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Abstract
NAND flash, used in modern SSDs, is a write-once

medium, where each memory cell must be erased prior
to writing. The lifetime of an SSD is limited by the num-
ber of erasures allowed on each cell. Thus, minimizing
erasures is a key objective in SSD design.

A promising approach to eliminate erasures and extend
SSD lifetime is to use write-once memory (WOM) codes,
designed to accommodate additional writes on write-once
media. However, these codes inflate the physically stored
data by at least 29%, and require an extra read operation
before each additional write. This reduces the available
capacity and I/O performance of the storage device, so far
preventing the adoption of these codes in SSD design.

We present Reusable SSD, in which invalid pages are
reused for additional writes, without modifying the drive’s
exported storage capacity or page size. Only data written
as a second write is inflated, and the required additional
storage is provided by the SSD’s inherent overprovision-
ing space. By prefetching invalid data and parallelizing
second writes between planes, our design achieves latency
equivalent to a regular write. We reduce the number of
erasures by 33% in most cases, resulting in a 15% lifetime
extension and an overall reduction of up to 35% in I/O re-
sponse time, on a wide range of synthetic and production
workloads and flash chip architectures.

1 Introduction
The use of flash based solid state drives (SSD) has in-
creased in recent years, thanks to their short read and
write latencies and increasing throughput. However, once
flash cells are written upon, they must be erased before
they can be rewritten. These comparatively slow erasures,
along with the additional overheads they incur, signifi-
cantly slow down pending read and write operations. In
addition, flash cells have a limited lifetime, measured as
the number of erasures a block can endure before its relia-
bility deteriorates below an acceptable level [1, 12].

Erasures are the major contributors to cell wear [24].
Thus, much effort has been invested in attempts to re-
duce them and extend SSD lifetime. Suggested methods
include minimizing write traffic [16, 18, 29, 38, 43, 46,
53] and distributing erase costs evenly across the drive’s
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Figure 1: A simplified depiction of our second write approach.
Each block holds one page, and begins in a clean state (1). Log-
ical pages P0 and P1 are written by the application and stored
on the first two blocks of the drive (2). When they are written
again their copies are invalidated (3) and written elsewhere (not
shown). Normally, the blocks would now be erased and returned
to the clean state. Instead, in our design, they are reused to write
logical page P2 as a second write (4). When page P2 is written
again by the application, its copy is invalidated (5) and the blocks
are erased, returning to the clean state.

blocks [1, 20, 27, 28]. While most of these methods im-
prove performance due to the reduction in erasures, oth-
ers extend device lifetime at the cost of degrading per-
formance [11, 24, 30]. Another approach is to improve
current error correction methods in order to compensate
for the decreasing reliability of blocks late in their life-
time [7, 44, 60].

A promising technique for reducing block erasures is
to use write-once memory (WOM) codes. WOM codes
alter the logical data before it is physically written, thus
allowing the reuse of cells for multiple writes. They en-
sure that, on every consecutive write, zeroes may be over-
written with ones, but not vice versa. WOM codes were
originally proposed for write-once storage media such as
punch cards and optical disks [47]. However, they can
be applied to flash memories, which impose similar con-
straints: the bit value of each cell can only increase, not
decrease, unless the entire block is erased1. Indeed, sev-
eral recent studies proposed the use of WOM codes to re-
duce SSD block erasures [4, 14, 21, 23, 35, 42, 57].

Unfortunately, the additional writes come at a price.
The old data must be read before the new data can be en-
coded. More importantly, WOM codes ‘inflate’ the data:
the physical capacity required for storing the encoded data
is larger than the original, logical, data by at least 29% —

1We adopt the conventions of coding literature, and refer to the initial,
low voltage state of flash cells as zero.
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a theoretical lower bound [17, 47]. Furthermore, WOM
code design involves three conflicting objectives: mini-
mizing physical capacity, minimizing encoding complex-
ity, and minimizing the probability of encoding failure.
Any two objectives can be optimized at the cost of com-
promising the third.

Existing studies have focused on minimizing the physi-
cal capacity overhead and the probability of encoding fail-
ure, greatly increasing complexity. The resulting designs,
in which additional writes are performed on the same
‘used’ page, incur impractically high overheads. Thus, the
industry has been unable to exploit recent theoretical ad-
vances effectively.

Our goal is to bridge the gap between theory and prac-
tice. To achieve a practical, applicable design, we are will-
ing to tolerate a certain probability of (albeit rare) encod-
ing failure and mitigate its penalties with the negligible
overhead of an additional calculation.

We present Reusable SSD — a design that uses WOM
codes to perform second writes on flash, thus reducing era-
sures and extending SSD lifetime. This is, to the best of
our knowledge, the first design that addresses all the prac-
tical constraints of WOM codes. A simplified depiction of
the design of Reusable SSD appears in Figure 1.

In order to preserve the SSD’s logical capacity, we per-
form first writes with unmodified logical data, with no ad-
ditional overheads, and utilize existing spare space within
the SSD to perform ‘inflated’ second writes. For efficient
storage utilization, we use second writes only for “hot”
data that is invalidated quickly.

In order to preserve the SSD’s I/O performance, we use
WOM codes with encoding complexity equivalent to that
of error correction codes used by current SSDs. Second
writes are written on two used physical pages on different
blocks, so that they are read and written in parallel, avoid-
ing additional latency. We prefetch the old, invalid, data
in advance to avoid additional delays.

We evaluate Reusable SSD using the SSD [1] exten-
sion of the DiskSim simulator [5], and a well-studied set
of workloads [40, 41]. Second writes in our design are
indeed shown to be “free”: they reduce the number of era-
sures by an almost steady 33%, resulting in a 15% life-
time extension. By eliminating so many erasures while
preserving the read and write latency of individual opera-
tions, our design also notably reduces I/O response time:
up to 15% in enterprise architectures and up to 35% in
consumer class SSD architectures. Furthermore, our de-
sign is orthogonal to most existing techniques for extend-
ing SSD lifetime. These techniques can be combined with
Reusable SSD to provide additional lifetime extension.

The rest of this paper is organized as follows. Section 2
contains the preliminaries for our design. We present our
implementation of second writes in Section 3, and give
an overview of our design in Section 4. The details are

described in Section 5, with our experimental setup and
evaluation in Section 6. We survey related work in Sec-
tion 7, and conclude in Section 8.

2 Preliminaries
2.1 Use of NAND Flash for SSD

A flash memory chip is built from floating-gate cells that
can be programmed to store a single bit, two bits, and three
bits in SLC, MLC and TLC flash, respectively. Cells are
organized in blocks, which are the unit of erasure. Blocks
are further divided into pages, which are the read and pro-
gram units. Each block typically contains 64-384 pages,
ranging in size from 2KB to 16KB [12, 14]. Within the
chip, blocks are divided into two or more planes, which
are managed and accessed independently. Planes within
a chip can operate concurrently, performing independent
operations such as read, program, and erase, possibly with
some minor restrictions [14, 19, 49, 55].

