
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

NV-Tree: Reducing Consistency Cost for
 NVM-based Single Level Systems

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, and Khai Leong Yong,
Data Storage Institute, A-STAR; Bingsheng He, Nanyang Technological University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 167

NV-Tree: Reducing Consistency Cost for NVM-based Single Level Systems

Jun Yang1, Qingsong Wei§ 1, Cheng Chen1, Chundong Wang1, Khai Leong Yong1 and Bingsheng He2

1Data Storage Institute, A-STAR, Singapore
2Nanyang Technological University

Abstract
The non-volatile memory (NVM) has DRAM-like per-
formance and disk-like persistency which make it possi-
ble to replace both disk and DRAM to build single level
systems. To keep data consistency in such systems is
non-trivial because memory writes may be reordered by
CPU and memory controller. In this paper, we study
the consistency cost for an important and common data
structure, B+Tree. Although the memory fence and CPU
cacheline flush instructions can order memory writes to
achieve data consistency, they introduce a significant
overhead (more than 10X slower in performance). Based
on our quantitative analysis of consistency cost, we pro-
pose NV-Tree, a consistent and cache-optimized B+Tree
variant with reduced CPU cacheline flush. We imple-
ment and evaluate NV-Tree and NV-Store, a key-value
store based on NV-Tree, on an NVDIMM server. NV-
Tree outperforms the state-of-art consistent tree struc-
tures by up to 12X under write-intensive workloads.
NV-Store increases the throughput by up to 4.8X under
YCSB workloads compared to Redis.

1 Introduction
For the past few decades, DRAM has been de facto
building block for the main memory of computer sys-
tems. However, it is becoming insufficient with an in-
creasing need of large main memory due to its den-
sity limitation [40, 43]. To address this issue, several
Non-Volatile Memory (NVM) technologies have been
under active development, such as phase-change mem-
ory (PCM) [49], and spin-transfer torque memory (STT-
RAM) [29]. These new types of memory have the poten-
tial to provide comparable performance and much higher
capacity than DRAM. More important, they are persis-
tent which makes failure recovery faster [31, 33].

Considering the projected cost [21] and power effi-
ciency of NVM, there have been a number of proposals
that replace both disk and DRAM with NVM to build a

§ Corresponding author: WEI_Qingsong@dsi.a-star.edu.sg

single level system [21, 53, 45]. Such systems can (i)
eliminate the data movement between disk and memory,
(2) fully utilize the low-latency byte-addressable NVM
by connecting it through memory bus instead of legacy
block interface [16, 30, 56, 7, 6]. However, with data
stored only in NVM, data structures and algorithms must
be carefully designed to avoid any inconsistency caused
by system failure. In particular, if the system crashes
when an update is being made to a data structure in
NVM, the data structure may be left in a corrupted state
as the update is only half-done. In that case, we need
certain mechanism to recover the data structure to its last
consistent state. To achieve data consistency in NVM,
ordered memory writes is fundamental. However, ex-
isting CPU and memory controller may reorder mem-
ory writes which makes it non-trivial to develop consis-
tent NVM-based systems and data structures, as demon-
strated in previous works [44, 53, 58, 55, 14, 12, 18, 35,
22, 46, 10, 32, 17]. To maintain memory writes to NVM
in certain order, we must (1) prevent them from being re-
ordered by CPU and (2) manually control CPU cacheline
flush to make them persistent on NVM. Most studies use
CPU instructions such as memory fence and cacheline
flush. However, these operations introduce significant
overhead [14, 53, 44]. We observe a huge amplification
of CPU cacheline flush when using existing approaches
to keep B+Tree [13] consistent, which makes the consis-
tency cost very high.

In this paper, we propose NV-Tree, a consistent and
cache-optimized B+Tree variant which reduces CPU
cacheline flush for keeping data consistency in NVM.
Specifically, NV-Tree decouples tree nodes into two
parts, leaf nodes (LNs) as critical data and internal nodes
(INs) as reconstructable data. By enforcing consistency
only on LNs and reconstructing INs from LNs during
failure recovery, the consistency cost for INs is elimi-
nated but the data consistency of the entire NV-Tree is
still guaranteed. Moreover, NV-Tree keeps entries in
each LN unsorted which can reduce CPU cacheline flush

168 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

by 82% to 96% for keeping LN consistent. Last but
not least, to overcome the drawback of slowing down
searches and deletions due to the write-optimized design
in LN, NV-Tree adopts a pointer-less layout for INs to
further increase the CPU cache efficiency.

Our contributions can be summarized as follows:

1. We quantify the consistency cost for B+Tree using
existing approaches, and present two insightful ob-
servations: (1) keeping entries in LN sorted intro-
duces large amount of CPU cacheline flush which
dominates the overall consistency cost (over 90%);
(2) enforcing consistency only on LN is sufficient
to keep the entire tree consistent because INs can
always be reconstructed even after system failure.

2. Based on the observations, we present our NV-Tree,
which (1) decouples LNs and INs, only enforces
consistency on LNs; (2) keeps entries in LN un-
sorted, updates LN consistently without logging or
versioning; (3) organizes INs in a cache-optimized
format to further increase CPU cache efficiency.

3. To evaluate NV-Tree in system level, we have also
implemented a key-value store, called NV-Store,
using NV-Tree as the core data structure.

4. Both NV-Tree and NV-Store are implemented and
evaluated on a real NVDIMM [1] platform. The ex-
perimental results show that NV-Tree outperforms
CDDS-Tree [53], the state-of-art consistent tree
structure, by up to 12X under write-intensive work-
loads. The speedup drops but still reaches 2X under
read-intensive workloads. NV-Store increases the
throughput by up to 4.8X under YCSB workloads
compared to Redis [50].

The rest of this paper is organized as follows. Sec-
tion 2 discusses the background, related work and mo-
tivation. Section 3 presents the detailed design and im-
plementation of NV-Tree. The experimental evaluation
of NV-Tree and NV-Store is shown in Section 4. Finally,
Section 5 concludes this paper.

2 Related Work and Motivation
2.1 Non-Volatile Memory (NVM)
Computer memory has been evolving rapidly in recent
years. A new category of memory, NVM, has attracted
more and more attention in both academia and industry
[21, 55]. Early work [36, 41, 35, 57, 47, 51, 11, 52, 59,
60, 2, 27, 39] focuses on flash memory. As shown in Ta-
ble 1, flash is faster than HDD but is still unsuitable to
replace DRAM due to much higher latency and limited
endurance [24]. Recent work has focused on the next

Table 1: Characteristics of Different Types of Memory
Category Read Latency Write Latency Endurance

(ns) (ns) (# of writes per bit)
SRAM 2-3 2-3 ∞

DRAM 15 15 1018

STT-RAM 5-30 10-100 1015

PCM 50-70 150-220 108-1012

Flash 25,000 200,000-500,000 105

HDD 3,000,000 3,000,000 ∞

generation NVM [28], such as PCM [49, 42, 4, 8, 23]
and STT-RAM [29], which (i) is byte addressable, (ii)
has DRAM-like performance, and (iii) provides better
endurance than flash. PCM is several times slower than
DRAM and its write endurance is limited to as few as 108

times. However, PCM has larger density than DRAM
and shows a promising potential for increasing the ca-
pacity of main memory. Although wear-leveling is nec-
essary for PCM, it can be done by memory controller
[48, 61]. STT-RAM has the advantages of lower power
consumption over DRAM, unlimited write cycles over
PCM, and lower read/write latency than PCM. Recently,
Everspin announced its commercial 64Mb STT-RAM
chip with DDR3 interface [20]. In this paper, NVM is
referred to the next generation of non-volatile memory
excluding flash memory.

Due to the price and prematurity of NVM, mass pro-
duction with large capacity is still impractical today. As
an alternative, NVDIMM [44], which is commercially
available [1], provides persistency and DRAM-like per-
formance. NVDIMM is a combination of DRAM and
NAND flash. During normal operations, NVDIMM is
working as DRAM while flash is invisible to the host.
However, upon power failure, NVDIMM saves all the
data from DRAM to flash by using supercapacitor to
make the data persistent. Since this process is transparent
to other parts of the system, NVDIMM can be treated as
NVM. In this paper, our NV-Tree and NV-Store are im-
plemented and evaluated on a NVDIMM platform.

