed G. Khatib and Zvonimir Bandic
WDC Research

{mohammed.khatib,zvonimir.bandic}@hgst.com

Abstract

Power efficiency is pressing in today’s cloud systems.
Datacenter architects are responding with various strate-
gies, including capping the power available to comput-
ing systems. Throttling bandwidth has been proposed to
cap the power usage of the disk drive. This work revis-
its throttling and addresses its shortcomings. We show
that, contrary to the common belief, the disk’s power us-
age does not always increase as the disk’s throughput in-
creases. Furthermore, throttling unnecessarily sacrifices
I/O response times by idling the disk. We propose a tech-
nique that resizes the queues of the disk to cap its power.
Resizing queues not only imposes no delays on servicing
requests, but also enables performance differentiation.

We present the design and implementation of PCAP,
an agile performance-aware power capping system for
the disk drive. PCAP dynamically resizes the disk’s
queues to cap power. It operates in two performance-
aware modes, throughput and tail-latency, making it vi-
able for cloud systems with service-level differentiation.
We evaluate PCAP for different workloads and disk
drives. Our experiments show that PCAP reduces power
by up to 22%. Further, under PCAP, 60% of the re-
quests observe service times below 100 ms compared to
just 10% under throttling. PCAP also reduces worst-
case latency by 50% and increases throughput by 32%
relative to throttling.

1 Introduction

The widespread adoption of on-line services has been fu-
eling the demand for more and denser datacenters. The
design of such warehouse-sized computing systems [12]
is not at all trivial. Architects have to deal not only
with computing, storage and networking equipment, but
also with cooling and power infrastructures [13]. In fact,
power and energy are first-order concerns for architects
as new high-performing hardware is likely to require

more power, while the cost of hardware has remained
stable. With these trends continuing, Barroso [11] ar-
gues that the cost of the energy to operate a server during
its lifetime could surpass the cost of the hardware itself.

Power is more concerning since the cost of building
a datacenter is mainly dictated by the costs of its power
infrastructure. These costs typically range between $10
and $20 per deployed Watt of peak critical power [29].
Hence, a datacenter with a provisioned 10 MW peak
power capacity costs $100M to $200M (excluding cool-
ing and ancillary costs), a significant amount of money.
Contrast the $10/W building cost with an average of
$0.80/Watt-hour for electricity in the U.S. Still, while en-
ergy costs vary with the usage of the datacenter, building
costs are fixed and based on the peak power capacity.
Consequently, it becomes very important to fully utilize
a datacenter’s power capacity. If a facility is operated at
85% of its maximum capacity, the cost of building the
facility surpasses the energy costs for ten years of opera-
tion [29].

Recent studies have addressed maximizing the power
utilization in datacenters [26, 36]. Researchers have
characterized the power usage at different levels in the
datacenter (e.g., machine and cluster) and investigated
power provisioning strategies. One especially promis-
ing strategy is power over-subscription [12], that over-
subscribes a datacenter with more machines (and thus
more work) to ensure near 100% power utilization. The
incentive to fully utilize the power budget is, however,
offset by the risk of overloading the power trains and in-
frastructure of the datacenter. Such overloading could
result in long service downtimes (due to power outages)
and/or costly contractual fines (due to service agreement
violations). To prevent overloading, power capping tech-
niques are deployed as a safety mechanism, thus allow-
ing maximum utilization while preventing costly penal-
ties.

Power capping is a mechanism that ensures that the
power drawn by a datacenter stays below a predefined

228 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

power limit or cap. At the core of power capping is
a monitoring loop, which takes in power readings, and
computes the amount of power capping needed. Capping
itself is done in a variety of techniques depending on the
scale and type of the hardware component under ques-
tion. On a datacenter level, capping is an aggregate num-
ber that trickles down to clusters, racks, machines and
components. Suspending low-priority tasks in a cluster
and adapting the clock frequency of a CPU component
are two example techniques.

This work focuses on capping the power usage of the
storage component of the datacenter. We address the 3.5-
inch high-capacity enterprise hard disk drives (HDDs)
common in today’s cloud deployments. This paper tack-
les the question of: How can the HDD power consump-
tion be capped in a performance-aware manner?

To this end, we revisit the throttling technique pro-
posed for power capping [40] and address its shortcom-
ings in a new technique we propose. We show that throt-
tling unnecessarily sacrifices timing performance to cap
power. Throttling limits disk throughput by stopping ser-
vicing and delaying all outstanding requests. It is pred-
icated on the assumption that low throughputs result in
less power usage by the disk. Our power measurements
reveal that, contrary to the common belief, the power us-
age of the disk does not always increase with the increase
in throughput but declines for high throughputs. We find
no strict positive correlation between the power usage
and the throughput of the disk.

To enable power capping for the disk drive, we pro-
pose a technique that resizes the I/O queues. We show
that resizing queues not only reduces the impact on per-
formance, unlike throttling, but also enables two differ-
ent performance-oriented operation modes: throughput
and tail-latency. This is important given the various ser-
vices offered by today’s datacenters. For instance, web
search is sensitive to latency, whereas Map-reduce is
throughput-oriented [22, 35]. By I/O queues we mean
both the disk’s queue as well as its respective OS queue.
We investigate the interplay between both queues and
their influence on the disk’s power usage.

We present PCAP, an agile performance-aware power
capping system for the disk drive. PCAP dynamically
adapts the queues of a disk drive to cap its power. It per-
forms power capping in two different operation modes:
throughput and tail-latency. Under PCAP, 60% of the
requests exhibit latencies less than 100 ms as opposed to
just 10% under throttling. Also, PCAP reduces worst-
case latency by 50% and increases throughput by 32%
compared to throttling. PCAP has three goals:
1. Agile power capping that reacts quickly to workload
variations to prevent power overshooting as well as per-
formance degradation.
2. Graceful power control to prevent oscillations in

power and better adhere to service level agreements.
3. Maximized disk performance for enhanced perfor-
mance of applications.

This paper makes the following contributions:
• Revisiting the throttling technique for HDDs and
studying the throughput–power relationship (section 4).
• Investigating the impact of the HDD’s and OS queues
on the HDD’s power and performance (section 5).
• Designing and evaluating the PCAP system that is ag-
ile, graceful, and performance-aware (section 6).

This paper is structured as follows. The next section
offers a brief refresher of the basics of HDDs. Sec-
tion 3 evaluates the merit of power capping for HDDs
and presents our experimental setup. Section 4 revisits
throttling and its impact on power. Section 5 investigates
the influence of the queue size on HDD’s power con-
sumption. Section 6 presents the design of PCAP and
Section 7 evaluates it. Section 8 studies PCAP for dif-
ferent workloads. Section 9 discusses related work and
Section 10 concludes.

2 Background

2.1 Power capping vs. Energy efficiency
This work focuses on power capping to maximize the
utilization in the datacenter, where peak power predom-
inates costs of ownership. We do not address energy ef-
ficiency, where machines are powered down in underuti-
lized datacenters to save energy. While the latter received
ample attention in the literature [43, 44, 45, 48, 41], the
former received relatively little [40, 26, 36].

Addressing power capping, we measure power dissi-
pation. Power is the rate at which electricity is con-
sumed. It is measured at an instant in time as Watts (W).
To contrast, energy is a total quantity and is power inte-
grated over time. It is measured as Wh (Watt-hour), or
joules. We focus on power usage here.