Each page is augmented with a page spare area, used
mainly for storing redundancy bytes of error correction
codes (ECC) [12, 14]. The size of the spare area ranges
between 5% and 12.5% of the page’s logical size [19, 49,
55, 60]. The larger sizes are more common in recent archi-
tectures, because scaling in technology degrades the cell’s
reliability [12, 45]. Furthermore, the bit error rate (BER)
increases as a function of the block’s lifetime, requiring
stronger ECC as the block grows older [8, 12, 37].

Write requests cannot update the data in the same place
it is stored, because the pages must first be erased. Thus,
writes are performed out-of-place: the previous data loca-
tion is marked as invalid, and the data is written again on
a clean page. To accommodate out-of-place writes, some
physical storage capacity is not included in the drive’s ex-
ported logical capacity. Thus, the drive’s overprovisioning
is defined as T−U

U
, where T and U represent the number

of physical and logical blocks, respectively [12]. Typical
values of overprovisioning are 7% and 28% for consumer
and enterprise class SSDs, respectively [52]. The Flash
Translation Layer (FTL) is responsible for mapping logi-
cal addresses to physical pages.

Whenever the number of clean blocks drops below a
certain threshold, the garbage collection process is in-
voked. Garbage collection is typically performed greed-
ily, picking the block with the minimum valid count –
number of valid pages, as the victim for cleaning. The
valid pages are moved – read and copied to another avail-
able block, and then the block is erased. The addition of
internal writes incurred by garbage collection is referred
to as write amplification [12]. It delays the cleaning pro-
cess, and requires, eventually, additional erasures. Write
amplification can be reduced by increasing overprovision-
ing, sacrificing logical capacity for performance and block
lifetime [12, 43, 52].
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Figure 2: Naive implementation of second writes with the code
in Table 1. Every write, first or second, must program and occupy
storage capacity equivalent to 150% of the logical page size.

Data on the drive is usually not updated uniformly.
Thus, some blocks may reach their lifetime limit, ren-
dering the drive inoperable, while many blocks are still
‘young’. Several techniques have been proposed for
wear leveling – distributing erasures uniformly across the
drive’s blocks [1, 27].

2.2 Write-Once Memory Codes
Write-once memory (WOM) codes were first introduced
in 1982 by Rivest and Shamir, for recording informa-
tion multiple times on a write-once storage medium [47].
They give a simple WOM code example, presented in Ta-
ble 1. This code enables the recording of two bits of

Data bits 1st write 2nd write
00 000 111
10 100 011
01 010 101
11 001 110

Table 1: WOM Code Example

information in three cells
twice, ensuring that in
both writes the cells
change their value only
from 0 to 1. For example,
if the first message to be
stored is 11, then 001 is
written, programming only the last cell. If the second
message is 01, then 101 is written, programming the
first cell as well. Note that without special encoding, 11
cannot be overwritten by 01 without prior erasure. If the
first and second messages are identical, then the cells do
not change their value between the first and second writes.
Thus, before performing a second write, the cell values
must be read in order to determine the correct encoding.

In the example from Table 1, a total of four bits of infor-
mation are written into three cells: two in each write. Note
that on a write-once medium, a basic scheme, without en-
coding, would require a total of four cells, one for every
data bit written. In general, the main goal in the design of
WOM codes is to maximize the total number of bits that
can be written to memory for a given number of cells and
number of writes. The number of bits written in each write
does not have to be the same.

A WOM code design is a called a construction. It spec-
ifies, for a given number of cells, the number of achiev-
able writes, the amount of information that can be written
in each write, and how each successive write is encoded.
Numerous methods have been suggested for improving
WOM code constructions [4, 6, 21, 25, 47, 51, 56].

To see how WOM codes can be used to reduce era-

Figure 3: WOM code de-
sign space trades off storage
capacity, encoding com-
plexity (efficiency) and the
rate of successful encoding.

Capacity

Complexity Success rate

sures, consider a naive application of the WOM code in
Table 1 to SSD. Every page of data would be encoded by
the SSD controller into 1.5 physical pages according to the
WOM code construction from Table 1. Thus, each page
could be written by a first write, invalidated, and written
by a second write before being erased, as depicted in Fig-
ure 2. Such an application has two major drawbacks: (1)
Although additional writes can be performed before era-
sure, at any given moment the SSD can utilize only 2/3
of its available storage capacity. (2) Every I/O operation
must access physical bits equivalent to 50% more than its
logical size, slowing down read and write response times.

Moreover, to accommodate such an application, the
SSD manufacturer would have to modify its unit of inter-
nal operations to be larger than the logical page size. Al-
ternatively, if unmodified hardware is used, each I/O oper-
ation would have to access two physical pages, increasing
its response time overhead to 100%.

The limitations of practical WOM codes complicate
things even further. WOM code constructions that achieve
a capacity overhead close to the theoretical lower bound
(“capacity achieving”) entail encoding and decoding com-
plexities that are far from practical [51, 56]. Alternatively,
more efficient constructions achieve similar capacity over-
head but do not necessarily succeed in successive writes
for all data combinations [6]. In other words, each such
code is characterized by a small (nonnegligible) probabil-
ity of failure in writing.

Figure 3 depicts the inherent tradeoff of WOM code de-
sign space. Of the three objectives: capacity, complexity,
and high encoding success rate, any two can be optimized
at the cost of compromising the third.

3 Implementing Second Writes
Our design is based on choosing WOM code constructions
suitable for real systems. We narrow our choice of WOM
code by means of two initial requirements:

1. First writes must not be modified. Their encoding
and data size must remain unchanged.

2. The complexity of the chosen code must not exceed
that of commonly used error correction codes.

The first requirement ensures that the latency and stor-
age utilization of most of the I/O operations performed on
the SSD will remain unaffected. The second requirement
enables us to parallelize or even combine WOM and ECC
encoding and decoding within the SSD controller, without
incurring additional delays [25].

Thus, we limit our choice to codes that satisfy the above
constraints and vary in the tradeoff between storage capac-



260 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

a b c d e f
Req. storage 200% 206% 208% 210% 212% 214%
Success rate 0 5% 58% 95% 99% 100%

Table 2: Sample WOM codes and their characteristics. Success
rates were verified in simulations on random data, as described
in [6], assuming a 4KB page size. The required storage is relative
to the logical page size.

ity and success rate. One such example are polar WOM
codes [6], based on a family of error-correcting codes re-
cently proposed by Arikan [2]. Their encoding and de-
coding complexities are the same as those of LDPC er-
ror correction codes [3, 6, 50]. Polar WOM codes can be
constructed for all achievable capacity overheads, but with
nonnegligible failure probability [6]. Table 2 summarizes
several known instances which match our requirements.

The tradeoff between storage efficiency and success rate
is evident. While choosing a code that always succeeds
(Table 2(f)) is appealing, it requires programming three
physical pages for writing a single logical page, which,
on most flash architectures, cannot be done concurrently.
However, a code that requires exactly two physical pages
for a second write (Table 2(a)) always fails in practice.