2.2 Data Consistency in NVM
NVM-based single level systems [21, 14, 53, 58, 44]
have been proposed and evaluated using the simulated
NVM in terms of cost, power efficiency and perfor-
mance. As one of the most crucial features of storage
systems, data consistency guarantees that stored data can
survive system failure. Based on the fact that data is rec-
ognizable only if it is organized in a certain format, up-
dating data consistently means preventing data from be-
ing lost or partially updated after a system failure. How-
ever, the atomicity of memory writes can only be sup-
ported with a very small granularity or no more than the
memory bus width (8 bytes for 64-bit CPUs) [25] which
is addressed in previous work [55, 14, 44], so updating

2

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 169

data larger than 8 bytes requires certain mechanisms to
make sure data can be recovered even if system failure
happens before it is completely updated. Particularly,
the approaches such as logging and copy-on-write make
data recoverable by writing a copy elsewhere before up-
dating the data itself. To implement these approaches,
we must make sure memory writes are in a certain or-
der, e.g., the memory writes for making the copy of
data must be completed before updating the data itself.
Similar write ordering requirement also exists in pointer-
based data structures, e.g., in B+Tree, if one tree node
is split, the new node must be written completely before
its pointer being added to the parent node, otherwise, the
wrong write order will make the parent node contain an
invalid pointer if the system crash right after the pointer
being added.

Unfortunately, memory writes may be reordered by ei-
ther CPU or memory controller. Alternatively, without
modifying existing hardware, we can use the sequence
of {MFENCE, CLFLUSH, MFENCE} instruction (referred
to flush in the rest of this paper) to form ordered mem-
ory writes [53]. Specifically, MFENCE issues a memory
barrier which guarantees the memory operations after
the barrier cannot proceed until those before the barrier
complete, but it does not guarantee the order of write-
back to the memory from CPU cache. On the other
hand, CLFLUSH can explicitly invalidate the correspond-
ing dirty CPU cachelines so that they can be flushed to
NVM by CPU which makes the memory write persistent
eventually. However, CLFLUSH can only flush a dirty
cacheline by explicitly invalidating it which makes CPU
cache very inefficient. Although such invalidations can
be avoided if we can modify the hardware itself to imple-
ment epoch [14], CPU cacheline flush cannot be avoided.
Reducing it is still necessary to not only improve perfor-
mance but also extend the life cycle of NVM with re-
duced memory write.

2.3 Related Work
Recent work proposed mechanisms to provide data con-
sistency in NVM-based systems by either modifying ex-
isting hardware or using CPU primitive instructions such
as MFENCE and CLFLUSH. BPFS [14] proposed a new
file system which is resided in NVM. It adopts a copy-on-
write approach called short-circuit shadow paging using
epoch which can flush dirty CPU cachelines without in-
validating them to order memory writes for keeping data
consistency. However, it still suffers from the overhead
of cacheline flush. It must be implemented by modifying
existing hardware which is not practical in most cases.
Volos et al. [55] proposed Mnemosyne, a new program
interface for memory allocations in NVM. To manage

memory consistency, it presents persist memory region,
persist primitives and durable memory transaction which
consist of MFENCE and CLFLUSH eventually. NV-Heaps
[12] is another way to consistently manage NVM directly
by programmers based on epoch. It uses mmap to access
spaces in NVM and gives a way to allocate, use and deal-
locate objects and their pointers in NVM. Narayanan et
al. [44] proposed a way to keep the whole system status
when power failure happens. Realizing the significant
overhead of flushing CPU cacheline to NVM, they pro-
pose to flush-on-fail instead of flush-on-demand. How-
ever, they cannot protect the system from any software
failure. In general, flushing CPU cacheline is necessary
to order memory writes and used in almost all the exist-
ing NVM-based systems [34, 37, 54, 19].

The most related work to our NV-Tree is CDDS-Tree
[53] which uses flush to enforce consistency on all the
tree nodes. In order to keep entries sorted, when an en-
try is inserted to a node, all the entries on the right side
of the insertion position need to be shifted. CDDS-Tree
performs flush for each entry shift, which makes the
consistency cost very high. Moreover, it uses the entry-
level versioning approach to keep consistency for all tree
operations. Therefore, a background garbage collector
and a relatively complicated recovery process are both
needed.

2.4 Motivation
To quantify the consistency cost, we compare the exe-
cution of performing one million insertion in (a) a stan-
dard B+Tree [13] without consistency guarantee, (b) a
log-based consistent B+Tree (LCB+Tree), (c) a CDDS-
Tree [53] using versioning, and (d) a volatile CDDS-Tree
with flush disabled. In LCB+Tree, before modifying
a node, its original copy is logged and flushed. The
modified part of it is then flushed to make the changes
persistent. Note that we only use LCB+Tree as the base-
line to illustrate one way to use logging to guarantee the
consistency. We understand optimizations (such as com-
bining several modification to one node into one flush)
can be made to improve the performance of LCB+Tree
but it is beyond the scope of this paper. Since CDDS-
Tree is not open-source, we implement it ourselves and
achieve similar performance to that in the original paper
[53]. As shown in Figure 1a, for one million insertion
with 4KB nodes, the LCB+Tree and CDDS-Tree are up
to 16X and 20X slower than their volatile version, re-
spectively. Such performance drop is caused by the in-
creased number of cache misses and additional cacheline
flush.

Remembering that CLFLUSH flushes a dirty cacheline
by explicitly invalidating it, which causes a cache miss

3

170 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

 0

 10

 20

 30

 40

 50

512B 1024B 2048B 4096B

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Node Size

1 Million Insertion

B+Tree
Volatile CDDS−Tree
LCB+Tree
CDDS−Tree

(a) Execution Time with Different Node Sizes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

512B 1024B 2048B 4096B

L
3

 C
a

c
h

e
 M

is
s
e

s
 (

M
ill

io
n

)

Node Size

1 Million Insertion

B+Tree
Volatile CDDS−Tree
LCB+Tree
CDDS−Tree

(b) L3 Cache Misses with Different Node Sizes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

512B 1024B 2048B 4096B

C
a

c
h

e
lin

e
 F

lu
s
h

 (
M

ill
io

n
)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree

(c) Total Number of CPU Cacheline Flush

 0%

 20%

 40%

 60%

 80%

 100%

L
C

B

C
D

D
S

L
C

B

C
D

D
S

L
C

B

C
D

D
S

L
C

B

C
D

D
S

P
e
rc

e
n
ta

g
e

Node Size

1 Million Insertion

512B 1024B 2048B 4096B

Sort LN
LN
Sort IN
IN

(d) Percentage Breakdown of CPU Cacheline Flush
Figure 1: Consistency Cost Analysis of B+Tree and CDDS-Tree

when reading the same memory address later. We use
Intel vTune Amplifier1, a CPU profiling tool, to count
the L3 cache misses during the one million insertion. As
shown in Figure 1b, while the volatile CDDS-Tree or
B+Tree produces about 10 million L3 cache misses, their
consistent version causes about 120-800 million cache
misses which explains the performance drop.

Figure 1c shows the total number of cacheline flushes
in CDDS-Tree and LCB+Tree for one million insertion.
With 0.5KB/1KB/2KB/4KB nodes, the total amount
of cacheline flushes is 14.8/24.6/44.7/85.26 million for
LCB+Tree, and 12.1/19.0/34.2/64.7 million for CDDS-
Tree. This indicates that keeping consistency causes a
huge amplification of the CPU cacheline invalidation
and flush, which increases the cache misses signifi-
cantly, as shown in Figure 1b.

The numbers of both the cache misses and cacheline
flushes in LCB+Tree and CDDS-Tree are proportional to
the node size due to the flush for keeping the entries
sorted. Specifically, for LCB+Tree and CDDS-Tree, all
the shifted entries caused by inserting an entry inside a
node need to be flushed to make the insertion persis-
tent. As a result, the amount of data to be flushed is
related to the node size for both trees.

We further categorize the CPU cacheline flush into
four types, as shown in Figure 1d, Sort LN/Sort IN stands
for the cacheline flush of shifted entries. It also includes
the flush of logs in LCB+Tree. LN/IN stands for the

1https://software.intel.com/en-us/intel-vtune-amplifier-xe

flush of other purpose such as flushing new nodes
and updated pointers after split, etc. The result shows
that the consistency cost due to flush mostly comes
from flushing shifted entries in order to keep LN
sorted, about 60%-94% in CDDS-Tree, and 81%-97%
in LCB+Tree.