2.2 HDD power capping
The active read/write mode of the HDD is of a primary
interest for power capping. This is because the HDD
draws most of the power in the active mode (e.g., com-
pare 11 W during activity to 6 W during idleness). Also,
in cloud systems, HDDs spend most of the time in the
active mode [17]. Generally speaking, power capping
may transition the HDD between the active mode and
one or more of its low power modes to reduce the average
power drawn in a period of time. Throttling for instance
transitions the disk between the active and idle modes.
This transitioning comes at a performance penalty, which
scales with the depth and frequency the low-power mode

2

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 229

being visited. In contrast, in this work we avoid tran-
sitioning between power modes and propose the adjust-
ment of the queue size to achieve power capping for the
disk drive in the active mode.

2.3 HDD’s IOQ and NCQ queues
Any block storage device, that is managed by an Operat-
ing System (OS), has a respective queue as a part of the
OS [14]. The queue serves as space for the I/O scheduler
to reorder I/O requests for increased throughputs. For
example, the Linux OS maintains a queue depth of 128
requests by default (in the current Ubuntu distributions).
Requests are reordered to optimize for sequentiality on
the HDD. The queue size is adjustable with a minimum
size of 4. We refer to this queue as IOQ in this work.

NCQ stands for Native Command Queuing [5]. It is
an extension to the Serial ATA protocol that allows the
HDD to internally optimize the order in which requests
are serviced. For instance, the HDD may reorder re-
quests depending on its rotational positioning in order
to serve all of them with fewer rotations and thus less
time. NCQ typically ranges from 1 to 32, where NCQ=1
means disabled NCQ.

2.4 Scope of this work
We focus on the storage component of the datacen-
ter. Making storage power-aware enables better over-
all power provisioning and capping. The share in
power consumption due to storage varies. For exam-
ple, in storage-heavy systems, such as the HGST Active
Archive System [3], 80% of the power is due to the 600
HDDs it hosts, whereas in a computing-heavy system,
such as the Dell PowerEdge R720 Server, 5-10%. We
propose a technique to cap power at the disk level. Other
techniques exist that may operate at different levels. We
envision our technique complementing other techniques
to achieve datacenter-wide power capping. Our tech-
nique has potentially wide applicability, since it (1) has
no influence on data availability, (2) works under heavy
workloads (i.e., no idle periods), (3) has no impact on
HDD reliability, and (4) enables fine-tuned Watt-order
capping. It offers three key properties: sensitive to per-
formance, non-invasive to the I/O software stack, and
simple to understand and implement (see Section 6).

3 The case for HDD power capping

In this section, we address a merit question: How much
power can be saved by power capping the HDD?

To this end, we quantify the range of power an HDD
draws when servicing requests, called dynamic power.
We discuss the setup we prepared for our studies first.

3.1 Hardware setup

We chose a JBOD setup (Just a Bunch of Disks) to host
a set of HDDs, which are exercised and their power
is measured. The JBOD setup consists of a Dell Pow-
erEdge R720 Server connected via LSI 9207-8e HBA to
a Supermicro JBOD. It holds 16 3.5” SATA HDDs. We
selected HGST Ultrastar 7K4000 of 4 TB capacity [2],
commonly found in cloud storage systems today.

Besides the HGST Ultrastar 7K4000, we have ob-
tained a sample HDD from two other HDD vendors.
We selected a Seagate 4TB HDD [6] and a WD 4TB
HDD [8]. All disks have the same capacity and num-
ber of platters, since they share the same storage density
(i.e., same generation). We use different disks to ensure
the commonality of our observations as well as the appli-
cability of our techniques across different vendors, gen-
erations and technologies.

We profile power using WattsUp .NET power me-
ters [7]. We use one meter for the JBOD and another for
the server. We interpose between the power supply and
the mains. Since the JBOD is dual corded for high avail-
ability, we connect both to an electric strip which in turn
goes into the power meter. The meters are connected via
USB to the server, on which we collect power read-outs
for later analysis. The meters sample power once per
second. This rate should be enough for power capping,
since capping is performed on higher time scales [12].

3.2 Software

Our server runs a 64-bit 12.02 Ubuntu Server distribu-
tion with the 3.0.8 Linux kernel. No OS data were stored
on the disks in the JBODs. Instead, we used a separate
disk for that purpose, which is housed in the server it-
self. Unless pointed out otherwise, the default settings
of the I/O stack were kept intact. For example, the file
systems on our disks (XFS in this case) were formatted
with the default settings. The I/O scheduler was kept at
the deadline default scheduler.

We used existing Linux utilities and implemented our
own when needed. Utilities were used to generate work-
loads and collect logs of timing performance and power.
We installed a WattsUp utility that communicates with
the power meter and logs power read-outs. As for bench-
marking, we use the FIO benchmark [10] to generate
different workloads. We use FIO for design space ex-
ploration. To generate real workloads, we use Mon-
goDB [4]. Because the usage of a benchmark varies de-
pending on the goal of the experiment, we defer talk-
ing about the setup to each individual discussion of our
studies. For timing performance profiling, we use the
iostat Linux utility and benchmark-specific statistics.
The collected performance and power logs are then fed

3

230 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(a) Sequential

0

5

10

HDD-A HDD-B HDD-C HDD-D

Po
w

er
 [W

]

Static Dynamic
(b) Random

0

5

10

HDD-A HDD-B HDD-C HDD-D

Po
w

er
 [W

]

Static Dynamic

Figure 1: The dynamic and static power components
measured for the four sample HDDs
to a custom-built Python program for analysis. Unless
otherwise mentioned, we always collect measurements
on the application level for end-to-end performance.

3.3 HDD’s dynamic power
We measured the dynamic power for the four differ-
ent types of HDD we have; the static power was iso-
lated in separate measurements with no I/O load. Using
FIO, we generated sequential and random workloads to
measure the maximum power for each individual HDD.
Under sequential workloads, the maximum power cor-
responds to the maximum attainable throughput, which
is approximately 170 MB/s. In contrast, the maximum
power under random workloads is attained by ensuring
maximum seek distance between consecutive requests
(Section 4). Figure 1 shows HDD’s power broken down
into static and dynamic components. The static compo-
nent is related to the spindle and the electronics, whereas
the dynamic component is related to the head arm and
read/write channel. Across all HDDs, the figure shows
that the dynamic power ranges up to 4 W and 5 W under
sequential and random workloads, respectively. Hence,
for our JBOD system, which can hold up to 24 HDDs,
power capping exhibits a range up to 96 W and 120 W,
respectively. As such, HDDs enjoy a sizable dynamic
power range for power capping to conserve power.

4 HDD’s throughput throttling

Throttling has been proposed as a technique to cap
HDD’s power [40]. This section investigates the rela-
tionship between the power and throughput in HDDs.
We implemented a kernel module that enables us to throt-
tle throughput under sequential as well as random work-
loads, called dm-throttle. The module is based
on the device-mapper layer of the Linux kernel and is
700 lines of C code. It accepts as an input the de-
sired throughput cap in KB per second or IOs per sec-
ond for sequential and random workloads, respectively.
The throughput cap can be modified at run-time via the
/proc/ file system, where statistics are accessed too.

We set up two instances of FIO to generate sequential

(a) Sequential (b) Random

Figure 2: The power–throughput relationship under se-
quential and random workloads

and random workloads for 40 and 50 minutes, respec-
tively. We used multiple threads in the random workload
generation to attain maximum disk throughput. During
the run of each FIO instance, we varied the throttling
throughput of dm-throttle and measured the power
and the effective throughput. Throughput was throt-
tled at several points (6.25, 12.5, 25, 50, 75, 100, 150,
200 MB/s) for sequential workloads, and (10−100, 150,
200 IOPS) for random workloads. In these experiments,
we used one HDD from the 16 (identical) HDDs. We
singled out its power after subtracting the idle power of
the JBOD (incl. power supplies, fans and adapters).