We compromise these two conflicting objectives by uti-
lizing the page spare area. Recall that the spare area
is mainly used for error correction. However, since
the bit error rates increase with block lifetime, weaker
ECC can sometimes be used, utilizing only a portion
of the page spare area and improving encoding perfor-
mance [7, 28, 33, 44, 48, 58, 60]. We take advantage of the
page spare area and divide it into two sections, as depicted
in Figure 4. In the first, smaller section, we store the ECC
of the first write. In the second, larger section, we store
the ECC of the second write combined with some of the
encoded data of the second write. A way to produce this
combined output has been suggested in [25].

By limiting the size of the ECC of the first write, we
limit its strength. Consequently, when the blocks’ BER in-
creases beyond the error-correcting capabilities of the new
ECC, we must disable second writes, and the SSD oper-
ates normally with first writes only. Bit errors are continu-
ously monitored during both reading and writing, to iden-
tify bad pages and blocks [27]. The same information can
be used to determine the time for disabling second writes
on each block. Another consequence of our choice of code
is that WOM computations will fail with a small probabil-
ity. When that happens, we simply retry the encoding; if
that fails, we write the logical data as a first write. We ex-
plain this process in detail in Section 5.6, and evaluate its
effect on performance in Section 6.6.

In our implementation, we use the code from Table 2(d),
which requires 210% storage capacity and succeeds with
a probability of 95%. We assume each page is augmented
with a spare area 9% of its size [60], and allocate 2.5%
for storing the ECC of the first write (Figure 4(a)). The

Figure 4: Use of page
spare area for second
writes. A small section
is used for the ECC of
the first write (a). The
remaining area is used for
the combined WOM code
and ECC of the second
write (b).
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remaining 6.5% stores 5% of the WOM code output com-
bined with the ECC equivalent to an ECC of 4% of the
page size (Figure 4(b)). Altogether, the two physical pages
along with their spare areas provide a total capacity equiv-
alent to 210% of the logical page size. An ECC of 2.5% of
the page size is sufficient for roughly the first 30% of the
block’s lifetime [7, 33, 48], after which we disable second
writes.

The utilization of the spare area can change in future
implementations, in order to trade off storage capacity and
success rate, according to the size of the page spare area
and the available codes. According to current manufactur-
ing trends, BERs increase, requiring stronger ECCs, and,
respectively, larger page spare area. However, the size of
the spare area is set to accommodate error correction for
the highest expected BER, observed as flash cells reach
their lifetime limit. The Retention Aware FTL [33] com-
bines two types of ECC, using the weaker code to improve
write performance when lower BERs are expected. The
same method can be used to utilize the redundant spare
area for second writes.

WOM codes require that there be enough (≥ 50%) zero
bits on the physical page in order to apply a second write.
Thus, we ensure that no more than half the cells are pro-
grammed in the first write. If a first write data page has too
many one bits, we program its complement on the phys-
ical page, and use one extra bit to flag this modification.
The overhead of this process is negligible [10]. The ap-
plication of WOM encoding to SLC flash, where each cell
represents one bit, is straightforward. In MLC and TLC
flash, the cell voltage levels are mapped to four and eight
possible 2-bit and 3-bit values, respectively. WOM encod-
ing ensures that the cell level can only increase in the sec-
ond write, assuming the number of one bits in each level
is greater than or equal to the number of ones in all lower
levels. Due to inter-cell interference, the failure probabil-
ity may be higher with MLC and TLC [26].
Expected benefit. To estimate the expected reduction

in the number of erasures, we perform the following best
case analysis. We refer to an SSD that performs only first
writes as a standard SSD. Assume that each block contains
N pages, and that there are M page write requests. The
expected number of erasures in a standard SSD is E =
M
N

. In Reusable SSD, N + N
2

pages can be written on
each block before it is erased. Thus, the expected number
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Figure 5: Garbage collection and block lifecycle

of erasures is E′ = M
N+N/2

= 2

3
E, a reduction of 33%

compared to a standard SSD.
To calculate the effect on the SSD’s lifetime, consider a

standard SSD that can accommodate W page writes. 30%
of them (0.3W ) are written in the first 30% of the SSD’s
lifetime. With second writes, 50% more pages can be writ-
ten (0.15W ), resulting in a total of 1.15W , equivalent to
an increase of 15% in the SSD’s lifetime.

4 Reusable SSD: Overview
In our design, blocks transition between four states, as de-
picted in Figure 5. In the initial, clean state, a block has
never been written to, or has been erased and not writ-
ten to since. A block moves to the used state after all
of its pages have been written by a first write. When
a used block is chosen as victim by the garbage collec-
tion process, it is usually recycled, moving to the recycled
state, which means its invalid pages can be used for second
writes. When all of the invalid pages on a recycled block
have been written, it moves to the reused state. When a
reused block is chosen by the garbage collection process,
it is erased, moving back to the clean state.

Note that a used block can, alternatively, be erased, in
which case it skips the recycled and reused states, and
moves directly to the clean state. The garbage collection
process determines, according to the number of blocks in
each state, whether to erase or recycle the victim block.
Figure 5 provides a high level depiction of this process,
explained in detail in Section 5.4.

Figures 5 and 6 show how blocks are organized within
the two planes in a flash chip. We divide the physical
blocks in each plane into three logical partitions: one for
clean blocks, one for recycled ones, and one for used
and reused blocks. One clean block and one recycled
block in each plane are designated as CleanActive and
RecycledActive, respectively. First writes of pages that
are mapped to a specific flash chip are performed, inde-
pendently, on any of the two CleanActive blocks in that
chip. Second writes are performed in parallel on both
RecycledActive blocks in the chip.

A logical page is written as a second write if (1) recy-
cled blocks are available for second writes in both planes,
and (2) the data written has been classified as hot. Pages
written as first writes are divided between planes to bal-
ance the number of valid pages between them. Figure 6

clean

recycled

clean

recycled

1st write

1st write

2nd write
Hot/cold,

load balancing
(FTL)

Logical
write
(FS)

Plane 0
Plane 1

CleanActive0

RecycledActive0

CleanActive1

RecycledActive1

Figure 6: Logical and physical writes within one flash chip

provides a high level description of this process. A de-
tailed description of our design is given in the next section.

5 Design Details
5.1 Page Allocation
Within an SSD, logical data is striped between several
chips. The page allocation scheme determines, within
each flash chip, to which plane to direct a logical write
request. The target plane need not be the one on which
the previous copy of the page was written. The standard
scheme, which we modify for second writes, balances the
number of clean pages in each plane [1]. Thus, a write re-
quest is directed to the plane that currently has fewer clean
pages than the other.

We adapt the standard scheme to second writes as fol-
lows. When a page is classified as hot, it is written in
parallel to a pair of RecycledActive blocks, one in each
plane, as depicted in Figure 6. To minimize the size of
additional metadata, we require that a second write be
performed on a pair of pages with identical offset within
their blocks. Thus, we maintain an offset counter, ad-
vanced after each second write, that points to the mini-
mal page offset that corresponds to invalid data in both
RecycledActive blocks. The two pages are written in par-
allel, utilizing the specific architecture’s set of parallel or
multiplane commands.