Note that CDDS-Tree is slower than LCB+Tree by 11-
32% even though it produces less cacheline flush. The
reasons are that (1) the size of each flush in CDDS-
Tree is the entry size, which is much smaller than that
in LCB+Tree, and (2) the performance of flush for
small objects is over 25% slower than that for large ob-
jects [53].

Last but not least, we observe that given a data struc-
ture, not all the data needs to be consistent to keep
the entire data structure consistent. As long as some
parts of it (denoted as critical data) is consistent, the rest
(denoted as reconstructable data) can be reconstructed
without losing consistency for the whole data structure.
For instance, in B+Tree, where all the data is stored in
LNs, they can be considered as critical data while INs
are reconstructable data because they can always be re-
constructed from LNs at a reasonably low cost. That sug-
gests we may only need to enforce consistency on crit-
ical data, and reconstruct the entire data structure from
the consistent critical data during the recovery.

4

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 171

3 NV-Tree Design and Implementation
In this section, we present NV-Tree, a consistent and
cache-optimized B+Tree variant with reduced consis-
tency cost.

3.1 Design Decisions
Based on our observations above, we make three major
design decisions in our NV-Tree as the following.
D1. Selectively Enforce Data Consistency. NV-Tree

decouples LNs and INs by treating them as critical data
and reconstructable data, respectively. Different from
the traditional design where all nodes are updated with
consistency guaranteed, NV-Tree only enforces consis-
tency on LNs (critical data) but processes INs (recon-
structable data) with no consistency guaranteed to re-
duce the consistency cost. Upon system failure, INs are
reconstructed from the consistent LNs so that the whole
NV-Tree is always consistent.
D2. Keep Entries in LN Unsorted. NV-Tree uses

unsorted LNs so that the flush operation used in
LCB+Tree and CDDS-Tree for shifting entries upon in-
sertion can be avoided. Meanwhile, entries of INs are
still sorted to optimize search performance. Although
the unsorted LN strategy is not new [9], we are the first
one that quantify its impact on the consistency cost and
propose to use it to reduce the consistency cost in NVM.
Moreover, based on our unsorted scheme for LNs, both
the content (entry insertion/update/deletion) and struc-
tural (split) changes in LNs are designed to be visible
only after a CPU primitive atomic write. Therefore, LNs
can be protected from being corrupted by any half-done
updates due to system failure without using logging or
versioning. Thanks to the invisibility of on-going up-
dates, the parallelism of accessing LN is also increased
because searching in LN is no longer blocked by the con-
current on-going update.
D3. Organizing IN in Cache-optimized Format. The

CPU cache efficiency is a key factor to the performance.
In NV-Tree, all INs are stored in a consecutive memory
space and located by offset instead of pointers, and all
nodes are aligned to CPU cacheline. As a result, NV-
Tree achieves higher space utilization and cache hit rate.

3.2 NV-Tree
In this subsection, we present the details of tree node lay-
out design and all the tree operations of NV-Tree.

3.2.1 Overview
In NV-Tree, as shown in Figure 2, all the data is stored in
LNs which are linked together with right-sibling point-
ers. Each LN can also be accessed by the LN pointer
stored in the last level of IN, denoted as PLN (parent of

PLN id LN

...

6 10... 11 15... 16 20... 21 25... 26 30...

1 2 3 4 5

0

id
IN

... ...

Critical Data

Reconstructable Data

nKeys

nElements flag key value

LN_Element[0]

...

IN

nKeysPLN
key[0]

LN[0]

key[1]

LN[1]

key[m]

LN[m]

...

... LN[m+1]

key[0] key[1] ... key[2m]

LN

LN_Element[1]

flag key value

Node Layout

31 32 3736 96 97 10035

Figure 2: NV-Tree Overview and Node Layout

leaf node). All the IN/PLNs are stored in a pre-allocated
consecutive memory space which means the position of
each IN/PLN is fixed upon creation. The node id of each
IN/PLN is assigned sequentially from 0 (root). There-
fore it can be used to calculate the offset of each IN/PLN
to the root. Given the memory address of the root, all
the IN/PLNs can be located without using any pointers.
Each key/value pair (KV-pair) stored in LNs is encapsu-
lated in an LN_element.

Keeping each LN and the LN list consistent in NV-
Tree without using logging or versioning is non-trivial.
Different from a normal B+Tree, both update and dele-
tion are implemented as insertion using an append-
only strategy discussed in Section 3.2.3. Any inser-
tion/update/deletion operations may lead to a full LN
which triggers either split/replace/merge discussed in
Section 3.2.4. We carefully design the write order for
insertion (update/deletion) and split/replace/merge using
flush to guarantee the changes made by these oper-
ations cannot be seen until a successful atomic write.
When one PLN is full, a procedure called rebuilding is
executed to reconstruct a new set of IN/PLN to accom-
modate more LNs, discussed in Section 3.2.5.

3.2.2 Locating Target LN
We first present how to find the target LN in NV-Tree.
Due to the hybrid design, the procedure of locating target
LN with a given key in NV-Tree is different from that in
standard B+Tree.

As shown in Algorithm 1, given the search key and the
memory address of root, INs are searched level by level,
starting from root with node id 0. On each level, which
child to go in the next level is determined by a binary
search based on the given search key. For instance, with

5

172 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Algorithm 1: NV-Tree LN Lookup

1 Function find_leaf(k, r)
Input: k: key, r: root
Output: LNpointer: the pointer of target leaf

node
/* Start from root (id=0). */

2 id ← 0;
3 while id /∈ PLNIDs do /* Find PLN. */
4 IN ← memory address of node id;
5 pos ← BinarySearch(key, IN);
6 id ← id ∗ (2m+1)+1+ pos;

/* m is the maximum number of
keys in a PLN. */

7 PLN ← memory address of node id;
8 pos ← BinarySearch(key,PLN);
9 return PLN.LNpointers[pos]

keys and pointers having the same length, if a PLN can
hold m keys and m+ 1 LN pointers, an IN can hold 2m
keys. If the node id of current IN is i and the binary
search finds the smallest key which is no smaller than
the search key is at position k in current IN, then the next
node to visit should have the node id (i× (2m+1)+1+
k). When reaching a PLN, the address of the target LN
can be retrieved from the leaf node pointer array.

As every IN/PLN has a fixed location once rebuilt,
PLNs are not allowed to split. Therefore, the content
of INs (PLNs excluded) remains unchanged during nor-
mal execution. Therefore, NV-Tree does not need to
use locks in INs for concurrent tree operations which in-
creases the scalability of NV-Tree.

3.2.3 Insertion, Update, Deletion and Search
Insertion starts with finding target LN. After target LN
is located, a new LN_element will be generated using
the new KV-pair. If the target LN has enough space
to hold the LN_element, the insertion completes after
the LN_element is appended, and the nElement is in-
creased by one successfully. Otherwise, the target LN
will split before insertion (discussed in Section 3.2.4).
The pseudo-code of insertion is shown in Algorithm
2. Figure 3a shows an example of inserting a KV-pair
{7,b} into an LN with existing two KV-pairs {6,a}
and {8,c}.

Deletion is implemented just the same as insertion ex-
cept a special NEGATIVE flag. Figure 3b shows an ex-
ample of deleting the {6,a} in the original LN. A NEG-
ATIVE LN_element {6,a} (marked as ‘-’) is inserted.
Note that the NEGATIVE one cannot be inserted unless a
normal one is found. The space of both the NEGATIVE
and normal LN_elements are recycled by later split.

Algorithm 2: NV-Tree Insertion
Input: k: key, v: value, r: root
Output: SUCCESS/FAILURE

1 begin
2 if r = NULL then /* Create new tree

with the given KV-pair. */
3 r ← create_new_tree(k, v);
4 return SUCCESS

5 lea f ← find_leaf(k, r);
6 if LN has space for new KV-pair then
7 newElement ←CreateElement(k,v);
8 flush(newElement);
9 AtomicInc(lea f .number);

10 flush(lea f .number);
11 else
12 leaf_split_and_insert(leaf, k, v)

13 return SUCCESS

Update is implemented by inserting two
LN_elements, a NEGATIVE with the same value
and a normal one with updated value. For instance, as
shown in Figure 3c, to update the original {8,c} with
{8,y}, the NEGATIVE LN_element for {8,c} and
the normal one for {8,y} are appended accordingly.