Figures 2a and 2b show the throughput–power re-
lationship under sequential and random workloads, re-
spectively. Figure 2a shows that the HDD draws more
power (the black curve) as throughput increases (the gray
curve). The HDD draws 8 W of power at the maximum
throughput (170 MB/s). And its power range, that scales
with the throughput, is 7−8 W. Another 0.6 W is added
to the dynamic range due to channel activity when exer-
cising the disk with some workload. This effect can be
seen in Figure 2a during the second four minutes of the
experiment. In separate measurements, we found that an
additional 1 W of power is drained when the heads are
loaded to counteract the drag. As such, the total dynamic
range for such disks is 5.5−8 W, which is in agreement
with the figures for HDD-C in Figure 1a.

Figure 2b shows that under random workloads power
increases with the throughput up to a certain point, 90
IOPS in this case. After that, power starts decreasing for
higher throughputs with a noticeable drop at the maxi-
mum throughput of 200 IOPS, thanks to better schedul-
ing in the disk (see the next section). The figure high-
lights the fact that different throughputs can be attained
for the same amount of power drawn. Also, the dy-
namic power range is wider under random workloads
compared to sequential workloads, between 7− 10.5 W
versus 7− 8 W (excluding the power due to channel ac-
tivity and head positioning). As such the effective power
ranges for our JBOD are up to 24 W and 84 W under
sequential and random workloads, respectively.

Summarizing, we make two key observations that
guide the rest of this work:

4

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 231

Observation 1: HDDs exhibit a dynamic power range
that is wider under random workloads compared to se-
quential workloads.

Observation 2: HDDs can offer different throughputs
and service times for an equivalent amount of power un-
der random workloads.

The two observations lead us to investigate a power-
capping technique under random workloads (Observa-
tion 1) that is performance-aware (Observation 2). We
focus on random workloads in the rest of this paper. If
required, power-capping by throttling should be a suffi-
cient technique for sequential workloads, thanks to the
positive correlation between power and throughput un-
der sequential workloads. Next, we investigate the rea-
son for the decline in the HDD’s power consumption at
high throughputs, which motivates the choice for using
the queue size to control power.

5 Power–Queue relationship

This section explains the dynamics of the HDD’s head
arm. We motivate our choice for the queue size to control
power. We then investigate the influence of the queue
size on the HDD’s power, throughput, and service time.

5.1 Causality

Under random workloads, the HDD’s head moves across
the surface of the platters to service requests from dif-
ferent locations. The head motion is characterized as
random, since the head spends most of the time seek-
ing instead of accessing bits (compare 5 ms seek time
to 0.04 ms 4 KB read time). Moving the head dissipates
power by its VCM (voice-coil motor). Depending on
the physical distance separating any two consecutive re-
quests, the head may need to accelerate and subsequently
decelerate. Acceleration and deceleration require a rela-
tively large amount of power (similar to accelerating a
car from standstill). A few (random) requests have a
long physical distance in between, requiring accelera-
tion and deceleration. Conversely, the more the requests
dispatched to the disk, the shorter the separating dis-
tance and thus the less the power due to reduced accel-
eration, if any. At higher loads more requests are dis-
patched to the disk simultaneously, allowing the disk to
better schedule and reduce distances and thus accelera-
tions resulting in less power. In Figure 2b, the disk con-
sumes less power at low throughputs (< 90 IOPS) too
but for a different reason. At low throughputs, the disk
is underutilized and spends more than 45% of the time
in the idle power mode, resulting in power savings that
outweigh the increase in power due to (occasional) ac-
celerations.

5.2 Characterizing the relationship

This section studies both the IOQ (scheduler) queue and
the NCQ queue described in Section 2.3. We investigate
their interplay and influence on power and performance.
We seek to answer the following two questions:
1. For a fixed NCQ queue size, what is the relation-
ship between the IOQ queue size and the HDD’s power,
throughput and service time?

2. For a fixed IOQ queue size, what is the relation-
ship between the NCQ queue size and the HDD’s power,
throughput and service time?

Methodology We studied a single HDD in our JBOD
system from Section 3.1. We carried out two sets of ex-
periments to confirm trends: once with FIO and another
with MongoDB [4]. We generated random 4KB requests
with FIO using aiolib. We used enough threads to
mimic real systems with multiple outstanding requests.
For the MongoDB setup, we stored 100 databases on
the disk, each of which is approximately 10 GB in size.
The files of every two consecutive databases (e.g., 1-st
and 2-nd) were separated by a 10-GB dummy file on the
disk, so that 2.4 TB was consumed from our 4 TB HDD.
The disk was formatted with the XFS file system using
the default settings. We used YCSB [19] to exercise 10
databases, the 10-th, 20-th, 30-th, up to the 100-th. One
YCSB instance of 10 threads was used per database to in-
crease throughput. We benchmarked for different queue
sizes. The IOQ queue was varied in the range (4, 8, 16,
32, 64, 128), whereas the range for the NCQ queue was
(1, 2, 4, 8, 16, 32). To resize a queue to a value, say
SIZE, we used the following commands:

• IOQ queue: echo SIZE > /sys/block/sdc/
queue/nr requests

• NCQ queue: hdparm -Q SIZE /dev/sdc

Results Figure 3a shows HDD’s power versus the
size of the IOQ queue. Power decreases as the IOQ
queue size increases. A large IOQ queue enables bet-
ter scheduling and thus reduces randomness in requests
arriving to the disk (which in turn reduces accelerations).
A trend exists where power reduction exhibits diminish-
ing returns at large queues, since only the power due to
the head’s VCM is affected, whereas other static power
components remain intact (Amdahl’s law). The figure
confirms the same trend for different sizes of the NCQ
queue, but at different power levels.

Figure 3b shows HDD’s power versus the size of the
NCQ queue. Unlike for the IOQ queue, two opposing
trends exist. In fact, the size of the IOQ queue plays a
major role here. We can explain the figure by observing
trends at small and large IOQ queue sizes (e.g., 4 and

5

232 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(a) Power vs. IOQ (b) Power vs. NCQ (c) IOPS vs. NCQ (d) Latency vs. NCQ

Figure 3: The influence of the queue size for both IOQ and NCQ on the HDD’s power, throughput and service time

32, respectively). At small sizes, power decreases as the
NCQ queue size increases, because the requests arriv-
ing at the disk sill exhibit randomness, leaving room for
better scheduling by NCQ. Recall that better scheduling
reduces acceleration and thus leads to lower power con-
sumption. Conversely, at large sizes of the IOQ queue,
power increases as the NCQ queue size increases, since
randomness is already reduced by the I/O scheduler and
thus even higher throughputs are attained at large NCQ
queue sizes (200 IOPS versus 100 IOPS on the bottom
curve of Figure 3c). High throughputs involve more
channel activity, which draws more power.

As for the timing performance, Figure 3c shows the
relationship between throughput, in IOPS, and the NCQ
queue size. Expectedly, throughput increases at large
queues, since more time is spent on accessing bits rather
than seeking. We observed similar trends for throughput
versus the IOQ queue. We do not show it for space rea-
sons. One observation is that the HDD’s throughput is
mainly limited by the IOQ size. That is, increasing NCQ
beyond IOQ size does not result in increased throughput,
since NCQ scheduling is limited by the number of re-
quests it sees at a time, which is in turn bounded by the
IOQ size.

Figure 3d shows the relationship between the HDD
service time, measured by iostat, and the NCQ queue
size. Surprisingly, the service time decreases for large
NCQ queue sizes, although larger queuing delays are in-
curred. This suggests that the saving in rotational posi-
tioning time due to NCQ scheduling outweighs the queu-
ing delay of large queues. This improvement is more pro-
nounced for large numbers of arriving requests as shown
by the top curve in the figure for an IOQ size of 128.
Conversely but expectedly, we observed a linear increase
in service time as the IOQ queue size increases. We do
not show it for space reasons.