The modification to the page allocation scheme is min-
imal. First writes are divided between planes as before.
Read requests of pages written in first writes are served as
before. Read requests of pages written in second writes
are served in parallel, using the respective parallel read
command.

Our requirement that second write pages have identi-
cal offset affects performance only slightly. Although
invalid pages may be dispersed differently in each
RecycledActive block, this limitation is negligible in
practice. Most blocks are recycled with a very small valid
count (up to 7% of the block size in our experiments), so
most invalid pages can be easily reused.

5.2 Page Mapping
Our design is based on a page mapping FTL, which main-
tains a full map of logical pages to physical ones in the
page map table. Since every logical page may be mapped
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to two physical pages, the page map in a naive implemen-
tation would have to double in size. However, the size of
the page map is typically already too large to fit entirely in
memory. Thus, we wish to limit the size of the additional
mapping information required for second writes.

To do so, we require that in a second write, the logi-
cal page be written on two physical pages with identical
offset within the two RecycledActive blocks. We main-
tain a separate mapping of blocks and their pairs, in a ta-
ble called the block map, while the page map remains un-
modified. Each block map entry corresponds to a block
in plane0, and points to the pair of this block in plane1
on the same chip. Entries corresponding to clean and used
blocks are null.

For a page written in a first write, the page map points
to the physical location of this page. For a page written in
a second write, the map points to the physical location of
the first half of this page, in plane0. Thus, if the page map
points to a page in plane0 and the corresponding block
map entry is non-null, the page is stored on two physical
pages, whose addresses we now know.

For a rough estimate of the block map size, assume that
2 byte block addresses are used — enough to address 64K
blocks. The block map maintains entries only for blocks
in plane0, so for a drive with 64K blocks we would need
64KB for the block map. Such a drive corresponds to a
logical capacity of 16GB to 128GB, with blocks of size
256KB [55] to 2MB [19], respectively. 64KB is very small
compared to the size of page mapping FTLs, and to the
available RAM of modern SSDs [12]. Thus, the overhead
required for mapping of second writes is negligible. The
block map can be further compacted, if, instead of storing
full block addresses, it would store only the relative block
address within plane1.

The state-of-the-art page mapping FTLs, such as
DFTL [15], add a level of indirection to selectively cache
the hottest portion of the page map. Within such FTLs,
the block map necessary for second writes can be used in
a similar manner. However, due to its small size, we can
reasonably assume that the block map will be stored en-
tirely in memory, without incurring any additional lookup
and update overhead.

Hybrid or block mapping FTLs typically use page-
mapped log blocks on which data is initially written, be-
fore it becomes cold and is transferred for long term stor-
age on data blocks [9]. These FTLs can be modified as
described above, to apply second writes to pairs of log
blocks. Although data blocks can also be paired for sec-
ond writes, it may be advisable to restrict second writes
only to the hot data in the log.

5.3 Prefetching Invalid Pages
Recall that a WOM encoding requires the invalidated data
currently present on the two physical pages. Thus, one

page must be read from each RecycledActive block in
a chip, before a second write can be performed. In
our design, second writes are always directed to the
next pair of invalid pages available on the current pair
of RecycledActive blocks. Thus, these pages can be
prefetched — read and stored in the SSD’s RAM, as soon
as the previous second write completes.

One page must be prefetched for each plane. Thus, for
a typical architecture of 8KB pages, 1MB of RAM can ac-
commodate prefetching for 128 planes, equivalent to 64
flash chips. In the best case, prefetching can completely
eliminate the read overhead of second writes. In the worst
case, however, it may not complete before the write re-
quest arrives, or, even worse, delay application reads or
other writes. Our experiments, described in Section 6.4,
show that the latter is rare in practice, and that prefetching
significantly reduces the overall I/O response time.

5.4 Garbage Collection and Recycling
We modify the standard garbage collection process to han-
dle block recycles. Recall that greedy garbage collection
always picks the block with the minimum valid count as
victim for cleaning and erasure. Ideally, using second
writes, every used block would first be recycled and reused
before it is erased. However, our goal of preserving the ex-
ported storage capacity and performance of the SSD im-
poses two restrictions on recycling.

Minimum number of clean blocks. When a victim
block is cleaned before erasure, its valid pages are moved:
they are invalidated and copied to the active block. We
require that valid pages move to CleanActive, and not
to RecycledActive, for two reasons. First, to avoid de-
pendency in the cleaning process, so that cleaning in both
planes can carry on concurrently, and second, so that re-
maining valid pages that are likely cold will be stored effi-
ciently by first writes. Thus, at least two clean blocks must
be available in each plane for efficient garbage collection.

Maximum number of reused and recycled blocks. To
preserve the drive’s exported logical size, we utilize its
overprovisioned space for second writes as follows. Con-
sider a drive with T physical blocks and U logical blocks,
resulting in an overprovisioning ratio of T−U

U
. Then phys-

ical pages with capacity equivalent to R = T − U blocks
are either clean, or hold invalid data. For second writes,
we require that the number of blocks in the recycled or
reused states not exceed 2R. Since second writes occupy
twice the capacity of first writes, this number of blocks can
store a logical capacity equivalent to R. Thus, the drive’s
physical capacity is divided between T − 2R blocks hold-
ing first writes, and 2R blocks holding data of size R in
second writes, with a total logical capacity of T −2R+R,
equivalent to the original logical capacity, U .

Garbage collection is invoked when the number of
available clean blocks reaches a given threshold. We
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modify the standard greedy garbage collector to count re-
cycled blocks towards that threshold. When the threshold
is reached in a plane, the block with the minimum number
of valid pages in this plane is chosen as victim. The block
is erased if (1) it is reused, (2) there are fewer than 2 clean
blocks in the plane, or (3) the total of reused and recycled
blocks is greater than 2R. Otherwise, the block is recycled
(see Figure 5).

While wear leveling is not an explicit objective of our
design, blocks effectively alternate between the ‘cold par-
tition’ of first writes, and the ‘hot partition’ of second
writes. Further wear leveling optimizations, such as re-
tirement, migrations [1] and fine grained partitioning [54],
are orthogonal to our design, and can be applied at the time
of block erasure and allocation.

Cleaning reused blocks. Special consideration must
be given to second write pages that are still valid when a
reused block is recycled. Usually, each plane is an inde-
pendent block allocation pool, meaning garbage collection
invocation, operation, and limits apply separately to each
plane. This allows page movement during cleaning to be
performed by copyback, transferring data between blocks
in the same plane, avoiding inter-plane bus overheads.

Each reused block chosen as victim in one plane has a
pair in the second plane of that chip. However, since each
block may also have valid pages of first writes, a block
may be chosen as victim while its pair does not have the
minimum valid count in its plane. Thus, we clean only
the victim block, as follows. All valid pages of first writes
are moved as usual. Valid pages of second writes are read
from both blocks, and must be transferred all the way to
the controller for WOM decoding2. Then they are written
as first writes in the plane on which garbage collection was
invoked. The overhead of this extra transfer and decoding
is usually small, since most reused blocks are cleaned with
a low valid count (usually below 7% of the block size).