Note that the order of appending LN_element before
updating nElement in LN is guaranteed by flush. The
appended LN_element is only visible after the nElement
is increased by a successful atomic write to make sure
LN cannot be corrupted by system failure.

Search a key starts with locating the target LN with
the given key. After the target LN is located, since
keys are unsorted in LN, a scan is performed to re-
trieve the LN_element with the given key. Note that if
two LN_elements have the target key and same value
but one of them has a NEGATIVE flag, both of them
are ignored because that indicates the corresponding KV-
pair is deleted. Although the unsorted leaf increases the
searching time inside LN, the entries in IN/PLNs are still
sorted so that the search performance is still acceptable
as shown in Section 4.4.

All the modification made to LNs/PLNs is protected
by light-weight latches. Meanwhile, given the nature of
the append-only strategy, searching in LNs/PLNs can be
executed without being blocked by any ongoing modifi-
cation as long as the nElement is used as the boundary of
the search range in LNs/PLNs.

3.2.4 LN Split/Replace/Merge
When an LN is full, the first step is to scan the LN
to identify the number of valid LN_elements. Those
NEGATIVE ones and the corresponding normal ones are

6

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 173

2 + 6 a + 8 c + 7 b

3 + 6 a + 8 c + 7 b

2 + 6 a + 8 c

(a) Insert (7,b)

2 + 6 a + 8 c - 6 a

3 + 6 a + 8 c - 6 a

2 + 6 a + 8 c

(b) Delete (6,a)

2 + 6 a + 8 c

2 + 6 a + 8 c - 8 c + 8 y

4 + 6 a + 8 c - 8 c + 8 y

(c) Update (8,c)→(8,y)
Figure 3: Example of NV-Tree Insertion/Deletion/Update

MAX1053PLN

LN List

6 + 6 a... + c - 8 c + 8 y + 10 f + 9 d8 ...

2 + 6 a + y8 + 10 f + 9 d2

(1) Copy Valid Elements to new LNs

MAX1053 8

6 + 6 a... + c - 8 c + 8 y + 10 f + 9 d8 ...

(2) Update PLN with Separate Key and LN pointers

2 + 6 a + y8 + 10 f + 9 d2

(3) Atomic Update Pointer in Left Sibling

MAX1053 8

... ...2 + 6 a + y8 + 10 f + 9 d2

Figure 4: Example of LN Split

both considered invalid. The second step is to determine
whether the LN needs a split.

If the percentage of valid elements is above the min-
imal fill factor (e.g., 50% in standard B+Tree), we per-
form split. Two new LNs (left and right) are created and
valid elements are copied to either of them according to
the selected separate key. Then the new KV-pair is in-
serted accordingly. The split completes after the pointer
in the left sibling of the old LN is updated to point to
new left LN using an atomic write. Before that, all the
changes made during split are not visible to the tree. Fig-
ure 4 shows an example of an LN split.

If the percentage is below the minimal fill factor, we
check the number of LN_elements in the right sibling
of the old LN. If it is above the minimal fill factor, we
perform replace, otherwise, we perform merge. For re-
place, those valid LN_elements in the old LN are copied
to a new LN, and the new LN replaces the old LN in the
LN list using an atomic write. For merge, those valid
LN_elements from both the old LN and its right sibling
are copied to a new LN, and the new LN replaces both of
them in the LN list using an atomic write. Note that we
use the nElement instead of the number of valid elements
in the right sibling to decide which operation to perform

because finding the latter needs to perform a scan which
is relatively more expensive. Due to space limitation, ex-
amples of replace and merge are omitted here.

3.2.5 Rebuilding

As the memory address of each IN/PLN is fixed upon
creation, IN/PLNs are not allowed to split. Therefore,
when one PLN is full, all IN/PLNs have to be recon-
structed to make space in PLNs to hold more LN point-
ers. The first step is to determine the new number of
PLNs based on the current number of LNs. In our current
implementation, to delay the next rebuilding as much as
possible under a workload with uniformly distributed ac-
cess pattern, each PLN stores exactly one LN pointer af-
ter rebuilding. Optimizing rebuilding for workloads with
different access patterns is one of our future work.

During normal execution, we can use rebuild-from-
PLN strategy by redistributing all the keys and LN point-
ers in existing PLNs into the new set of PLNs. However,
upon system failure, we use rebuild-from-LN strategy.
Because entries are unsorted in each LN, rebuild-from-
LN needs to scan each LN to find its maximum key to
construct the corresponding key and LN pointer in PLN.
Rebuild-from-LN is more expensive than rebuild-from-
PLN but is only executed upon system failure. Com-
pared to a single tree operation (e.g., insertion or search),
one rebuilding may be very time-consuming in large
NV-Tree. However, given the frequency of rebuilding,
such overhead is neglectable in a long-running applica-
tion (less than 1% in most cases, details can be found in
Section 4.7).

If the memory space is enough to hold the new
IN/PLNs without deleting the old ones, search can still
proceed during rebuilding because it can always access
the tree from the old IN/PLNs. In that case, the mem-
ory requirement of rebuilding is the total size of both old
and new IN/PLNs. For instance, when inserting 100 mil-
lion entries with random keys to a NV-Tree with 4KB
nodes, rebuilding is executed only for two times. The
memory requirement to enable parallel rebuilding for the
first/second rebuilding is only about 1MB/129MB which
is totally acceptable.

7

174 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

3.2.6 Recovery
Since the LN list (critical data) is consistent, rebuild-
from-LN is sufficient to recover a NV-Tree from either
normal shutdown or system failure.

To further optimize the recovery after normal shut-
down, our current implementation is able to achieve
instant recovery by storing IN/PLNs persistently in
NVM. More specifically, during normal shutdown, we
(1) flush all IN/PLNs to NVM, (2) save the root
pointer to a reserved position in NVM, (3) and use an
atomic write to mark a special flag along with the root
pointer to indicate a successful shutdown. Then, the re-
covery can (1) start with checking the special flag, (2) if it
is marked, reset it and use the root pointer stored in NVM
as the current root to complete the recovery. Otherwise,
it means a system failure occurred, and a rebuild-from-
LN procedure is executed to recover the NV-Tree.

4 Evaluation
In this section, we evaluate our NV-Tree by compar-
ing it with LCB+Tree and CDDS-Tree in terms of in-
sertion performance, overall performance under mixed
workloads and throughput of all types of tree operations.
We also study the overhead of rebuilding by quantifying
its impact on the overall performance. We use YCSB
[15], a benchmark for KV-stores, to perform an end-to-
end comparison between our NV-Store and Redis [50],
a well-known in-memory KV-store. Finally, we discuss
the performance of NV-Tree on different types of NVM
and estimated performance with epoch.

4.1 Implementation Effort
We implement our NV-Tree from scratch, an LCB+Tree
by applying flush and logging to a standard B+Tree
[5], and a CDDS-Tree [53]. To make use of NVDIMM
as a persistent storage device, we modify the memory
management of Linux kernel to add new functions (e.g.,
malloc_NVDIMM) to directly allocate memory space
from NVDIMM. The NVDIMM space used by NV-Tree
is guaranteed to be mapped to a continuous (virtual)
memory space. The node “pointer” stored in NV-Tree
is actually the memory offset to the start address of the
mapped memory space. Therefore, even if the mapping
is changed after reboot, each node can always be located
using the offset. With the position information of the first
LN stored in a reserved location, our NV-Tree is practi-
cally recoverable after power down.

We build our NV-Store based on NV-Tree by allowing
different sizes of key and value. Moreover, by adding a
timestamp in each LN_Element, NV-Store is able to sup-
port lock-free concurrent access using timestamp-based

multi-version concurrency control (MVCC) [38]. Based
on that, we implement NV-Store to support Snapshot Iso-
lation [3] transactions. Finally, we implement a database
interface layer to extend YCSB to support NV-Store to
facilitate our performance evaluation.

4.2 Experimental Setup
All of our experiments are conducted on a Linux server
(Kernel version 3.13.0-24) with an Intel Xeon E5-2650
2.4GHz CPU (512KB/2MB/20MB L1/L2/L3 cache),
8GB DRAM and 8GB NVDIMM [1] which has practi-
cally the same read/write latency as DRAM. In the end-
to-end comparison, we use YCSB (0.1.4) to compare
NV-Store with Redis (2.8.13). Note that all results shown
in this section are produced by running application on
NVDIMM server instead of simulation. The execution
time measured for NV-Tree and NV-Store includes the
rebuilding overhead.

