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Abstract

Hierarchical namespaces (directory trees) in file systems
are effective in indexing file system data. However, the
update patterns of namespace metadata, such as intensive
writeback and scattered small updates, exaggerate the
writes to flash storage dramatically, which hurts both
performance and endurance (i.e., limited program/erase
cycles of flash memory) of the storage system.

In this paper, we propose a reconstructable file system,
ReconFS, to reduce namespace metadata writeback
size while providing hierarchical namespace access.
ReconFS decouples the volatile and persistent directory
tree maintenance. Hierarchical namespace access is
emulated with the volatile directory tree, and the
consistency and persistence of the persistent directory
tree are provided using two mechanisms in case of
system failures. First, consistency is ensured by
embedding an inverted index in each page, eliminating
the writes of the pointers (indexing for directory tree).
Second, persistence is guaranteed by compacting and
logging the scattered small updates to the metadata
persistence log, so as to reduce write size. The inverted
indices and logs are used respectively to reconstruct
the structure and the content of the directory tree
on reconstruction. Experiments show that ReconFS
provides up to 46.3% performance improvement and
27.1% write reduction compared to ext2, a file system
with low metadata overhead.

1 Introduction

In recent years, flash memory is gaining popularity in
storage systems for its high performance, low power
consumption and small size [11, 12, 13, 19, 23, 28].
However, flash memory has limited program/erase (P/E)
cycles, and the reliability is weakened as P/E cycles
approach the limit, which is known as the endurance
problem [10, 14, 17, 23]. The recent trend of denser flash

memory, which increases storage capacity by multiple-
level cell (MLC) or triple-level cell (TLC) technologies,
makes the endurance problem even worse [17].

File system design evolves slowly in the past few
decades, yet it has a marked impact on I/O behaviors of
the storage subsystems. Recent studies have proposed
to revisit the namespace structure of file systems, e.g.,
flexible indexing for search-friendly file systems [33] and
table structured metadata management for better meta-
data access performance [31]. Meanwhile, leveraging
the internal storage management of flash translation layer
(FTL) of solid state drives (SSDs) to improve storage
management efficiency has also been discussed [19, 23,
25, 37]. But namespace management also impacts flash-
based storage performance and endurance, especially
when considering metadata-intensive workloads. This
however has not been well researched.

Namespace metadata are intensively written back
to persistent storage due to system consistency or
persistence guarantees [18, 20]. Since the no-overwrite
property of flash memory requires writes to be updated
in free pages, frequent writeback introduces a large
dynamic update size (i.e., the total write size of free
pages that are used). Even worse, a single file system
operation may scatter updates to different metadata
pages (e.g., the create operation writes both the inode
and the directory entry), and the average update size
to each metadata page is far less than one page size
(e.g., an inode in ext2 has the size of 128 bytes). A
whole page needs to be written even though only a
small part in the page is updated. Endurance, as well
as performance, of flash storage systems is affected
by namespace metadata accesses due to frequent and
scattered small write patterns.

To address these problems, we propose a recon-
structable file system, ReconFS, which provides a
volatile hierarchical namespace and relaxes the write-
back requirements. ReconFS decouples the maintenance
of the volatile and persistent directory trees. Metadata
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pages are written back to their home locations only
when they are evicted or checkpointed (i.e., the operation
to update the persistent directory tree the same as the
volatile directory tree) from main memory. Consistency
and persistence of the persistent directory tree are
guaranteed using two new mechanisms. First, we use
embedded connectivity mechanism to embed an inverted
index in each page and track the unindexed pages. Since
the namespace is tree-structured, the inverted indices are
used for directory tree structure reconstruction. Second,
we log the differential updates of each metadata page
to the metadata persistence log and compact them into
fewer pages, and we call it metadata persistence logging
mechanism. These logs are used for directory tree
content update on reconstruction.

Fortunately, flash memory properties can be leveraged
to keep overhead of the two mechanisms low. First, page
metadata, the spare space alongside each flash page, is
used to store the inverted index. The inverted index
is atomically accessed with its page data without extra
overhead [10]. Second, unindexed pages are tracked
in the unindexed zone by limiting new allocations to a
continuous logical space. The address mapping table in
FTL redirects the writes to different physical pages, and
the performance is not affected even though the logical
layout is changed. Third, high random read performance
makes the compact logging possible, as the reads of
corresponding base pages are fast during recovery. As
such, ReconFS can efficiently gain performance and
endurance benefits with rather low overhead.

Our contributions are summarized as follows:
• We propose a reconstructable file system design to

avoid the high overhead of maintaining a persistent
directory tree and emulate hierarchical namespace
access using a volatile directory tree in memory.