5.5 Separating Hot and Cold Data

The advantages of separating hot and cold data have been
evaluated in several studies [9, 13, 20, 27, 38, 42, 54]. In
our design, this separation is also motivated by the need
to maintain the drive’s original capacity and performance.
The largest benefit from second writes is achieved if they
are used to write hot data, as we explain below.

When a reused block is cleaned before erasure, all re-
maining valid pages must be copied elsewhere. Second
write pages that are moved to the active block are not
“free,” in the sense that they end up generating first writes.
If second writes are used only for hot data, we can ex-
pect it to be invalidated by the time the block is chosen for
cleaning.

2Recent SSDs require similar transfer for valid pages of first writes,
for recalculation of the ECC due to accumulated bit errors.

In addition, in order to maximize the potential of sec-
ond writes, we wish to avoid as much as possible cases in
which used blocks are erased without being reused. This
may happen if too many reused blocks have a high valid
page count, and the number of reused and recycled blocks
reaches 2R. Then, the garbage collector must choose used
blocks as victims and erase them.

The use of a specific hot/cold data classification scheme
is orthogonal to the design of Reusable SSD. As a proof
of concept, we identify hot/cold data according to the size
of its file system I/O request. It has been suggested [9, 20]
that large request sizes indicate cold data. We classify a
logical page as cold if its original request size is 64KB or
more. We also assume, as in previous work [20, 42], that
pages that are still valid on a block chosen by the garbage
collector are cold. Thus, pages moved from a block before
it is erased are also classified as cold. Cold data is written
as first writes, and hot data as second writes, if recycled
blocks are available (see Figure 6).

5.6 Handling Second Write Failures
Our design uses WOM codes that fail with a nonnegligible
probability (the success rate is P = 95% in our implemen-
tation). A failed encoding means that the output contains
0 bits in places corresponding to cells in the invalidated
pages that have already been programmed to 1.

The simplest approach to handling such failures is to
simply abort the second write, and write the data on a clean
block as a first write. The first write requires additional
latency for computing the ECC, typically 8us [60], but is
guaranteed to succeed. Within our design, choosing this
approach would imply that 5% of the hot pages destined
for second writes end up occupying pages in cold blocks.

A different approach is to handle the problematic bits in
the same manner as bit errors in standard first writes. The
output is programmed on the physical pages as is, and the
ECC ‘fixes’ the erroneous bits. However, recall that we
already ‘sacrificed’ some ECC strength for implementing
second writes, and the number of erroneous bits may ex-
ceed the remaining error-correction capability.

Our approach is to retry the encoding, i.e., recompute
the WOM code output. In the general case, this can be
done by encoding the logical data for writing on an alter-
native pair of invalid pages. The two attempts are inde-
pendent in terms of success probability, because they are
applied to different data combinations. Thus, the prob-
ability of success in the first encoding or the retry is
P ′ = 1 − (1 − P )2, or 99.75% in our case. This value
is sufficient for all practical purposes, as supported by our
evaluation in Section 6.6.

The overhead incurred by each retry is that of the ad-
ditional WOM computation, plus that of reading another
pair of physical pages. However when using Polar WOM
codes, the extra read overhead can be avoided. Due to
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the probabilistic nature of these codes, the retry can be
performed using the same physical invalidated data, while
only altering an internal encoding parameter [6]. Succes-
sive retries are independent, yielding a similar overall suc-
cess probability as with the general retry method described
above. Thus, in our design, a WOM code failure triggers
one retry, without incurring an additional read. If the retry
fails, the page is written as a first write. We evaluate the
overhead incurred by retries in both the special and gen-
eral cases in Section 6.6.

6 Evaluation
We performed a series of trace driven simulations to ver-
ify that second writes in Reusable SSD are indeed ‘free.’
We answer the following questions. (1) How many era-
sures can be eliminated by second writes? (2) What is the
effect of second writes on read and write latency? (3) Do
second writes incur additional overheads? (4) How sensi-
tive are the answers to design and system parameters? In
addition, we establish the importance of our main design
components.

6.1 Experimental Setup
We implemented second writes within the MSR SSD ex-
tension [1] of DiskSim [5]. We configured the simulator
with two planes in each flash chip, so that each plane is an
independent allocation pool, as described in Section 5.4.
We allow for parallel execution of commands in separate
planes within each chip. Second writes are simulated by
mapping a logical page to two physical pages that have to
be read and written. We use a random number generator
to simulate encoding failures, and disable second writes
on blocks that reach 30% of their lifetime.

The SSD extension of DiskSim implements a greedy
garbage collector with wear leveling and migrations,
copying cold data into blocks with remaining lifetime
lower than a threshold. We modify this process as de-
scribed in Section 5.4, so that it applies only to victim
blocks that are going to be erased. Garbage collection is
invoked when the total of clean and recycled blocks in
the plane drops below a threshold of 1%. DiskSim ini-
tializes the SSD as full. Thus, every write request in the
trace generates an invalidation and an out-of-place write.
We use two common overprovisioning values, 7% and
28%, which represent consumer and enterprise products,
respectively [52]. We refer to the unmodified version of
DiskSim, with first writes only, as the standard SSD.

We evaluate our design using real world traces from two
sources. The first is the MSR Cambridge workload [40],
which contains traces from 36 volumes on 13 servers. The
second is the Microsoft Exchange workload [41], from
one of the servers responsible for Microsoft employee e-
mail. The volumes are configured as RAID-1 or RAID-5
arrays, so some of them are too big to fit on a single SSD.
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zipf(1,2) 3 4 200 200 1 4 12
src1 2 2 16 3.15 95.69 0.75 33 45
stg 0 2 3.36 10.23 0.85 10 16
hm 0 4 32 6.6 48.62 0.64 9 23
rsrch 0 1.5 2.37 6.16 0.91 9 11
src2 0 1.5 2.58 19.95 0.89 8 10
ts 0 2 2.98 14.4 0.82 8 12
usr 0 2.5 3.7 12.54 0.6 11 14
wdev 0 1 1.89 7.41 0.8 8 7
prxy 0 12.5 64 20.7 42.57 0.97 7 83
mds 0 1 2 5.61 0.88 8 8
proj 0 4 6.98 132.71 0.88 41 145
web 0 2 3.36 18.52 0.7 13 17
prn 0 5.5 128 9.24 145.1 0.89 11 54
exch 0 4 45.28 90.56 0.92 27 94
src2 2 1 256 1.91 271.41 0.7 55 42
prxy 1 24 278.83 120.81 0.35 13 106

Table 3: Trace characteristics. The duration of all production
traces is one week, except prxy 1 and exch 0, which are one day.

Manufacturer Type Pages/ Read Write Erase Size
Block (us) (ms) (ms) (Gb)

Toshiba [55] SLC 64 30 0.3 3 32
Samsung [49] MLC 128 200 1.3 1.5 16
Hynix [19] MLC 256 80 1.5 5 32

Table 4: NAND flash characteristics used in our experiments.