4.3 Insertion Performance
We first compare the insertion performance of
LCB+Tree, CDDS-Tree and NV-Tree with differ-
ent node sizes. Figure 5a shows the execution time of
inserting one million KV-pairs (8B/8B) with randomly
selected keys to each tree with different sizes of tree
nodes from 512B to 4KB. The result shows that NV-Tree
outperforms LCB+Tree and CDDS-Tree up to 8X and
16X with 4KB nodes, respectively. Moreover, different
from LCB+Tree and CDDS-Tree that the insertion per-
formance drops when the node size increases, NV-Tree
shows the best performance with larger nodes. This
is because (1) NV-Tree adopts unsorted LN to avoid
CPU cacheline flush for shifting entries. The size of
those cacheline flush is proportional to the node size in
LCB+Tree and CDDS-Tree; (2) larger nodes lead to less
LN split resulting in less rebuilding and reduced height
of NV-Tree.

The performance improvement of NV-Tree over the
competitors is mainly because of the reduced number
of cacheline flush thanks to both the unsorted LN and
decoupling strategy of enforcing consistency selectively.
Specifically, as shown in Figure 5b, NV-Tree reduces
the total CPU cacheline flush by 80%-97% compared to
LCB+Tree and 76%-96% compared to CDDS-Tree.

Although the consistency cost of INs is almost ne-
glectable for LCB+Tree and CDDS-Tree as shown in
Figure 1d, such cost becomes relatively expensive in NV-
Tree. This is because the consistency cost for LN is sig-
nificantly reduced after our optimization for LN, such as
keeping entries unsorted and modifying LN with a log-
free append-only approach. To quantify the consistency
cost of INs after such optimization, we implement a mod-

8

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 175

 0

 10

 20

 30

 40

 50

 60

512B 1024B 2048B 4096B

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree
NV−Tree

(a) Execution Time with Varied Node Sizes

 0

 20

 40

 60

 80

 100

 120

512B 1024B 2048B 4096B

C
a
c
h
e
lin

e
 F

lu
s
h
 (

M
il)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree
NV−Tree

(b) Number of CPU Cacheline Flush

 0%

 20%

 40%

 60%

 80%

 100%

L
C

B

N
V

T
−

A

L
C

B

N
V

T
−

A

L
C

B

N
V

T
−

A

L
C

B

N
V

T
−

A

P
e

rc
e

n
ta

g
e

1 Million Insertion

512B 1024B 2048B 4096B

LN
IN

(c) Cacheline Flush Breakdown for IN/LN
Figure 5: Insertion Performance and Cacheline Flush Comparison

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 Million 10 Million 100 Million

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Insertion

Node Size = 4KB
3265 4796

520

LCB+Tree
CDDS−Tree
NV−Tree

Figure 6: Execution Time of 1/10/100 Million Insertion

ified NV-Tree, denoted as NVT-A, which does the same
optimization for LN as NV-Tree, but manages INs in the
same way as LCB+Tree and enforces consistency for all
INs. Figure 5c shows the breakdown of CPU cache-
line flush for IN and LN in LCB+Tree and NVT-A. The
percentage of CPU cacheline flush for IN increase from
around 7% in LCB+Tree to more than 20% in NVT-A.
This result proves that decoupling IN/LN and enforc-
ing consistency selectively are necessary and beneficial.

Figure 6 shows the execution time of inserting differ-
ent number of KV-pairs with 4KB node size. The re-
sult shows that for inserting 1/10/100 million KV-pairs,
the speedup of NV-Tree can be 15.2X/6.3X/5.3X over
LCB+Tree and 8X/9.7X/8.2X over CDDS-Tree. This
suggests that although inserting more KV-pairs increases
the number and duration of rebuilding, NV-Tree can still
outperform the competitors thanks to the write-optimized
design.

4.4 Update/Deletion/Search Throughput
This subsection compares the throughput of up-
date/deletion/search operations in LCB+Tree, CDDS-
Tree and NV-Tree. In this experiment, we first insert
one million KV-pairs, then update each of them with new

value (same size), then search with every key and finally
delete all of them. For each type of operation, each key
is randomly and uniquely selected. After each type of
operation, we flush the CPU cache to remove the cache
influence between different types of operation.

The update/deletion/search performance with node
size varied from 512B to 4KB is shown in Figure 7.
As shown in Figure 7a, NV-Tree improves the through-
put of update by up to 5.6X and 8.5X over LCB+Tree
and CDDS-Tree. In CDDS-Tree, although update does
not trigger the split if any reusable slots are available,
entry shifting is still needed to keep the entries sorted.
LCB+Tree does not need to shift entries for update, but
in addition to the updated part of the node, it flushes
the log which contains the original copy of the node. In
contrast, NV-Tree uses log-free append-only approach to
modify LNs so that only two LN_elements need to be
flushed.

Upon deletion, NV-Tree is better than LCB+Tree but
not as good as CDDS-Tree as shown in 7b. This is be-
cause CDDS-Tree simply does an in-place update to up-
date the end version of a corresponding key. However,
with the node size increased, NV-Tree is able to achieve
comparable throughput to CDDS-Tree because of the re-
duction of split.

Note that the throughput of update and deletion in Fig-
ure 7a and 7b in LCB+Tree decreases when the node
size increases. This is because both the log size and the
amount of data to flush for shifting entries are propor-
tional to the node size. The same trend is observed in
CDDS-Tree. In NV-Tree, by contrast, the throughput of
update and deletion always increases when the node size
increases because (1) the amount of data to flush is ir-
relevant to the node size, (2) a larger node reduces the

 0K
 50K

 100K
 150K
 200K
 250K
 300K
 350K
 400K

512B 1024B 2048B 4096B

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

Node Size

LCB+Tree
CDDS−Tree
NV−Tree

(a) Update

 0K
 50K

 100K
 150K
 200K
 250K
 300K
 350K
 400K

512B 1024B 2048B 4096B

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

Node Size

LCB+Tree
CDDS−Tree
NV−Tree

(b) Deletion

 0K
 500K

 1000K
 1500K
 2000K
 2500K
 3000K
 3500K
 4000K

512B 1024B 2048B 4096B

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

Node Size

LCB+Tree
CDDS−Tree
NV−Tree

(c) Search
Figure 7: Update/Deletion/Search Throughput Comparison

9

176 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

90%/10% 70%/30% 50%/50% 30%/70% 10%/90%

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Write/Read Ratio

1 Million Operations, Node Size = 4KB

LCB+Tree
CDDS−Tree
NV−Tree

Figure 8: Execution Time of Mixed Workloads

number of split as well as rebuilding.
Although NV-Tree uses unsorted LN, thanks to the

cache-optimized IN layout, the search throughput of NV-
Tree is comparable to that of LCB+Tree and CDDS-Tree
as shown in Figure 7c, which is consistent to the pub-
lished result [9].

4.5 Mixed Workloads
Figure 8 shows the execution time of performing one
million insertion/search operations with varied ratios on
an existing tree with one million KV-pairs.NV-Tree has
the best performance under mixed workloads compared
to LCB+Tree and CDDS-Tree.

Firstly, all three trees have better performance under
workloads with less insertion. This is because memory
writes must be performed to write LN changes to NVM
persistently through flush while searches can be much
faster if they hit the CPU cache. Moreover, NV-Tree
shows the highest speedup, 6.6X over LCB+Tree and
10X over CDDS-Tree, under the most write-intensive
workload (90% insertion/10% search). As the write/read
ratio decreases, the speedup of NV-Tree drops but is
still better than both competitors under the most read-
intensive workload (10% insertion/90% search). This is
because NV-Tree has much better insertion performance
and comparable search throughput as well.

4.6 CPU Cache Efficiency
This subsection shows the underlying CPU cache effi-
ciency of LCB+Tree, CDDS-Tree and NV-Tree by us-
ing vTune Amplifier. Figure 9a shows the total num-

ber of LOAD instructions executed for inserting one mil-
lion KV-pairs in each tree. NV-Tree reduces the num-
ber of LOAD instruction by about 44%-90% and 52%-
92% compared to LCB+Tree and CDDS-Tree, respec-
tively. We also notice the number of LOAD instructions
is not sensitive to the node size in NV-Tree while it is
proportional to the node size in LCB+Tree and CDDS-
Tree. This is because NV-Tree (1) eliminates entry shift-
ing during insertion in unsorted LN, (2) adopts cache-
optimized layout for IN/PLNs.