Summarizing, HDD power decreases with the in-
crease in the size of the IOQ (scheduler) queue. Both
throughput and service time expectedly increase. On the
other hand, while throughput increases with the increase
of the NCQ queue size, power and service time have un-
usual trends. We make two new observations:

Observation 3: The power drawn by the HDD ex-

hibits opposing trends with respect to the NCQ queue
size. These trends are influenced by the size of the IOQ
scheduler queue.

Observation 4: The HDD’s service time decreases
with the increase in the size of the NCQ queue, thanks
to improved in-disk scheduling.

The interplay between the two queues leads to the fol-
lowing observation:

Observation 5: The HDD’s dynamic power range can
be fully navigated by varying the sizes of the NCQ and
I/O scheduler queues.

6 PCAP design

In a dynamic datacenter environment, where power re-
quirements and workloads change constantly, a control
system is required. Such a system ensures compliance to
power caps when power is constrained and enables better
performance when more power is available. We present
the design of PCAP and techniques to make it graceful,
agile and performance-aware. PCAP’s design is based
on the observations made previously.

6.1 Base design

At its core, PCAP has a control loop that triggers ev-
ery period, T . It computes the running average of the
power readings over the past T time units and decides on
the amount of power capping needed. PCAP is a propor-
tional controller. To attain better performance and ensure
stability, we improve upon the basic proportional con-
troller in four ways. (1) PCAP increases and decreases
power using models derived from the observations of
Section 5. (2) It uses different gains when increasing and
decreasing power. (3) PCAP bounds the ranges of its
control signals (i.e., queue sizes) and (4) employs a hys-
teresis around its target output to prevent oscillations due
to measurement errors. Power is increased or decreased
by adjusting the size of the IOQ and NCQ queues grad-
ually, one step per period. Queue adjustment is based on
the relationships investigated in Section 5.2. PCAP uses
two factors, αup and αdn, to increase power (or allow

6

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 233

(a) PCAP base

0 10 20 30 40 50
Time [min]

2

4

6

8

10

12

Po
w

er
 [W

]

Power cap
Actual power
1-min power

De lay

(b) Unbounded IOQ (c) Agile PCAP (d) Bounded IOQ

Figure 4: Power capping with PCAP and the corresponding queue sizes for the (a & b) base and (c & d) agile designs

better performance) and to decrease power, respectively.
We use two factors, since the decrease in power must
be done aggressively to avoid penalties, whereas the in-
crease in power is done incrementally and cautiously.
Consequently, αdn is greater than αup. Based on either
factor, the queue size is adjusted proportionally to how
far the target power, Pt , is from the current power, Pc. We
use the following equations to calculate the change in the
queue size, ΔQ, to enable graceful control:

ΔQIOQ =
|Pt −Pc|
ΔPIOQ

·2αdn (1)

ΔQNCQ =
|Pt −Pc|
ΔPNCQ

·αdn (2)

ΔPIOQ and ΔPNCQ are the maximum change in power
attainable by varying the IOQ and NCQ queues, respec-
tively. We multiply αdn by 2 for the IOQ to attain mea-
surable changes in power. Changing queue sizes to al-
low for power increase follows Equations 1 and 2 after
replacing αdn with αup. To account for measurement er-
rors and reduce oscillations, an error margin of ε is tol-
erated around the target power. That is no further power-
capping actions are taken, if the current power is within
a range of [-ε , +ε] of the target power. For our experi-
ments, we settled on the settings for PCAP’s parameters
shown in Table 1. These are, however, configurable de-
pending on the conditions of the datacenter as well as its
operation goals.

We implemented a prototype of PCAP in Python. It is
300 lines of code. PCAP runs in the background. New

Table 1: PCAP’s parameters and their settings

Parameter Setting Description

T 5 s control loop period
αup 2 factor used for power increase
αdn 8 factor used for power decrease
ε 0.2 W control tolerance factor

ΔPIOQ 2 W max power change with IOQ queue
ΔPNCQ 2 W max power change with NCQ queue

[QL
IOQ,Q

U
IOQ] [4,32] IOQ queue range

[QL
NCQ,Q

U
NCQ] [1,8] NCQ queue range

Qρ
IOQ 128 IOQ setting for maximizing throughput

Qρ
NCQ 32 NCQ setting for maximizing throughput

power targets, if any, are echoed into a text file which
PCAP reads in at the beginning of every period, T . After
that, it executes the control loop explained before until
the target power is attained. Figure 4a shows the activity
of PCAP on a single HDD over a 45-minute period of
time. The figure shows three curves, the target power cap
(dashed), the instantaneous power (solid), and the 1-min
average power (dotted). We generate a random workload
for the entire period. Initially, we leave the disk idle for
5 minutes and then generate a workload with no power-
capping for another 5 minutes. The HDD draws approx-
imately 8 W and 11 W, respectively. At minute 10, the
power cap is set to 9 W and PCAP adjusts queues to re-
duce HDD’s power by 2 W to below 9 W. At minute 15,
the power cap is again lowered to 8.5 W and PCAP low-
ers power accordingly. At minute 20, PCAP is unable
to lower the power below 7.5 W, since it is outside the
dynamic range of the HDD. We keep capping power at
different levels for the rest of the experiment and PCAP
reacts accordingly. Figure 4b shows the change in the
queue sizes to attain power-capping.

The figure shows a delay at minute 25 in responding
to raising the power cap from 7.5 W to 10.5 W. We study
this sluggishness in the next section. Datacenter opera-
tors may by more interested in long-term smoothed aver-
ages for which contractual agreements may be in place.
For example, the 1-minute power curve in the figure in-
hibits oscillations, unlike the instantaneous power curve,
so that power violations should be of no concern in this
case. We discuss performance in Section 6.3.

6.2 Agile capping

The oval in Figure 4a highlights an inefficiency in the
base design of PCAP. It manifests as delays in increas-
ing power when the power cap is lifted up. This ineffi-
ciency results in low throughputs and long service times,
since queues take some time to adjust accordingly as
shown at minute 25, calling for better agility.

We examined the cause of the delay in adjusting queue
sizes. Figure 4b shows that the IOQ queue reached high
sizes during the tracking of the previous very low power
target (7.5 W). This is because the base design keeps in-

7

234 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(a) Throughput mode (b) Tail-latency mode (c) Response-time distribution

Figure 5: Throughput and service time under the throughput and tail-latency performance modes of PCAP

creasing the size of the IOQ queue until the power tar-
get is reached. In this particular case, IOQ queue size
reached 219. Similarly, the NCQ queue can increase sig-
nificantly. Later, when new and higher power targets are
set as in minute 25, PCAP takes long time to reduce the
queue size to low values since this happens gradually.
The sluggishness results in a relatively long time period
of lost performance.

To improve agility, we leverage an observation made
from Figure 3a namely, power exhibits diminishing re-
turns at high queue sizes, so that their respective power
savings are marginal. As such, we introduce upper
bounds on the sizes of both queues, QU

IOQ and QU
NCQ.

The bounds limit the increase in queue sizes and enable
shorter times to navigate queue ranges. Similarly, we in-
troduce lower bounds. Figure 4c shows the performance
of PCAP with bounds. Thanks to its queue-depth bound-
ing, PCAP avoids infinitely and hopelessly attempting to
cap power. Figure 4d confirms that the queue sizes never
exceed the bounds. The bounds are shown in Table 1
and were set with values of the knees of the curves of
Figures 3a and 3b. Figure 4c confirms PCAP’s agility.