We used the 16 traces whose address space could fit in
an SSD size of 256GB or less, and that included enough
write requests to invoke the garbage collector on that drive.
These traces vary in a wide range of parameters, summa-
rized in Table 3. We also used two synthetic workloads
with Zipf distribution, with exponential parameter α = 1
and 2. Note that a perfectly uniform workload is unsuit-
able for the evaluation of second writes, because all the
data is essentially cold.

We use parameters from 3 different NAND flash manu-
facturers, corresponding to a wide range of block sizes and
latencies, specified in Table 4. While the flash packages
are distributed in different sizes, we assume they can be
used to construct SSDs with the various sizes required by
our workloads. Due to alignment constraints of DiskSim,
we set the page size to 4KB for all drives. To maintain the
same degree of parallelism for all equal sized drives, we
assume each chip contains 1GB, divided into two planes.
The number of blocks in each plane varies from 512 to
2048, according to the block size. The MSR SSD exten-
sion implements one channel for the entire SSD, and one
data path (way) for each chip. We vary the number of
chips to obtain the drive sizes specified in Table 3.

6.2 The Benefit of Second Writes
Write amplification is commonly used to evaluate FTL
performance, but is not applicable to our design. Second
writes incur twice as many physical writes as first writes
but these writes are performed after the block’s capacity
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has been exhausted by first writes, and do not incur ad-
ditional erasures. Thus, to evaluate the performance of
Reusable SSD, we measure the relative number of erasures
and relative response time of our design, compared to the
standard SSD. Note that in a standard SSD, the number of
erasures is an equivalent measure to write amplification.
In all our figures, the traces are ordered by the amount of
data written compared to the physical drive size, i.e., in
mds 0 the least data was written, and in zipf (1) and (2)
the most.

Erasures. Figure 7 shows the relative number of era-
sures of Reusable SSD compared to the standard SSD.
Recall that according to the best case analysis, Reusable
SSD can write up to 50% more pages on a block before its
erasure, corresponding to a reduction of 33% in the num-
ber of block erasures. In most traces, the reduction is even
slightly better, around 40%. This is due to the finite na-
ture of our simulation – some of the recycled blocks were
not erased within the duration of the simulation. Since
Reusable SSD can apply second writes in the first 30% of
the drive’s lifetime, it performs additional writes equiva-
lent to a lifetime extension of 15%.

In several traces the reduction was less than 33%, be-
cause a large portion of the data was written in I/O requests
larger than the 64KB threshold. The corresponding pages
were classified, mostly correctly, as cold and written as
first writes, so the full potential of second writes was not
realized. In traces src2 2, prxy 1, exch 0, prxy 0, proj 0
and src1 2, the percentage of such cold pages was 95, 44,
83, 32, 86 and 78, respectively (compared to 1%-15% in
the rest of the traces). We further investigate the effect of
the hot/cold threshold in Section 6.5.

The different block sizes of the drives we used affect
the absolute number of erasures, both for standard and for
Reusable SSD. However, the relative number of erasures
was almost identical for all block sizes.

The synthetic Zipf workloads have no temporal local-
ity, so more pages remain valid when blocks are erased
or recycled, especially with zipf(1) which has less access
skew than zipf(2). With low overprovisioning, Reusable
SSD is less efficient in reducing erasures for this work-
load because there are fewer invalid pages for use in sec-
ond writes.

The reduction in the number of erasures usually de-
pends on the drive’s overprovisioning (OP). Higher over-
provisioning means the maximum number of blocks that
can be in the reused or recycled states (2R) is higher, thus
allowing more pages to be written in second writes. In
the extreme case of trace src2 2 with OP=28% , all writes
could be accommodated by the overprovisioned and recy-
cled blocks, thus reducing the number of erasures to 0. In
the other traces with a high percentage of cold data, the
number of erasures did not decrease further with overpro-
visioning because fewer blocks were required to accom-

 0

 0.2

 0.4

 0.6

 0.8

 1

m
ds

_0

sr
c2

_2

w
de

v_
0

w
eb

_0

sr
c2

_0

rs
rc

h_
0

ts_
0

pr
xy

_1

pr
n_

0

us
r_

0

hm
_0

ex
ch

_0

stg
_0

pr
xy

_0

pr
oj

_0

sr
c1

_2

zi
pf

 (1
)

zi
pf

 (2
)

R
el

at
iv

e 
N

u
m

b
er

 o
f 

E
ra

su
re

s

Toshiba (OP=28%)
Samsung (OP=28%)

Hynix (OP=28%)
Toshiba (OP=7%)

Samsung (OP=7%)
Hynix (OP=7%)

Figure 7: Relative number of erasures of Reusable SSD com-
pared to the standard SSD. The reduction in erasures is close to
the expected 33% in most cases.

modate the “hot” portion of the data. We examine a wider
range of overprovisioning values in Section 6.6.

Performance. Overprovisioning notably affects the
performance of first as well as second writes. When over-
provisioning is low, garbage collection is less efficient be-
cause blocks are chosen for cleaning while they still have
many valid pages that must be moved. This degrades per-
formance in two ways. First, more block erasures are re-
quired because erasures do not generate full clean blocks.
Second, cleaning before erasure takes longer, because the
valid pages must be written first. This is the notorious
delay caused by write amplification, which is known to
increase as overprovisioning decreases.

Indeed, the reduction in erasures achieved by Reusable
SSD further speeds up I/O response time when overprovi-
sioning is low. Figure 8 shows the reduction in average I/O
response time achieved by Reusable SSD compared to the
standard SSD. I/O response time decreased by as much as
15% and 35%, with OP=28% and OP=7%, respectively.

The delay caused by garbage collection strongly de-
pends on write and erase latencies, as well as on the block
size. When overprovisioning is low (7%) and writes cause
a major delay before erasures, the benefit from second
writes is greater for drives with longer write latencies –
the benefit in the Hynix setup is up to 60% greater than in
the Toshiba setup. When overprovisioning is high (28%)
and the cost of cleaning is only that of erasures, the benefit
from second writes is greater for drives with small blocks
whose absolute number of erasures is greater – the benefit
in the Toshiba setup is up to 350% greater than the benefit
in the Hynix setup.

6.3 The Benefit of Parallel Execution
To establish the importance of parallelizing second writes,
we implemented a “sequential” version of our design,
where second writes are performed on a pair of contiguous
invalid pages on the same block. The two planes in each
chip can still be accessed concurrently – they each have an
independently written RecycledActive block.

The reduction in the number of cleans is almost iden-
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Figure 8: Relative I/O response time of Reusable SSD com-
pared to the standard SSD. The reduction in erasures reduces I/O
response time, more so with lower overprovisioning.

tical to that of the parallel implementation, but the I/O
response time increases substantially. In the majority of
traces and setups, second writes increased the I/O response
time, by an average of 15% and as much as 31%. We ex-
pected such an increase. Data written by a second write
requires twice as many pages to be accessed, both for read-
ing and for writing, and roughly 33% of the data in each
trace is written as second writes.