• We provide namespace consistency by embedding
an inverted index with the indexed data and
eliminate the pointer update in the parent node
(in the directory tree view) to reduce writeback
frequency.

• We also provide metadata persistence by logging
and compacting dirty parts from multiple metadata
pages to the metadata persistence log, and the
compact form reduces metadata writeback size.

• We implement ReconFS based on ext2 and evaluate
it against different file systems, including ext2,
ext3, btrfs and f2fs. Results show an up to
46.3% performance increase and 27.1% endurance
improvement compared to ext2, a file system with
low metadata overhead.

The rest of this paper is organized as follows.
Section 2 gives the background of flash memory and
namespace management. Section 3 describes the
ReconFS design, including the decoupled volatile and

persistent directory tree maintenance, the embedded
connectivity and metadata persistence logging mecha-
nisms, as well as the reconstruction. We present the
implementation in Section 4 and evaluate ReconFS in
Section 5. Related work is given in Section 6, and the
conclusion is made in Section 7.

2 Background

2.1 Flash Memory Basics
Programming in flash memory is performed in one
direction. Flash memory cells need to be erased before
overwritten. The read/write unit is a flash page (e.g.,
4KB), and the erase unit is a flash block (e.g., 64 pages).
In each flash page, there is a spare area for storing the
metadata of the page, which is called page metadata or
out-of-band (OOB) area [10]. The page metadata is used
to store error correction codes (ECC). And it has been
proposed to expose the page metadata to software in
NVMe standard [6].

Flash translation layers (FTLs) are used in flash-
based solid state drives (SSDs) to export the block
interface [10]. FTLs translate the logical page number
in the software to the physical page number in flash
memory. The address mapping hides the no-overwrite
property from the system software. FTLs also perform
garbage collection to reclaim space and wear leveling to
extend the lifetime of the device.

Flash-based SSDs provide higher bandwidth and IOPS
compared to hard disk drives (HDDs) [10]. Multiple
chips are connected through multiple channels inside
an SSD to provide internal parallelism, providing high
aggregated bandwidth. Due to elimination of mechanical
moving part, an SSD provides high IOPS. Endurance is
another element that makes flash-based SSDs different
from HDDs [10, 14, 17, 23]. Each flash memory cell has
limited program/erase (P/E) cycles. As the P/E cycles
approach the limit, the reliability of each cell drops
dramatically. As such, endurance is a critical issue in
system designs on flash-based storage.

2.2 Hierarchical Namespaces
Directory trees have been used in different file systems
for over three decades to manage data in a hierarchical
way. But hierarchical namespaces introduce high
overhead to provide consistency and persistence for
the directory tree. Also, static metadata organization
amplifies the metadata write size.
Namespace Consistency and Persistence. Directories
and files are indexed in a tree structure, the directory
tree. Each page uses pointers to index its children in the
directory tree. To keep the consistency of the directory
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Figure 1: ReconFS Framework

tree, the page that has the pointer and the pointed page
should be updated atomically. Different mechanisms,
such as journaling [4, 7, 8, 34, 35] and copy-on-write
(COW) [2, 32], are used to provide atomicity, but
introduce a large amount of extra writes. In addition,
the persistence requires the pointers to be in a durable
state even after power failures, and this demands in-
time writeback of these pages. This increases the
writeback frequency, which also has a negative impact
on endurance.

In this paper, we focus on the consistency of the
directory tree, i.e., the metadata consistency. Data con-
sistency can be achieved by incorporating transactional
flash techniques [22, 23, 28, 29].
Metadata Organization. Namespace metadata are
clustered and stored in the storage media, which we refer
to as static compacting. Static compacting is commonly
used in file systems. In ext2, index nodes in each block
group are stored continuously. Since each index node
is of 128 bytes in ext2, a 4KB page can store as many
inodes as 32. Directory entries are organized in the
similar way except that each directory entry is of variable
length. Multiple directory entries with the same parent
directory may share the same directory entry page. This
kind of metadata organization improves the metadata
performance in hard disk drives, as the metadata can be
easily located.

Unfortunately, this kind of metadata organization
has not addressed the endurance problem. For each
file system operation, multiple metadata pages may be
written but with only small parts updated in each page.
E.g., a file create operation creates an inode in the inode
page and writes a directory entry to the directory entry
page. Since the flash-based storage is written in the unit
of pages, the write amount is exaggerated by comparing
the sum of all updated pages’ size (from the view of
storage device) with the updated metadata size (from the
view of file system operations).

3 Design

ReconFS is designed to reduce the writes to flash
storage while providing hierarchical namespace access.