6.3 Performance awareness

Resizing queues impacts the performance of the HDD.
We distinguish between two types of timing perfor-
mance: (1) throughput and (2) tail-latency. In the
throughput mode, PCAP attempts to increase throughput
while adhering to the power cap. This mode enhances
the average latency. In the tail-latency mode, PCAP at-
tempts to reduce the high-percentiles latencies or alter-
natively shorten the tail of the latency distribution. In
practice, the designer can set performance targets along
the power target to reach compromises between the two.

As discussed in Section 5.2, throughput increases
by increasing the size of both IOQ and NCQ queues.
Power decreases with the increase in the IOQ queue size,
whereas it increases for large NCQ queue sizes as shown
in Figure 3c. PCAP uses models of these relationships
to increase throughput while capping power. In con-
trast, the tail-latency decreases (i.e., high-percentile la-

tencies decrease) for small IOQ queue sizes and large
NCQ queues as shown in Figure 3d. We also incorpo-
rate models of this relationships in PCAP to reduce tail
latencies while capping power.

The solution for agility of the previous section is
in conflict with maximizing throughput (in PCAP’s
throughput mode). This is because the low upper bound
on the size of both queues limits the maximum attained
throughput. Compare 150 IOPS at (NCQ=8, IOQ=32) to
200 IOPS at (NCQ=32, IOQ=128) in Figure 3c, a 25%
potential loss in throughput. To prevent this loss, we re-
designed PCAP such that when it reaches the “agility”
upper bounds, it snaps to predefined queue settings to
maximize throughput in the throughput mode. The cor-
responding queue parameters are Qρ

IOQ and Qρ
NCQ (see

Table 1). Similarly, PCAP snaps back from these set-
tings to the upper bounds in the downtrend. That way,
agility is still preserved while throughput is maximized.
This scheme has no effect in the tail-latency mode, since
small queues are required.

Figures 5a and 5b show the throughput of a sin-
gle HDD when running PCAP in the throughput and
tail-latency modes, respectively. Throughputs up to
200 IOPS are attained in the throughput mode, which is
higher than the 140-IOPS maximum throughput attained
in the tail-latency mode. The high throughput comes at
the cost of long response times, resulting in a long tail in
the distribution of the response time as Figure 5c shows.
The figure plots the corresponding cumulative distribu-
tion function for the response time measured at the client
side for both PCAP’s modes. Tail-latency attains shorter
maximum latencies, compare 1.3 s to 2.7 s maximum la-
tency. Further, 60% of the requests observe latencies
shorter than 100 ms in the tail-latency mode as opposed
to just 20% in the throughput mode. We discuss the curve
corresponding to throttling in Section 7.1.

7 PCAP’s performance

This section compares PCAP to throttling and then stud-
ies the influence on I/O concurrency on PCAP’s ability
to cap power.

8

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 235

(a) Power capping by throttling (b) Throughput under throttling

Figure 6: Using throttling to cap (a) HDD’s power usage,
while (b) maximizing throughput

7.1 PCAP versus throttling

Both queue resizing and throughput throttling can be
used for capping power as evidenced in Figures 5a and
2a, respectively. Section 5.1 presented a qualitative argu-
ment as for why to use queue resizing to control power.
This section presents a quantitative argument. We com-
pare the timing performance of the HDD when its power
is capped by either queue resizing (i.e., PCAP) or throt-
tling. Precisely, we answer the question of: For the same
power cap, how do the throughput and the service time
compare under throttling and PCAP?

We repeated the same experiments of Section 6.3
while throttling the throughput (see Figure 2a) to cap
the power within the desired levels. We used our
dm-throttle module for throttling to reproduce Fig-
ure 4c. To take advantage of the HDD’s low power con-
sumption at high throughputs (Figure 2a), we used throt-
tling only for power caps strictly below 9.5 W (which
corresponds to the power drained at maximum through-
puts). For higher power caps, we disabled throttling
to maximize the performance of the disk. As such,
dm-throttle was used to cap power selectively while
avoiding hurting performance whenever possible, hence
offering the best-case performance of throttling.

Figure 6a shows the power consumption of the HDD.
Throttling keeps the power below the power cap, which
is shown in dashed black. The power curve separates
from the power cap by a large margin during some pe-
riods, such as minutes 25–30 and 40–45. These peri-
ods correspond to power capping with no throttling de-
ployed, since the power cap is above 9.5 W. Figure 6b
shows the throughput of the disk over the time period
of the experiment. It confirms maximum throughputs
around 185 IOPS during periods of no throttling. Com-
paring Figure 6b to Figures 5a and 5b we can visu-
ally see that throttling attains lower throughputs than
the throughput mode of PCAP, whereas it outperforms
the tail-latency mode of PCAP. While throttling attains
an average of 117 IOPS, PCAP attains 154 IOPS (32%
more) and 102 IOPS (15% less) in the throughput and
tail-latency modes, respectively. Figure 5c shows the
cumulative distribution of the response time for the re-

quests of the previous experiment. Overall, throttling at-
tains worse latency than the two performance modes of
PCAP. Just 10% of the requests exhibit latencies under
100 ms, whereas the maximum latency is 2.5 s. This is
however expected, since throttling delays requests and
maintains default queue settings that are deep and op-
timized towards throughput. By treating response time
and throughput differently, PCAP outperforms throttling
on both performance goals. 60% of the requests exhibit
response times below 100 ms and an increase of 32% in
throughput is attainable with PCAP.

PCAP relies on concurrency in I/O requests to attain
capping as we shall see next.

7.2 Influence of concurrency on PCAP
We carried out two sets of experiments to study PCAP’s
performance on a single HDD. In the first set, we var-
ied the number of concurrent threads, while maximizing
the load per thread so that the HDD utilization is 100%
all the time. In the second set, we fixed the number of
threads and varied the load per thread to attain different
utilization levels.

Our goal is to study the relationship between the ef-
fective queue size (i.e., the actual number of outstanding
requests at any time instance) and PCAP ability to cap
the HDD’s power. In the first experiment, since utiliza-
tion is maximized the effective queue size matches the
number of threads. In the second experiment, the effec-
tive queue size varies, since the load varies.

Maximized load In the first experiment, we varied the
number of threads in the range (1, 2, 4, 8, 16, 32, 64,
128). We ran PCAP in the throughput mode and in the
tail-latency mode, and chose different power caps. Fig-
ure 7a shows the average power measured over the pe-
riod of the experiment for each setting. The figure shows
that for a few threads the average power is 10.7 W, far
above the power targets (8 W and 9 W). That is PCAP
cannot cap power at concurrency levels below 4 threads
(i.e., queue sizes under 4), since little opportunity ex-
ists for reordering requests and saving power. At con-
currency levels above 4, the two curves start declining
and departing from each other. This signifies that PCAP
starts achieving some capping but cannot attain the target
cap (i.e., no perfect capping). Finally, it attains the 9 W
cap at 32 threads, whereas the 8 W cap is attained at 64.

We repeated the same experiment while running
PCAP in the tail-latency mode. We studied for three
power targets including 10 W, since the HDD enjoys
larger dynamic range for small queues. We observed the
same trend of attaining capping at higher concurrency
levels. The power caps were attained at smaller num-
ber of threads compared to the case with the throughput

9

236 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(a) Maximized load (b) Varied load

Figure 7: The influence of I/O concurrency on PCAP’s
performance in capping power for a single HDD

mode. For example, 9 W and 8 W were attained with as
little as 16 (vs. 32) and 32 (vs. 64) threads, respectively.
In addition, for the higher power target of 10 W, PCAP
attains the cap starting from 2 threads.