Most important, NV-Tree produces much less cache
misses. Since memory read is only needed upon L3
cache miss, we use the number of L3 cache misses to
quantify the read penalty of flush. Figure 9b shows
the total number of L3 cache misses when inserting one
million KV-pairs. NV-Tree can reduce the number of
L3 cache misses by 24%-83% and 39%-90% compared
to LCB+Tree and CDDS-Tree, respectively. This is be-
cause NV-Tree reduces the number of CPU cacheline in-
validation and flush.

4.7 Rebuilding and Failure Recovery
To quantify the impact of rebuilding on the overall per-
formance of NV-Tree, we measure the total number and
time of rebuilding with different node sizes under dif-
ferent number of insertion. Compared to the total exe-
cution time, as shown in Table 2, the percentage of re-
building time in the total execution time is below 1%
for all types of workloads, which is totally neglectable.
Moreover, we can tune the rebuilding frequency by in-
creasing the size of tree nodes because the total number
of splits decreases with larger nodes as shown in Figure
10a. With less splits, the frequency of rebuilding also be-
comes less, e.g., for 100 million insertion, with node size
equals to 512B/1KB/2KB/4KB, the number of rebuild-
ing is 7/4/3/2.

We also compare the performance of rebuild-from-
PLN and rebuild-from-LN. Note that rebuild-from-LN is
only used upon system failure. Figure 10b shows the
total rebuilding time of both strategies for inserting 100
million KV-pairs to NV-Tree with different node sizes.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

512B 1024B 2048B 4096B

#
 o

f
L
O

A
D

s
 (

M
ill

io
n
)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree
NV−Tree

(a) Number of LOAD Instruction Executed

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

512B 1024B 2048B 4096B

L
3
 M

is
s
e
s
 (

M
ill

io
n
)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree
NV−Tree

(b) Number of L3 Cache Miss
Figure 9: Cache Efficiency Comparison

10

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 177

Table 2: Rebuilding Time (ms) for 1/10/100 Million Insertion with 512B/1KB/2KB/4KB Nodes
1M 10M 100M

Rebuild Node Size Node Size Node Size
0.5KB 1KB 2KB 4KB 0.5KB 1KB 2KB 4KB 0.5KB 1KB 2KB 4KB
1 0.104 0.119 0.215 0.599 0.058 0.091 0.213 0.603 0.066 0.091 0.206 0.572
2 0.779 2.592 8.761 - 0.503 2.525 8.526 41.104 0.520 2.118 8.594 41.077
3 7.433 50.021 - - 4.782 54.510 - - 4.706 47.219 814.989 -
4 31.702 - - - 39.546 - - - 37.481 1310.004 - -
5 - - - - 312.139 - - - 322.606 - - -
6 - - - - - - - - 2567.219 - - -
7 - - - - - - - - 16231.647 - - -

Rebuilding Time 40.018 52.559 8.976 0.599 357.016 57.126 8.739 41.707 19164.135 1359.432 823.789 41.649
Execution Time 6107.971 4672.032 4349.421 3955.227 62649.634 55998.473 46874.810 44091.494 692341.866 604111.327 570825.594 518323.920

Percentage 0.66% 1.13% 0.21% 0.02% 0.57% 0.10% 0.02% 0.09% 2.77% 0.23% 0.14% 0.01%

 0

 2

 4

 6

 8

 10

 12

512B 1024B 2048B 4096B

L
N

 S
p
lit

s
 (

M
ill

io
n
)

Node Size

100 Million Insertion

(a) Number of LN Splits with Different Node Sizes

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

1024B 2048B 4096B
R

e
b
u
ild

in
g
 T

im
e
 (

m
s
)

Node Size

100 Million Insertion

Rebuild−from−LN
Rebuild−from−PLN

(b) Rebuilding Time for Different Rebuilding Strategy
Figure 10: Rebuilding Overhead Analysis

Rebuild-from-PLN is faster than rebuild-from-LN by 22-
47%. This is because rebuild-from-PLN only scans the
PLNs but rebuild-from-LN has to scan the entire LN list.

As the failure recovery of NV-Tree simply performs a
rebuild-from-LN. The recovery time depends on the total
number of LNs, but is bounded by the time of rebuild-
from-LN as shown in Figure 10b.

To validate the consistency, we manually trigger the
failure recovery by (1) killing NV-Tree process and (2)
cutting the power supply when running both 100M in-
sertion workload and YCSB workloads. Then we check
whether NV-Tree has any data inconsistency or memory
leak. We repeat these tests a few thousand times for NV-
Tree and find it pass the check in all cases.

4.8 End-to-End Performance
In this subsection, we present the performance of our
NV-Store under two YCSB workloads, StatusUpdate
(read-latest) and SessionStore (update-heavy), compared
to Redis. NV-Store is practically durable and consistent
because it stores data in the NVM space directly allo-

cated from NVDIMM using our modified system call.
Redis can provide persistency by using fsync to write
logs to an append-only file (AOF mode). With different
fsync strategy, Redis can be either volatile if fsync is
performed in a time interval, or consistent if fsync is
performed right after each log write. We use the NVM
space to allocate a RAMDisk for holding the log file so
that Redis can be in-memory persistent. Note that it still
goes through the POSIX interface (fsync).

Figure 11a shows the throughput of NV-Store and Re-
dis under StatusUpdate workload which has 95%/5%
search/insert ratio on keys chosen from a temporally
weighted distribution to represent applications in which
people update the online status while others view the lat-
est status, which means newly inserted keys are prefer-
entially chosen for retrieval. The result shows that NV-
Store improve the throughput by up to 3.2X over both
volatile and consistent Redis. This indicates the opti-
mization of reducing cacheline flush for insertion can
significantly improve the performance even with as low
as 5% insertion percentage. Moreover, both volatile and

 0K

 50K

 100K

 150K

 200K

 250K

1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

Client Number

Redis/Volatile
Redis/Consistent
NV−Store

(a) Throughput of YCSB Workload: StatusUpdate

 0K

 50K

 100K

 150K

 200K

 250K

 300K

1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

Client Number

Redis/Volatile
Redis/Consistent
NV−Store

(b) Throughput of YCSB Workload: SessionStore
Figure 11: Throughput Comparison of NV-Store and Redis

11

178 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

NVDIMM STT−RAM PCM

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

NVM Type

1 Million Insertion, Node Size = 4KB

LCB+Tree
CDDS−Tree
NV−Tree

Figure 12: Execution Time on Different Types of NVM

 0

 5

 10

 15

 20

 25

512B 1024B 2048B 4096B

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Node Size

1 Million Insertion

LCB+Tree
CDDS−Tree
NV−Tree

Figure 13: Estimated Execution Time with Epoch

consistent Redis are bottlenecked with about 16 clients
while NV-Store can still scale up with 32 clients. The
high scalability of NV-Store is achieved by (1) allowing
concurrent search in LN while it is being updated, (2)
searching in IN/PLNs without locks. Figure 11b shows
the throughput under SessionStore workload which has
50%/50% search/update ratio on keys chosen from a
Zipf distribution to represent applications in which peo-
ple record recent actions. NV-Store can improve the
throughput by up to 4.8X over Redis because the work-
load is more write-intensive.

4.9 Discussion
4.9.1 NV-Tree on Different Types of NVM

Given the write latency difference of NVDIMM (same as
DRAM), PCM (180ns), STT-RAM (50ns) in Table 1, we
explicitly add some delay before every memory write in
our NV-Tree to investigate its performance on different
types of NVM. Figure 12 shows the execution time of
one million insertion in NV-Tree with 4KB nodes. Com-
pared to the performance on NVDIMM, NV-Tree is only
5%/206% slower on STT-RAM/PCM, but LCB+Tree is
51%/241% and CDDS-Tree is 87%/281% slower. NV-
Tree suffers from less performance drop than LCB+Tree
and CDDS-Tree on slower NVM because of the reduc-
tion of CPU cacheline flush.