In this section, we first present the overall design of
ReconFS, including the decoupled volatile and persistent
directory tree maintenance and four types of metadata
writeback. We then describe two mechanisms, embedded
connectivity and metadata persistence logging, which
provide consistency and persistence of the persistent
directory tree with reduced writes, respectively. Finally,
we discuss the ReconFS reconstruction.

3.1 Overview of ReconFS

ReconFS decouples the maintenance of the volatile and
persistent directory trees. ReconFS emulates a volatile
directory tree in main memory to provide the hierarchical
namespace access. Metadata pages are updated to the
volatile directory tree without being written back to the
persistent directory tree. While the reduced writeback
can benefit both performance and endurance of flash
storage, consistency and persistence of the persistent
directory tree need to be provided in case of unexpected
system failures. Instead of writing back metadata pages
directly to their home locations, ReconFS either embeds
the inverted index with the indexed data for namespace
consistency or compacts and writes back the scattered
small updates in a log-structured way.

As shown in Figure 1, ReconFS is composed of
three parts: the Volatile Directory Tree, the ReconFS
Storage, and the Metadata Persistence Log. The Volatile
Directory Tree manages namespace metadata pages
in main memory to provide hierarchical namespace
access. The ReconFS Storage is the persistent storage
for ReconFS file system. It stores both the data and
metadata, including the persistent directory tree, of
the file system. The Metadata Persistence Log is a
continuously allocated space in the persistent storage
which is mainly used for the metadata persistence.

3.1.1 Decoupled Volatile and Persistent Directory
Tree Maintenance

Since ReconFS emulates the hierarchical namespace
access in main memory using a volatile directory tree,
three issues are raised. First, namespace metadata
pages need replacement when memory pressure is high.
Second, namespace consistency is not guaranteed once
system crashes without namespace metadata written
back in time. Third, updates to the namespace metadata
may get lost after unexpected system failures.

For the first issue, ReconFS writes back the namespace
metadata to their home locations in ReconFS storage
when they are evicted from the buffer, which we call
write-back on eviction. This guarantees the metadata
in persistent storage that do not have copies in main
memory are the latest. Therefore, there are three kinds

3
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of metadata in persistent storage (denoted as Mdisk): the
up-to-date metadata written back on eviction (denoted
as Mup−to−date), the untouched metadata that have not
been read into memory (denoted as Muntouched) and the
obsolete metadata that have copies in memory (denoted
as Mobsolete). Note Mobsolete includes both pages that
have dirty or clean copies in memory. Let Mvdt , Mpdt
respectively be the namespace metadata of the volatile
and persistent directory trees and Mmemory be the volatile
namespace metadata in main memory, we have

Mvdt = Mmemory +Mup−to−date +Muntouched ,

Mpdt = Mdisk = Mobsolete +Mup−to−date +Muntouched .

Since Mup−to−date and Mmemory are the latest, Mvdt is the
latest. In contrast, Mpdt is not up-to-date, as ReconFS
does not write back the metadata that still have copies
in main memory. Volatile metadata are written back
to their home locations for three cases: (1) file system
unmount, (2) unindexed zone switch (Section 3.2), and
(3) log truncation (Section 3.3). We call the operation
that makes Mpdt = Mvdt the checkpoint operation. When
the volatile directory tree is checkpointed on unmount,
it can be reconstructed by directly reading the persistent
directory tree for later system booting.

The second and third issues are raised from unex-
pected system crashes, in which cases, Mvdt �= Mpdt .
The writeback of namespace metadata not only provides
namespace connectivity for updated files or directories,
but also keeps the descriptive metadata in metadata
pages (e.g., owner, access control list in an inode)
up-to-date. The second issue is caused by the loss
of connectivity. To overcome this problem, ReconFS
embeds an inverted index in each page for connectivity
reconstruction (Section 3.2). The third issue is from
the loss of metadata update. This problem is addressed
by logging the metadata that need persistence (e.g.,
fsync) to the metadata persistence log (Section 3.3). In
this way, the metadata of volatile directory tree can be
reconstructed by first the connectivity reconstruction and
then the descriptive metadata update even after system
crashes.

3.1.2 Metadata Writeback

Metadata writeback to persistent storage, including the
file system storage and the metadata persistence log, can
be classified into four types as follows:
• Buffer eviction induced writeback: Metadata pages

that are evicted due to memory pressure are written
back to their home locations, so that these pages
can be directly read out for later accesses without
looking up the logs.

• Checkpoint induced writeback: Metadata pages are
written back to their home locations for checkpoint

Inode

Directory
Entries

Inode

Data
Pages

Inode

Directory
Entries

Inode

Data
Pages

Figure 2: Normal Indexing (left) and Inverted Indexing
(right) in a Directory Tree

operations, in order to reduce the reconstruction
overhead.