Varied load In this experiment, we pushed load to the
HDD progressively while fixing the number of threads.
We used 32 threads to ensure power capping with PCAP.
Without capping, the load varies between 32 IOPS to
200 IOPS. Figure 7b plots the average measured power
versus the utilization level reported by iostat. The
figure shows that the power is lower than both targets at
low utilization, since the HDD spends a sizable fraction
of time idling, thanks to the low load. Observe in such a
scenario, throttling is happening “naturally”. At higher
utilizations, PCAP perfectly caps the power to below
9 W, whereas the 8 W cap is violated for utilization levels
between 40–95%. To explain these results, we examined
the effective queue size (from iostat) versus utiliza-
tion. We found that the overshooting over 8 W is due to
queue sizes below 16, where PCAP cannot achieve per-
fect capping (see Figure 7a). At higher utilization lev-
els, large queues build up which allows PCAP to restore
power to below (or close to) the target as shown for 9 W.

Discussion In summary, PCAP attains perfect power
capping for high concurrency levels, whereas reductions
in power usage are possible for lower levels. The effec-
tive concurrency for perfect capping tends to increase as
the desired power cap decreases. We find that PCAP
becomes effective starting from 32 threads. We also
find that PCAP is ineffective below 4. We believe this
should not be an immediate concern to the applicability
of PCAP, since real systems are usually multi-threaded
for performance reasons. As such, chances that little con-
currency appears in practice are little. That said, throt-
tling can be used in such cases.

8 Putting it all together

This section evaluates PCAP’s performance under dif-
ferent workloads. Then, we evaluate it when capping
power at the system level for an array of HDDs.

Figure 8: The increase in execution time for a 500 MB
batch job for different power caps

8.1 PCAP under batch workloads
This section studies the impact of power capping by
PCAP on the performance. We assume a batch job that
reads data chunks from random locations on a single
HDD. The HDD always reads at its maximum through-
put and reads a total of 500 MB. We investigate the total
execution time of the job when capping the HDD power
at different levels. Since the job is batch, where through-
put is important, we run PCAP in the throughput mode.
And we vary the power cap in the range [8-9] W with a
step of 0.25 W. We study the tail-latency mode later.

Figure 8 plots the execution time of the batch job
versus the power cap. We normalize the figure to the
case without power capping, where the average power is
9.2 W and the total execution time is 10.5 minutes. The
figure shows that the execution time increases by 33%
when capping at 13% (8 W), which is the maximum at-
tainable cap. Also, the figure highlights a nonlinear re-
lationship between the power cap and performance. For
example, the increase in response time between power
caps 2% and 5% is larger than that between 5% and 8%
(16% vs. 2%). We confirmed this relationship by re-
peating the experiments and also examining the effec-
tive throughput of the application. We found that the
throughput is 195 IOPS at 2% and drops to 167 IOPS
and 165 IOPS at 5% and 8%, respectively. We study for
bursty workloads next.

8.2 PCAP under bursty workloads
This section studies PCAP under workloads that vary
in intensity and exhibit trough as well as bursty periods.
This experiment seeks primarily to show that the increase
in a job’s execution time due to power capping (as shown
in the previous section), can be absorbed in the subse-
quent trough periods. As such, long execution times do
not necessarily always manifest. Still, power is capped.

We searched for real traces to replay but were chal-
lenged with two issues. The first issues was scaling the
address space to reflect the growth in disk capacity. The
second issue was scaling the arrival times. We obtained
Microsoft traces [37] and implemented a replay tool. Al-
though these traces confirm the randomness in the I/O

10

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 237

(a) Throughput vs. time (b) Throughput breakdown

Figure 9: (a) PCAP performance under bursty work-
loads. The increase in execution time is absorbed, thanks
to the trough periods. (b) Throughput is reduced due to
capping and workload components share the cut.

pattern, we found that the address space is in the range
of 256 GB (vs. our 4 TB HDDs). More importantly, we
found that the traces were taken from a mostly-idle sys-
tem, so that high power is not an issue but energy ef-
ficiency (see Section 2.1) for which indeed some tech-
niques were proposed such as write offloading [37]. For
example, we needed to scale traces by a factor up to 100
in order to see I/O activity, which in turn was not realistic
because the inherent burstiness of the trace disappeared.
We resorted to emulating a real workload.

Our workload is 55-minute long and consists of three
parts. The first part is a constant part which continuously
pushes load to the underlying HDD at a rate of 64 IOPS.
The second and third parts are bursts which read 40 MB
and 20 MB worth of random data, respectively. They are
repeated 3 times throughout the workload separated by
trough periods, each is 10-minute long. The third burst
always starts 5 minutes after the second one. We repeated
the experiment 4 times for different power caps: no cap,
9 W, 8.5 W, and 8 W. PCAP runs in the throughput mode.

Figure 9a shows the throughput in IOPS for the entire
experiment. We show for the two extreme power set-
tings: no cap and 8.0 W to keep the figure readable. Two
observations can be made. First, the throughput during
bursts decreases for power-capped scenarios, whereas it
remains unaffected otherwise since the actual power is
below the cap. The reduced throughput results in longer
times to finish the burst jobs, which are perfectly ab-
sorbed in the subsequent trough periods. Secondly, both
capping scenarios finish at the exact time of 55 minute.
Note that in cases were no trough periods exist, longer
execution times cannot be hidden and the discussion re-
duces to that of the previous section.

Figure 9b shows the split of the HDD’s throughput
across the three workload components. We show the
split for the four power-capping settings. The throughput
drops from 190 IOPS to 170 IOPS. The two bursty parts
share the cut in throughput, 11% and 17%, respectively.

In summary, power capping impacts the performance
of the HDD. In real scenarios, where the total execution

time matters, a system like PCAP can incorporate per-
formance as a target to optimize for while performing
power capping. The resultant increase in response time
manifests in high intensity workloads such as batch jobs,
whereas it decreases in varying workloads.

8.3 PCAP/S: System-level power capping

This section demonstrates the application of power cap-
ping on larger scales with multiple HDDs. We present
PCAP/S, PCAP for a system of HDDs.

PCAP/S builds on PCAP. It borrows the main control
loop of PCAP and works with multiple HDDs. PCAP/S
elects HDDs for power capping in a performance-aware
way. To mimic real systems, we assume that HDDs are
split into tiers, which represent different service level ob-
jectives (SLOs) as in service-oriented datacenters [35, 1]
for instance. PCAP/S’ power capping policy splits into
two parts: (1) JBOD-level and (2) HDD-level. We chose
for a priority-based strategy for the JBOD-level policy.
It elects HDDs from the lower-priority tiers first when
power must be reduced, whereas higher-priority tiers are
elected first when more power is available. HDDs within
the same tier are treated equally with regards to power in-
crease or decrease. This policy strives to reduce perfor-
mance penalty for higher-priority tiers. The HDD-level
part, on the other hand, is exactly that of Section 6, which
resizes queues to attain power capping per HDD.

We studied power capping for the array of HDDs for
our JBOD from Section 3.1. We split the 16 HDDs in
each JBOD into three different tiers. The first tier enjoys
the best performance. Both Tier 1 and Tier 2 contain
5 HDDs each, whereas Tier 3 has 6. The JBOD itself
consumes 80 W of power when unloaded (i.e., contains
no HDDs). We set PCAP/S’ period, T = 10 s and error
margin, ε = 1 W.