4.9.2 NV-Tree on Future Hardware: Epoch and
CLWB/CLFLUSHOPT/PCOMMIT

Comparing to MFENCE and CLFLUSH, epoch and a
couple of new instructions for non-volatile storage

(CLWB/CLFLUSHOPT/PCOMMIT) added by Intel re-
cently [26] are able to flush CPU cachelines without ex-
plicit invalidations which means it does not trigger any
additional cache misses. As these approaches are still un-
available in existing hardware, we estimate LCB+Tree,
CDDS-Tree and our NV-Tree performance by remov-
ing the cost of L3 cache misses due to cacheline flushes
the execution time (Figure 5a). For B+Tree and volatile
CDDS-Tree, such cost can be derived by deducting the
number of L3 cache misses without cacheline flushes
(Figure 1b) from that with cacheline flushes (Figure 9b).
As shown in Figure 13, with the cache miss penalty re-
moved, the performance improvement of NV-Tree over
LCB+Tree/CDDS-Tree is 7X/9X with 4KB nodes. This
indicates our optimization of reducing cacheline flush is
still valuable when flushing a cacheline without the in-
validation becomes possible.

5 Conclusion and Future Work
In this paper, we quantify the consistency cost of ap-
plying existing approaches such as logging and version-
ing on B+Tree. Based on our observations, we pro-
pose our NV-Tree which require the data consistency
in NVM connected through a memory bus, e.g., NVM-
based single level systems. By selectively enforcing con-
sistency, adopting unsorted LN and organizing IN cache-
optimized, NV-Tree can reduce the number of cacheline
flushes under write-intensive workloads by more than
90% compared to CDDS-Tree. Using NV-Tree as the
core data structure, we build a key-value store named
NV-Store. Both NV-Tree and NV-Store are implemented
and evaluated on a real NVDIMM platform instead of
simulation. The experimental results show that NV-Tree
outperforms LCB+Tree and CDDS-Tree by up to 8X and
12X under write-intensive workloads, respectively. Our
NV-Store increases the throughput by up to 4.8X under
YCSB workloads compared to Redis. In our future work,
we will continue to reduce the overhead of the rebuilding
in larger datasets, validate and improve the performance
of NV-Tree under skewed and TPC-C workloads, and ex-
plore NV-Tree in the distributed environment.

Acknowledgment
We would like to thank our teammates, Mingdi Xue and
Renuga Kanagavelu, the anonymous reviewers and our
shepherd, Nisha Talagala, for their helpful comments.
This work was supported by Agency for Science, Tech-
nology and Research (A*STAR), Singapore under Grant
No. 112-172-0010. Bingsheng’s work was partly sup-
ported by a MoE AcRF Tier 2 grant (MOE2012-T2-1-
126) in Singapore.

12

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 179

References
[1] AGIGATECH. Arxcis-nv (tm) non-volatile dimm.

http://www.vikingtechnology.com/arxcis-nv (2014).
[2] BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., ,

KRANER, R., KUSZMAUL, B. C., MEDJEDOVIC, D., MONTES,
P., SHETTY, P., SPILLANE, R. P., AND ZADOK, E. Don’t thrash:
How to cache your hash on flash. In Proceedings of the 38th In-
ternational Conference on Very Large Data Bases (VLDB ’12)
(Istanbul, Turkey, August 2012), Morgan Kaufmann.

[3] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J.,
O’NEIL, E., AND O’NEIL, P. A critique of ansi sql isolation
levels. In ACM SIGMOD Record (1995), vol. 24, ACM, pp. 1–
10.

[4] BHASKARAN, M. S., XU, J., AND SWANSON, S. Bankshot:
caching slow storage in fast non-volatile memory. Operating Sys-
tems Review 48, 1 (2014), 73–81.

[5] BINGMANN, T. Stx b+ tree c++ template classes, 2008.
[6] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,

GUPTA, R. K., AND SWANSON, S. Moneta: A high-
performance storage array architecture for next-generation, non-
volatile memories. In 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2010, 4-8 December 2010,
Atlanta, Georgia, USA (2010), pp. 385–395.

[7] CAULFIELD, A. M., MOLLOV, T. I., EISNER, L. A., DE, A.,
COBURN, J., AND SWANSON, S. Providing safe, user space
access to fast, solid state disks. ACM SIGPLAN Notices 47, 4
(2012), 387–400.

[8] CAULFIELD, A. M., AND SWANSON, S. Quicksan: a stor-
age area network for fast, distributed, solid state disks. In The
40th Annual International Symposium on Computer Architecture,
ISCA’13, Tel-Aviv, Israel, June 23-27, 2013 (2013), pp. 464–474.

[9] CHEN, S., GIBBONS, P. B., AND NATH, S. Rethinking database
algorithms for phase change memory. In CIDR (2011), pp. 21–
31.

[10] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic Crash Consistency.
In Proceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP ’13) (Farmington, PA, November 2013).

[11] CHO, S., PARK, C., OH, H., KIM, S., YI, Y., AND GANGER,
G. R. Active disk meets flash: A case for intelligent ssds. In
Proceedings of the 27th International ACM Conference on Inter-
national Conference on Supercomputing (New York, NY, USA,
2013), ICS ’13, ACM, pp. 91–102.

[12] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. Nv-heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2011),
ASPLOS XVI, ACM, pp. 105–118.

[13] COMER, D. Ubiquitous b-tree. ACM Computing Surveys (CSUR)
11, 2 (1979), 121–137.

[14] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E.,
LEE, B., BURGER, D., AND COETZEE, D. Better i/o through
byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 133–146.

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud com-
puting (2010), ACM, pp. 143–154.

[16] CULLY, B., WIRES, J., MEYER, D., JAMIESON, K., FRASER,
K., DEEGAN, T., STODDEN, D., LEFEBVRE, G., FERSTAY, D.,
AND WARFIELD, A. Strata: High-performance scalable storage
on virtualized non-volatile memory. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 14)
(Santa Clara, CA, 2014), USENIX, pp. 17–31.

[17] DEBRABANT, J., ARULRAJ, J., PAVLO, A., STONEBRAKER,
M., ZDONIK, S., AND DULLOOR, S. R. A prolegomenon on
oltp database systems for non-volatile memory. Proceedings of
the VLDB Endowment 7, 14 (2014).

[18] DHIMAN, G., AYOUB, R., AND ROSING, T. Pdram: a hy-
brid pram and dram main memory system. In Design Automa-
tion Conference, 2009. DAC’09. 46th ACM/IEEE (2009), IEEE,
pp. 664–669.

[19] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ,
P., REDDY, D., SANKARAN, R., AND JACKSON, J. System soft-
ware for persistent memory. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems (2014), ACM, p. 15.

[20] EVERSPIN. Second generation mram: Spin torque tech-
nology. http://www.everspin.com/products/second-generation-st-
mram.html (2004).

[21] FREITAS, R. F., AND WILCKE, W. W. Storage-class memory:
The next storage system technology. IBM Journal of Research
and Development 52, 4.5 (2008), 439–447.

[22] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BENJAMIN,
S., GOEL, A., AND BROWN, A. D. Recon: Verifying file system
consistency at runtime. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST’12) (San Jose,
CA, February 2012), pp. 73–86.

[23] GAO, S., XU, J., HE, B., CHOI, B., AND HU, H. Pcmlogging:
Reducing transaction logging overhead with pcm. In Proceedings
of the 20th ACM International Conference on Information and
Knowledge Management (New York, NY, USA, 2011), CIKM
’11, ACM, pp. 2401–2404.

[24] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The bleak fu-
ture of NAND flash memory. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, FAST 2012, San
Jose, CA, USA, February 14-17, 2012 (2012), p. 2.

[25] INTEL. Intel 64 and ia-32 architectures software developer’s man-
ual. Volume 3A: System Programming Guide, Part 1 (2014).

[26] INTEL. Intel architecture instruction set extensions programming
reference. https://software.intel.com (2014).

[27] JUNG, M., CHOI, W., SHALF, J., AND KANDEMIR, M. T.
Triple-a: a non-ssd based autonomic all-flash array for high per-
formance storage systems. In Proceedings of the 19th interna-
tional conference on Architectural support for programming lan-
guages and operating systems (2014), ACM, pp. 441–454.