As a matter of fact, the I/O response time increased less
than we expected, and sometimes decreased even with the
sequential implementation. The major reason is the reduc-
tion in erasures – the time saved masks some of the extra
latency of second writes. Another reason is that although
roughly 33% of the data was written in second writes, only
1%-19% of the reads (2%-6% in most traces) accessed
pages written in second writes. This corresponds to a well-
known characteristic of secondary storage, where hot data
is often overwritten without first being read [53].

Nevertheless, an increase of 15%-30% in average re-
sponse time is an unacceptable performance penalty. Our
parallel design complements the reduction in erasures with
a significant reduction in I/O response time.

6.4 The Benefits of Prefetching Invalid Pages
To evaluate the contribution of prefetching invalid pages,
we disabled prefetching and repeated our experiments.
Figure 9 shows the results for the Hynix setup with
OP=28% and OP=7%. These are the two setups where
second writes achieved the least and most reduction in
I/O response time, respectively. These are also the setups
where the contribution of prefetching was the highest and
lowest, respectively.

With OP=7%, and specifically the Hynix setup, the re-
duction in erasures was so great that the extra reads be-
fore second writes had little effect on overall performance.
Prefetching reduced I/O response time by an additional
68% at most. With OP=28%, where the reduction in I/O
response time was less substantial, prefetching played a
more important role, reducing I/O response time by as
much as ×21 more than second writes without it.
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Figure 9: Relative I/O response time of Reusable SSD with
and without prefetching, in the Hynix setup. Prefetching always
reduces I/O response time.

The results for the rest of the setups were within
this range; the average I/O response time for second
writes with prefetching was 120% shorter than without it.
Prefetching never delayed reads or first writes to the point
of degrading performance.

6.5 The Benefits of Hot/Cold Classification
When an I/O request size is equal to or larger than the
hot/cold threshold, its data is classified as cold and written
in first writes. We examine the importance of separating
hot data from cold, and evaluate the sensitivity of our de-
sign to the value of the threshold. We varied the thresh-
old from 16KB to 256KB. Figure 10 shows the results for
the Toshiba setup – the results were similar for all drives.
We present only the traces for which varying the threshold
changed the I/O response time or the number of erasures.
The results for 256KB were the same as for 128KB.

Figure 10(a) shows that as the threshold increases, more
data is written in second writes, and the reduction in the
number of erasures approaches the expected 33%. How-
ever, increasing the threshold too much sometimes incurs
additional cleans. For example, in prn 0, data written in
requests of 64KB or larger nearly doubled the valid count
of victim blocks chosen for cleaning, incurring additional
delays as well as additional erase operations. Figure 10(c)
shows that a reduction [increase] in the number of erasures
due to higher thresholds entails a reduction [increase] in
the relative I/O response time.

Figures 10(b) and 10(d) show the results for the same
experiments with OP=28%. The additional overprovi-
sioned capacity extends the time between cleans, to the
point where even the cold data is already invalid by the
time its block is erased. Both the number of erasures and
the I/O response time decrease as more data can be written
in second writes. Specifically, Figure 10(b) shows that the
full “50% free” writes can be achieved in enterprise class
setups. Still, the hot/cold classification guarantees better
performance, possibly at the price of limiting the reduc-
tion in erasures.

An adaptive scheme can set the threshold according to
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(d) Response time (OP=28%)
Figure 10: Relative I/O response time and erasures when vary-
ing the hot/cold classification threshold. Increasing the threshold
too much might increase I/O response time.

the observed workload to optimize both objectives, but is
outside the scope of this work. Alternatively, classifica-
tion can be done using recent optimized schemes (see Sec-
tion 7) for more accurate results. Note that regardless of
the classification scheme, Reusable SSD also separates ap-
plication writes from garbage collection writes. This sep-
aration is expected to reduce the number of erasures com-
pared to the standard SSD, even without second writes.

6.6 Sensitivity Analysis
Overprovisioning. For a comprehensive analysis we
repeated our experiments, varying the overprovisioning
value from 5% to 50%3. For all the drives and traces, the
number of erasures and the I/O response time decreased
as overprovisioning increased, both in the standard SSD
and in Reusable SSD. Figure 11 shows the relative num-
ber of erasures and relative I/O response time of Reusable
SSD compared to the standard SSD. We show results for
the Hynix setup, where varying the overprovisioning value
had the largest effect on these two measures.

These results support our observation in Section 6.2,
that the reduction in erasures is larger when overprovision-
ing is higher, except in traces that have a high portion of
cold data written as first writes. Reusable SSD reduces I/O
response time more with lower overprovisioning, where
erasures cause longer delays. The maximal variation in
relative average response time was 24%, 32%, and 35% in
the Toshiba, Samsung and Hynix setups, respectively.

WOM encoding failures. Reusable SSD is designed

3The address space of ts 0, exch 0 and stg 0 was too large to fit in
the respective drive sizes from Table 3 with OP=50% (and OP=40% for
exch 0). Thus, the data points corresponding to those traces and OP
values are missing.
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Figure 11: Relative number of erasures (top) and average I/O
response time (bottom) with the Hynix setup, with varying over-
provisioning ratios.

to work with any WOM code construction that satisfies
the requirements specified in Section 3. To evaluate the
sensitivity of our design to WOM code characteristics, we
repeated our experiments, varying the encoding success
rate from 75% to 100%.

In the first set of experiments we disable retries com-
pletely, so they serve as a worst case analysis. On a
WOM encoding failure we default to a first write on the
CleanActive block. Every such failure incurs the over-
head of an additional ECC computation, because ECC
must be computed for the logical data. The ECC for a 4KB
page can usually be computed in less than 10µs [60]. To
account for changes in page size, ECC and WOM code,
and as a worst case analysis, we set the overhead to half
the read access time in each drive.

Figure 12(a) shows the relative I/O response time of
Reusable SSD without retries, compared to the standard
SSD. Surprisingly, varying the success rate resulted in a
difference in relative I/O response time of less than 1% for
all traces with OP=7%, and for most traces with OP=28%.
The reduction in erase operations was not affected at all.
We show here only the traces for which the difference was
larger than 1%. We show the results with the Toshiba setup
because the differences with the other setups were even
smaller. The reason for such small differences is that in
most traces, the maximum allowed number of reused and
recycled blocks does not accommodate all the hot data,
and some hot data is written as first writes when no re-
cycled block is available. Thus, WOM encoding failures
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Figure 12: The sensitivity of Reusable SSD to varying WOM
encoding success rates with no retries (a), retries on the same
physical pages (b) and retries on alternative physical pages (c),
with the Toshiba setup and OP=28%.

simply distribute the hot data differently, incurring only
the additional ECC computation delay.

Figure 12(b) shows the relative I/O response time of
Reusable SSD with retries, as described in Section 5.6.
A retry incurs the same overhead as the first WOM encod-
ing. If that retry fails, extra overhead is incurred by the
ECC computation of the first write. Note that with one
retry, the overall probability of successful encoding with
P = 75% is P ′ = 1 − (1 − 0.75)2 = 93.75%. Indeed,
the performance of Reusable SSD with P = 75% is al-
most equal to that of Reusable SSD without retries and
P = 95%. Similarly, the relative I/O response time with
P = 95% and one retry is almost equal to that of using a
WOM code with no encoding failures (P = 100%).