We applied random workloads generated by FIO to
the three tiers over a 55-minute period of time. Differ-
ent power caps were used: (200, 190, 185, 170, 195,
150, 150, 180, 205 W.) PCAP/S was run in the latency
mode. Figure 10a shows the total power differentiated
into three tiers. Power capping starts at minute 10 with
a power cap of 200 W (excl. the static power). PCAP/S
reduces the power below the cap by reducing the con-
sumption of Tier 3, the lowest-priority tier. At minute 20,
however, the power cap is set at 185 W, which is larger
than the maximum saving attainable by Tier 3. There-
fore, Tier 2 takes a cut in power here too, but at a lesser
degree than Tier 3. At minute 25, the power cap is set at
170 W, and Tiers 1–3 contribute to the reduction. When
power is raised later at minute 30, Tier 1 regains its max-
imum power budget, whereas Tier 3 still observes a cut
in power. At minute 35, a relatively very low power cap
of 150 W is set, which is beyond the capping capability

11

238 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(a) PCAP for multiple HDDs (b) Response-time distribution

Figure 10: Using PCAP/S to (a) cap the power usage of
our JBOD for (b) three tiers of performance

of PCAP/S. Here, PCAP/S does its best by maximizing
the reduction on all the tiers, while being off by 10 W. As
such, it caps power by up to 22% in this particular case.

Figure 10b shows the distribution of the service time
for the three workloads applied on the three tiers, re-
spectively. It shows that 80% of the requests observe
latencies less than 104, 151, and 172 milliseconds on the
three tiers, respectively. Also, 80%, 70% and 55% ob-
serve latencies under 100 ms, respectively. Thanks to the
priority-based JBOD-level policy, higher-priority tiers
suffer less performance penalties.

8.4 Discussion
PCAP works under mixed workloads as well as under
random workloads observing the fact that mixed work-
loads result in a random pattern on the disk. The capping
percentage will be affected as detailed in the experiments
in Section 7.2. As for pure sequential workloads throt-
tling can be used. Extending PCAP to detect sequen-
tial patterns and use our dm-throttle from Section 4
should be straightforward.

Queue resizing by PCAP is based on observations in-
herent to the fundamental architecture of the HDD (Sec-
tion 5.1) as opposed to specifics of an HDD model or
brand. Therefore, we expect that no per-device calibra-
tion is needed but perhaps per family of devices; regu-
lar versus Helium HDDs. Figure 1 confirms the similar-
ity of the dynamic power range for contemporary HDDs
from different vendors.

9 Related Work

Numerous studies have addressed the power and energy
efficiency of IT systems. Some studies focus on mo-
bile systems [32, 33, 46], while others focus on data-
centers. The latter studies look into energy efficiency as
well as power controllability and accountability. Energy-
efficiency studies closely examine power management
approaches for processors [35, 39, 25], memory [23, 25]
and the disk drive. Approaches for the disk drive
include power cycling [20, 24, 45, 48, 15], dynamic

RPM [27, 15], buffering and scheduling [18, 31], and
the acoustic seek mode [16]. Other studies addressed
modeling the energy consumption of the disk drive for
holistic system efficiency [28, 9, 46, 47]. Newer tech-
nologies were also investigated. Researchers looked into
newer technologies, such as SSDs to reduce data move-
ment costs using their energy-efficient computation [42].

Recently, power has received increased attention in an
attempt to reduce running and infrastructure costs [36,
26, 38, 34, 30]. Some authors investigated power ac-
counting on a per-virtual machine [30, 38, 41]. Other
authors proposed techniques for power capping for the
processor [34, 33] and the main memory [21]. As for the
disk drive, the throughput-throttling technique [40] and
the acoustic seek mode [16] were proposed. While throt-
tling works under sequential workloads, it incurs large
performance penalties for random workloads. Likewise,
acoustic seeks result in slow seeks, which impacts per-
formance too.

This work complements the previous work and pro-
pose queue resizing to cap the disk drive’s power con-
sumption under random and mixed workloads. We inves-
tigated the relationship between the queue size and the
power usage of the disk drive. We showed that queues
can be resized to cap power yet in a performance-aware
manner. We designed PCAP based on key observations
of the queue–power relationship. PCAP is capable of
capping for single- and multi-HDD systems. We made
the case for PCAP’s superiority over throttling.

10 Summary

We presented a technique to cap the power usage of 3.5-
inch disk drives. The technique is based on queue resiz-
ing. We presented PCAP, an agile system to cap power
for the disk drive. We evaluated PCAP performance on a
system of 16 disks. We showed that PCAP outperforms
throttling. In our experiments, 60% of the requests ex-
hibit response times below 100 ms and an increase of
32% in throughput is attainable with PCAP. We also
showed that PCAP caps power for tiered storage systems
and offers performance-differentiation on larger scales.

Acknowledgments

The authors wish to thank Adam Manzanares for his
thoughtful comments on early drafts of this paper. We
also thank Jim Donaldson for helping with setting up the
measurement apparatus. Our shepherd, Ken Salem, and
the anonymous FAST reviewers helped improving the
clarity of the manuscript with their detailed comments.

12

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 239

References
[1] Amazon S3. http://aws.amazon.com/s3/.

[2] HGST 3.5-inch Enterprise Hard Drive. http://www.hgst.
com/hard-drives/enterprise-hard-drives/
enterprise-sata-drives/ultrastar-7k4000.

[3] Hgst active archive system. http://
www.hgst.com/products/systems/
hgst-active-archive-system.

[4] mongoDB. http://www.mongodb.org/.

[5] Native Command Queuing. https://www.sata-io.org/
native-command-queuing.

[6] Seagate Enterprise Capacity 3.5 HDD. http:
//www.seagate.com/internal-hard-drives/
enterprise-hard-drives/hdd/
enterprise-capacity-3-5-hdd/.

[7] Wattsup .Net power meter. https://www.
wattsupmeters.com/secure/products.php?pn=0&
wai=0&more=2.

[8] WD Enterprise Re 3.5 HDD. http://www.wdc.com/en/
products/products.aspx?id=580.

[9] ALLALOUF, M., ARBITMAN, Y., FACTOR, M., KAT, R. I.,
METH, K., AND NAOR, D. Storage modeling for power estima-
tion. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference (New York, NY, USA, 2009), SYSTOR’09,
ACM, pp. 3:1–3:10.

[10] AXBOE, J. FIO benchmark. http://freecode.com/
projects/fio.

[11] BARROSO, L. A. The price of performance. ACM Queue 3, 7
(Sept. 2005), 48–53.

[12] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE, U. The
Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, Second edition, vol. 8. 2013.

[13] BARROSO, L. A., DEAN, J., AND HÖLZLE, U. Web Search for
a Planet: The Google Cluster Architecture. IEEE Micro 23, 2
(Mar. 2003), 22–28.

[14] BOVET, D., AND CESATI, M. Understanding The Linux Kernel.
Oreilly & Associates Inc, 2005.

[15] CARRERA, E. V., PINHEIRO, E., AND BIANCHINI, R. Con-
serving disk energy in network servers. In Proceedings of the
17th Annual International Conference on Supercomputing (New
York, NY, USA, 2003), ICS’03, ACM, pp. 86–97.

[16] CHEN, D., GOLDBERG, G., KAHN, R., KAT, R. I., AND METH,
K. Leveraging disk drive acoustic modes for power management.
In Proceedings of the 2010 IEEE 26th Symposium on Mass Stor-
age Systems and Technologies (Washington, DC, USA, 2010),
MSST’10, IEEE Computer Society, pp. 1–9.

[17] CHEN, Y., ALSPAUGH, S., BORTHAKUR, D., AND KATZ, R.
Energy efficiency for large-scale mapreduce workloads with sig-
nificant interactive analysis. In Proceedings of the 7th ACM eu-
ropean conference on Computer Systems (New York, NY, USA,
2012), EuroSys ’12, ACM, pp. 43–56.

[18] CHOI, J., WON, Y., AND NAM, S. W. Power conscious disk
scheduling for multimedia data retrieval. In Proceedings of the
2nd International Conference on Advances in Information Sys-
tems (2002), ADVIS’02, pp. 336–345.