[28] JUNG, M., WILSON III, E. H., CHOI, W., SHALF, J., AK-
TULGA, H. M., YANG, C., SAULE, E., CATALYUREK, U. V.,
AND KANDEMIR, M. Exploring the future of out-of-core com-
puting with compute-local non-volatile memory. In Proceedings
of SC13: International Conference for High Performance Com-
puting, Networking, Storage and Analysis (2013), ACM, p. 75.

[29] KAWAHARA, T. Scalable spin-transfer torque ram technology
for normally-off computing. IEEE Design & Test of Computers
28, 1 (2011), 0052–63.

[30] KIM, H., SESHADRI, S., DICKEY, C. L., AND CHIU, L. Eval-
uating phase change memory for enterprise storage systems: A
study of caching and tiering approaches. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (Santa Clara, CA, 2014), USENIX, pp. 33–45.

13

180 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

[31] KIM, M., SHIN, J., AND WON, Y. Selective segment initial-
ization: Exploiting nvram to reduce device startup latency. In
Embedded Systems Letters (2014), pp. 33–36.

[32] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Resolving
journaling of journal anomaly in android i/o: Multi-version b-tree
with lazy split. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14) (Santa Clara, CA,
2014), USENIX, pp. 273–285.

[33] LEE, D., AND WON, Y. Bootless boot: Reducing device boot la-
tency with byte addressable NVRAM. In 10th IEEE International
Conference on High Performance Computing and Communica-
tions & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China,
November 13-15, 2013 (2013), pp. 2014–2021.

[34] LEE, E., BAHN, H., AND NOH, S. H. Unioning of the buffer
cache and journaling layers with non-volatile memory. In FAST
(2013), pp. 73–80.

[35] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S.,
AND WALLACE, G. Nitro: a capacity-optimized ssd cache for
primary storage. In Proceedings of the 2014 USENIX conference
on USENIX Annual Technical Conference (2014), USENIX As-
sociation, pp. 501–512.

[36] LI, Y., HE, B., YANG, R. J., LUO, Q., AND YI, K. Tree index-
ing on solid state drives. Proceedings of the VLDB Endowment
3, 1-2 (2010), 1195–1206.

[37] LIU, R.-S., SHEN, D.-Y., YANG, C.-L., YU, S.-C., AND
WANG, C.-Y. M. Nvm duet: unified working memory and per-
sistent store architecture. In Proceedings of the 19th international
conference on Architectural support for programming languages
and operating systems (2014), ACM, pp. 455–470.

[38] LOMET, D., AND SALZBERG, B. Access methods for multiver-
sion data, vol. 18. ACM, 1989.

[39] LV, Y., CUI, B., HE, B., AND CHEN, X. Operation-aware buffer
management in flash-based systems. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data
(2011), ACM, pp. 13–24.

[40] MANDELMAN, J. A., DENNARD, R. H., BRONNER, G. B.,
DEBROSSE, J. K., DIVAKARUNI, R., LI, Y., AND RADENS,
C. J. Challenges and future directions for the scaling of dynamic
random-access memory (dram). IBM Journal of Research and
Development 46, 2.3 (2002), 187–212.

[41] MÁRMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND
GANESAN, S. Nvmkv: A scalable and lightweight flash aware
key-value store. In 6th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 14) (2014), USENIX Associa-
tion.

[42] MORARU, I., ANDERSEN, D. G., KAMINSKY, M., TOLIA, N.,
RANGANATHAN, P., AND BINKERT, N. Consistent, durable,
and safe memory management for byte-addressable non volatile
main memory. In Proceedings of the 2013 Conference on Timely
Results in Operating Systems (2013).

[43] MUELLER, W., AICHMAYR, G., BERGNER, W., ERBEN, E.,
HECHT, T., KAPTEYN, C., KERSCH, A., KUDELKA, S., LAU,
F., LUETZEN, J., ET AL. Challenges for the dram cell scaling
to 40nm. In Electron Devices Meeting, 2005. IEDM Technical
Digest. IEEE International (2005), IEEE, pp. 4–pp.

[44] NARAYANAN, D., AND HODSON, O. Whole-system persistence.
In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2012), ASPLOS XVII, ACM,
pp. 401–410.

[45] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory per-
sistency. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on (2014), IEEE, pp. 265–276.

[46] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-
KISWANY, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. All File Systems Are Not Created Equal: On
the Complexity of Crafting Crash-Consistent Applications. In
Proceedings of the 11th Symposium on Operating Systems De-
sign and Implementation (OSDI ’14) (Broomfield, CO, October
2014).

[47] QIN, D., BROWN, A. D., AND GOEL, A. Reliable writeback
for client-side flash caches. In 2014 USENIX Annual Techni-
cal Conference (USENIX ATC 14) (Philadelphia, PA, June 2014),
USENIX Association, pp. 451–462.

[48] QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A. Scal-
able high performance main memory system using phase-change
memory technology. ACM SIGARCH Computer Architecture
News 37, 3 (2009), 24–33.

[49] RAOUX, S., BURR, G. W., BREITWISCH, M. J., RETTNER,
C. T., CHEN, Y.-C., SHELBY, R. M., SALINGA, M., KREBS,
D., CHEN, S.-H., LUNG, H.-L., ET AL. Phase-change random
access memory: A scalable technology. IBM Journal of Research
and Development 52, 4.5 (2008), 465–479.

[50] SANFILIPPO, S., AND NOORDHUIS, P. Redis. http://redis.io
(2009).

[51] SESHADRI, S., GAHAGAN, M., BHASKARAN, S., BUNKER, T.,
DE, A., JIN, Y., LIU, Y., AND SWANSON, S. Willow: A user-
programmable ssd. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (Broomfield, CO,
Oct. 2014), USENIX Association, pp. 67–80.

[52] SRIRAM SUBRAMANIAN, SWAMI SUNDARARAMAN, NISHA
TALAGALA, ANDREA C. ARPACI-DUSSEAU, REMZI H.
ARPACI-DUSSEAU. Snapshots in a Flash with ioSnap. In Eu-
roSys ’14 (Amsterdam, Netherlands, April 2014).

[53] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P., CAMP-
BELL, R. H., ET AL. Consistent and durable data structures for
non-volatile byte-addressable memory. In FAST (2011), pp. 61–
75.

[54] VOLOS, H., NALLI, S., PANNEERSELVAM, S., VARADARAJAN,
V., SAXENA, P., AND SWIFT, M. M. Aerie: flexible file-system
interfaces to storage-class memory. In Proceedings of the Ninth
European Conference on Computer Systems (2014), ACM, p. 14.

[55] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In ACM SIGARCH Computer
Architecture News (2011), vol. 39, ACM, pp. 91–104.

[56] VUČINIĆ, D., WANG, Q., GUYOT, C., MATEESCU, R.,
BLAGOJEVIĆ, F., FRANCA-NETO, L., MOAL, D. L., BUNKER,
T., XU, J., SWANSON, S., AND BANDIĆ, Z. Dc express: Short-
est latency protocol for reading phase change memory over pci
express. In Proceedings of the 12th USENIX Conference on File
and Storage Technologies (FAST 14) (Santa Clara, CA, 2014),
USENIX, pp. 309–315.

[57] WANG, C., VAZHKUDAI, S. S., MA, X., MENG, F., KIM, Y.,
AND ENGELMANN, C. Nvmalloc: Exposing an aggregate ssd
store as a memory partition in extreme-scale machines. In Par-
allel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International (2012), IEEE, pp. 957–968.

[58] WU, X., AND REDDY, A. Scmfs: a file system for storage class
memory. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis
(2011), ACM, p. 39.

14

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 181

[59] YIYING ZHANG, ANDREA C. ARPACI-DUSSEAU, REMZI H.
ARPACI-DUSSEAU. Warped Mirrors for Flash. In Proceedings
of the 29th IEEE Conference on Massive Data Storage (MSST
’13) (Long Beach, California, May 2013).

[60] YIYING ZHANG, LEO ARULRAJ, ANDREA C. ARPACI-
DUSSEAU, REMZI H. ARPACI-DUSSEAU. De-indirection for
Flash-based SSDs with Nameless Writes. In Proceedings of the
10th Conference on File and Storage Technologies (FAST ’12)
(San Jose, California, February 2012).

[61] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y. A durable and
energy efficient main memory using phase change memory tech-
nology. In ACM SIGARCH Computer Architecture News (2009),
vol. 37, ACM, pp. 14–23.

15