We also examine the applicability of our design to
WOM codes that do not guarantee independent success
probability on the same invalid data. Thus, we ran one
more set of experiments where, upon a WOM encoding
failure, an additional pair of invalid pages is read, and the
encoding is retried on these pages. In this variation, the
overhead of retrying is the same as in our design, plus
an additional read latency. Our results, presented in Fig-
ure 12(c), show that the additional overhead is negligible
when P is high (95%), but nonnegligible for smaller val-
ues of P (≤ 85%). In addition, unlike the first two ap-
proaches, this overhead appeared in the rest of the traces
as well, and also with OP=7%. Still, even in those cases,
the I/O response times were reduced substantially com-
pared to the standard SSD, and the difference between
P = 100% and P = 75% was always below 4%.

Energy consumption. According to a recent
study [39], the energy consumption of an erase operation
is one order of magnitude larger than that of a write opera-
tion, but the energy it consumes per page is the smallest of
all operations. Of all measured operations, writes are the
major contributor to energy consumption in flash chips.
In Reusable SSD, roughly 33% of the pages are written

in second writes, programming two pages instead of one.
Thus, one might expect its energy consumption to increase
in proportion to the increase in physical writes.

However, this same study also showed the energy con-
sumed by writes to depend on the number of programmed
cells. But not only do second writes not require program-
ming twice as many cells, their overall number of pro-
grammed bits is expected to equal that of first writes [6].
We thus expect the energy consumption to decrease,
thanks to the reduction in erasures that comes with second
writes. Measurements on a naive implementation of sec-
ond writes showed such a reduction [14], and we believe
these results will hold for Reusable SSD. A more accurate
evaluation remains part of our future work.

7 Related Work
The Flash Translation Layer is a good candidate for ma-
nipulating flash traffic to extend SSD lifetime. Most FTLs
implement some notion of wear leveling, where cold data
is migrated to retired or about-to-be-retired blocks, and
blocks are allocated for writing according to their erase
count or wear [1, 20, 24, 27, 28, 38, 42]. Buffering [29]
and even deduplication [16] are used by some FTLs to re-
duce the number of flash writes.

Another approach reduces write traffic to the SSD
by eliminating write operations at higher levels of the
storage hierarchy. Such methods include a hard disk
based write cache [53], specialized file systems and data
bases [11, 31, 34, 36, 38], and admission control in flash
based caches [18, 43, 46].

A recent analytic study showed that separating hot and
cold data can minimize write amplification so that it ap-
proaches 1 [13]. Indeed, many FTLs write hot and cold
data into separate partitions [9, 20, 27, 28, 38, 42, 54].
They classify hot data according to I/O request size [9, 20],
time and frequency of write [38, 54], and whether the write
was generated by the garbage collector [42].

Reusable SSD separates hot and cold data, and applies
wear leveling and migration to blocks that are about to be
erased. However, the specific classification or wear level-
ing technique is orthogonal to our design, and can be re-
placed with any of the state-of-the-art methods to combine
their advantages with those of second writes. Similarly,
when some of the write traffic is eliminated from the SSD,
Reusable SSD can apply roughly 33% of the remaining
writes to reused blocks, eliminating additional erasures.

More intrusive methods for extending SSD lifetime in-
clude modifying the voltage of write and erase opera-
tions [24], and even explicitly delaying requests to allow
cell recovery [30]. They incur an overhead that limits the
SSD’s performance. Reusable SSD extends SSD lifetime
without requiring any changes in flash hardware. More
importantly, it improves — rather than degrades — per-
formance. Still, Reusable SSD can also be combined with
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such methods, to further extend device lifetime.
While the number of erasures is the most commonly

used measure of device lifetime, recent studies show that
cell programming has a substantial impact on their wear.
They show that programming MLC cells as SLC [26], or
occasionally ‘relieving’ them from programming [27] can
significantly slow down cell degradation, regardless of the
number of erasures. Second writes result in a higher aver-
age voltage level of flash cells, possibly increasing their
wear. Thus, with second writes, 50% more writes can
be performed before each erasure, but the number of ‘al-
lowed’ erasures might decrease. However, as long as the
increase in cell wear is smaller than 50%, second writes
extend device lifetime. Since cell degradation is not lin-
ear with average voltage level, the magnitude of this effect
cannot be derived from previous studies, and remains to
be verified in future work. Our analysis of the benefits of
Reusable SSD is conservative, disabling second writes on
all pages after 30% of the block’s lifetime. A more ac-
curate model of cell wear can facilitate additional second
writes on SLC flash or on the LSB pages in MLC flash.

Several studies suggested using WOM codes to extend
SSD lifetime. Their designs are all based on an increased
page size, as in Figure 2, resulting in greatly reduced ca-
pacity [4, 14, 21, 35, 57]. In [42], the capacity loss is
bound by limiting second writes to several blocks. The au-
thors of [23] assume the logical data has been compressed
by the upper level, to allow for the overhead of WOM en-
coding. None of these studies address the additional laten-
cies of reading invalid data before encoding and of reading
and writing larger pages. In addition, most of them rely on
capacity achieving codes, ignoring their high complexity
or their nonnegligible failure rate [35, 42]. The design of
Reusable SSD addresses all the practical aspects of sec-
ond writes with off-the-shelf flash products and efficient
coding techniques, achieving both performance improve-
ments and a lifetime extension of up to 15%.

The above studies use write amplification to evaluate
their designs, but it is not the correct figure of merit for
multiple writes. Consider a best case example where a
code with minimal 29% space overhead achieves a write
amplification of 1. Still, the amount of physical data writ-
ten is 29% more than the logical data written by the ap-
plication. Thus, for correct evaluation, the number of era-
sures incurred in various designs should be compared, on
SSDs with the same block size and overprovisioning.

The use of WOM codes has also been suggested for
extending PCM lifetime [22, 32, 59]. The corresponding
studies show a reduction in energy consumption and cell
wear, but sacrifice either capacity, performance, or both.

8 Conclusions and Future Directions
We presented Reusable SSD, a practical design for ap-
plying second writes to extend SSD lifetime while sig-

nificantly improving performance. Our design is general
and is applicable to current flash architectures, requiring
only minor adjustments within the FTL, without addi-
tional hardware or interface modifications.

Nevertheless, more can be gained from Reusable SSD
as technology advances in several expected directions.
Flash architectures that allow for higher degrees of par-
allelism can accommodate third and maybe fourth writes,
combining 4 and 8 physical pages per logical page, re-
spectively [6]. As the hardware implementation of Po-
lar WOM codes matures, its encoding overheads will de-
crease [3, 50], enabling faster retries, and possibly use of
constructions with higher success probability. Similarly,
stronger ECCs can compensate for increasing BERs, in-
creasing the percentage of a block’s lifetime in which it
can be recycled before erasure.

Finally, most previously suggested schemes for extend-
ing SSD lifetime are orthogonal to the design of Reusable
SSD, and can be combined with second writes. The per-
formance improvement achieved by Reusable SSD can
mask some of the overheads of those schemes that incur
additional latencies.
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