[19] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking Cloud Serving Sys-
tems with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing (New York, NY, USA, 2010), SoCC’10, ACM,
pp. 143–154.

[20] CRAVEN, M., AND AMER, A. Predictive Reduction of Power
and Latency (PuRPLe). In Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (2005), MSST’05, pp. 237–244.

[21] DAVID, H., GORBATOV, E., HANEBUTTE, U. R., KHANNA,
R., AND LE, C. RAPL: Memory power estimation and capping.
In Proceedings of 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (Aug 2010), ISLPED’10,
pp. 189–194.

[22] DEAN, J., AND BARROSO, L. A. The Tail at Scale. Communi-
cations of the ACM 56 (2013), 74–80.

[23] DENG, Q., MEISNER, D., RAMOS, L., WENISCH, T. F., AND
BIANCHINI, R. Memscale: Active low-power modes for main
memory. In Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2011), ASPLOS XVI,
ACM, pp. 225–238.

[24] DOUGLIS, F., KRISHNAN, P., AND MARSH, B. Thwarting the
power-hungry disk. In Proceedings of the USENIX Winter 1994
Technical Conference (Berkeley, CA, USA, 1994), WTEC’94,
USENIX Association, pp. 293–306.

[25] FAN, X., ELLIS, C. S., AND LEBECK, A. R. The synergy be-
tween power-aware memory systems and processor voltage scal-
ing. In Proceedings of the Third International Conference on
Power - Aware Computer Systems (Berlin, Heidelberg, 2004),
PACS’03, Springer-Verlag, pp. 164–179.

[26] FAN, X., WEBER, W.-D., AND BARROSO, L. A. Power pro-
visioning for a warehouse-sized computer. In Proceedings of the
34th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2007), ISCA’07, ACM, pp. 13–23.

[27] GURUMURTHI, S., SIVASUBRAMANIAM, A., KANDEMIR, M.,
AND FRANKE, H. DRPM: dynamic speed control for power
management in server class disks. In Proceedings of the 30th An-
nual International Symposium on Computer Architecture (New
York, NY, USA, 2003), ISCA’03, ACM, pp. 169–181.

[28] HYLICK, A., SOHAN, R., RICE, A., AND JONES, B. An analy-
sis of hard drive energy consumption. In Proceedings of the 16th
Annual Meeting of the IEEE International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, MASCOTS’08 (2008), IEEE Computer Society,
pp. 103–112.

[29] IV, W. T., SEADER, J., AND BRILL, K. Tier classifications de-
fine site infrastructure performance. The Uptime Institute, White
Paper (2006).

[30] KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHAT-
TACHARYA, A. A. Virtual machine power metering and pro-
visioning. In Proceedings of the 1st ACM Symposium on
Cloud Computing (New York, NY, USA, 2010), SoCC’10, ACM,
pp. 39–50.

[31] KHATIB, M. G., VAN DER ZWAAG, B. J., HARTEL, P. H., AND
SMIT, G. J. M. Interposing Flash between Disk and DRAM to
Save Energy for Streaming Workloads. In IEEE/ACM/IFIP Work-
shop on Embedded Systems for Real-Time Multimedia, 2007. ES-
TIMedia 2007 (Oct 2007), pp. 7–12.

[32] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (Berkeley, CA,
USA, 2012), FAST’12, USENIX Association, pp. 209–222.

[33] LI, J., BADAM, A., CHANDRA, R., SWANSON, S., WOR-
THINGTON, B., AND ZHANG, Q. On the Energy Overhead of
Mobile Storage Systems. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (Santa Clara, CA,
2014), FAST’14, USENIX Association, pp. 105–118.

13

240 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[34] LIM, H., KANSAL, A., AND LIU, J. Power budgeting for vir-
tualized data centers. In Proceedings of the 2011 USENIX Con-
ference on Annual Technical Conference (Berkeley, CA, USA,
2011), ATC’11, USENIX Association, pp. 59–72.

[35] LO, D., CHENG, L., GOVINDARAJU, R., BARROSO, L. A.,
AND KOZYRAKIS, C. Towards Energy Proportionality for Large-
scale Latency-critical Workloads. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (Pis-
cataway, NJ, USA, 2014), ISCA’14, IEEE Press, pp. 301–312.

[36] MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER,
W.-D., AND WENISCH, T. F. Power management of online
data-intensive services. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture (New York, NY,
USA, 2011), ISCA’11, ACM, pp. 319–330.

[37] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
off-loading: Practical power management for enterprise storage.
Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[38] RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG,
Z., AND ZHU, X. No “power” struggles: Coordinated multi-level
power management for the data center. In Proceedings of the 13th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA,
2008), ASPLOS XIII, ACM, pp. 48–59.

[39] RAJAMANI, K., LEFURGY, C., GHIASI, S., RUBIO, J., HAN-
SON, H., AND KELLER, T. Power management solutions
for computer systems and datacenters. In Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics
and Design (Aug 2008), ISLPED’08, pp. 135–136.

[40] STOESS, J., LANG, C., AND BELLOSA, F. Energy manage-
ment for hypervisor-based virtual machines. In Proceedings of
the USENIX Annual Technical Conference (Berkeley, CA, USA,
2007), ATC’07, USENIX Association, pp. 1:1–1:14.

[41] THERESKA, E., DONNELLY, A., AND NARAYANAN, D. Sierra:
practical power-proportionality for data center storage. In Pro-
ceedings of the sixth conference on Computer systems (New York,
NY, USA, 2011), EuroSys’11, ACM, pp. 169–182.

[42] TIWARI, D., VAZHKUDAI, S. S., KIM, Y., MA, X., BOBOILA,
S., AND DESNOYERS, P. J. Reducing Data Movement Costs Us-
ing Energy-Efficient, Active Computation on SSD. In Presented
as part of the 2012 Workshop on Power-Aware Computing and
Systems (Berkeley, CA, 2012), USENIX.

[43] VERMA, A., KOLLER, R., USECHE, L., AND RANGASWAMI,
R. SRCMap: energy proportional storage using dynamic consol-
idation. In Proceedings of the 8th USENIX conference on File
and storage technologies (Berkeley, CA, USA, 2010), FAST’10,
USENIX Association, pp. 267–280.

[44] WEDDLE, C., OLDHAM, M., QIAN, J., WANG, A.-I. A., REI-
HER, P., AND KUENNING, G. PARAID: A gear-shifting power-
aware RAID. Trans. Storage 3, 3 (Oct 2007).

[45] XU, L., CIPAR, J., KREVAT, E., TUMANOV, A., GUPTA, N.,
KOZUCH, M. A., AND GANGER, G. R. SpringFS: Bridging
Agility and Performance in Elastic Distributed Storage. In Pro-
ceedings of the 12th USENIX conference on File and storage
technologies (Berkeley, CA, USA, 2014), FAST’14, USENIX
Association, pp. 243–256.

[46] ZEDLEWSKI, J., SOBTI, S., GARG, N., ZHENG, F., KRISHNA-
MURTHY, A., AND WANG, R. Modeling hard-disk power con-
sumption. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA, 2003), FAST’03,
USENIX Association, pp. 217–230.

[47] ZHANG, Y., GURUMURTHI, S., AND STAN, M. R. SODA: Sen-
sitivity Based Optimization of Disk Architecture. In Proceedings
of the 44th Annual Design Automation Conference (New York,
NY, USA, 2007), DAC’07, ACM, pp. 865–870.

[48] ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEETON, K., AND
WILKES, J. Hibernator: helping disk arrays sleep through the
winter. In Proceedings of the twentieth ACM symposium on Oper-
ating systems principles (New York, NY, USA, 2005), SOSP’05,
ACM, pp. 177–190.

14