• Consistency induced writeback: Writeback of
pointers (used as the indices) is eliminated by
embedding an inverted index with the indexed data
of the flash storage, so as to reduce the writeback
frequency.

• Persistence induced writeback: Metadata pages
written back due to persistence requirements are
compacted and logged to the metadata persistence
log in a compact form to reduce the metadata
writeback size.

3.2 Embedded Connectivity

Namespace consistency is one of the reasons why names-
pace metadata need frequent writeback to persistent
storage. In the normal indexing of a directory tree
as shown in the left half of Figure 2, the pointer and
the pointed page of each link should be written back
atomically for namespace consistency in each metadata
operation. This not only requires the two pages to be
updated but also demands journaling or ordered update
for consistency. Instead, ReconFS provides namespace
consistency using inverted indexing, which embeds the
inverted index with the indexed data, as shown in the
right half of Figure 2. Since the pointer is embedded with
the pointed page, the consistency can be easily achieved.
As well as the journal writes, the pointer updates are
eliminated. In this way, the embedded connectivity
lowers the frequency of metadata writeback and ensures
the metadata consistency.

Embedded Inverted Index: In a directory tree, there
are two kinds of links: links from directory entries to
inodes (dirent-inode links) and links from inodes to data
pages (inode-data links). Since directory entries are
stored as data pages of directories in Unix/Linux, links
from inodes to directory entries are classified as the
inode-data links. For an inode-data link, the inverted
index is the inode number and the data’s location (i.e.,
the offset and length) in the file or directory. Since the
inverted index is of several bytes, it is stored in the page

4
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metadata of each flash page. For a dirent-inode link,
the inverted index is the file or directory name and its
inode number. Because the name is of variable length
and is difficult to fit into the page metadata, an operation
record, which is composed of the inverted index, the
inode content and the operation type, is generated and
stored in the metadata persistence log. The operation
type in the operation record is set to ‘creation’ for
create operations and ‘link’ for hard link operations.
During reconstruction, the ‘link’ type does not invalidate
previous creation records, while the ‘creation’ does.

An inverted index is also associated with a version
number for identifying the correct version in case of
inode number or directory entry reuses. When an inode
number or a directory entry is reused after it is deleted,
pages that belong to the deleted file or directory may still
reside in persistent storage with their inverted indices.
During reconstruction, these pages may be wrongly
regarded as valid. To avoid this ambiguity, each directory
entry is extended with a version number, and each inode
is extended with the version pair < Vborn,Vcur >, which
indicates the liveness of the inode. Vborn is the version
number when the inode is created or reused. For a
delete operation, Vborn is set by increasing one to Vcur.
Because all pages at that time have version numbers
no larger than Vcur, all data pages of the deleted inode
are set invalid. As same as the create and hard link
operations, a delete operation generates a deletion record
and appends it to the metadata persistence log, which is
used to disconnect the inode from the directory tree and
invalid all its children pages.

Unindexed Zone: Pages whose indices have not been
written back are not accessible in the directory tree after
system failures. These pages are called unindexed pages
and need to be tracked for reconstruction. ReconFS
divides the logical space into several zones and restricts
the writes to one zone in each stage. This zone is called
the unindexed zone, and it tracks all unindexed pages at
one stage. A stage is the time period when the unindexed
zone is used for allocation. When the zone is used up, the
unindexed zone is switched to another. Before the zone
switch, a checkpoint operation is performed to write the
dirty indices back to their home locations. The restriction
of writes to the unindexed zone incurs little performance
penalty. This is because the FTL inside an SSD remaps
logical addresses to physical addresses, and data layout
in the logical space view does little impact on system
performance while data layout in the physical space view
is critical.

In addition to namespace connectivity, bitmap write-
back is another source of frequent metadata persistence.
The bitmap updates are frequently written back to keep
the space allocation consistent. ReconFS only keeps
the volatile bitmap in main memory, which is used for

logical space allocation, and does not keep the persistent
bitmap up-to-date. Once system crashes, bitmaps are
reconstructed. Since new allocations are performed only
in the unindexed zone, the bitmap in the unindexed zone
is reconstructed using the valid and invalid statuses of
the pages. Bitmaps in other zones are only updated when
pages are deleted, and these updates can be reconstructed
using deletion records in the metadata persistence log.

3.3 Metadata Persistence Logging

Metadata persistence causes frequent metadata write-
back. The scattered small update pattern of the writeback
amplifies the metadata writes, which are written back in
the unit of pages. Instead of using static compacting
(as mentioned in Section 2), ReconFS dynamically
compacts the metadata updates and writes them to the
metadata persistence log. While static compacting
requires the metadata updates written back to their home
locations, dynamic compacting is able to cluster the
small updates in a compact form. Dynamic compacting
only writes the dirty parts rather than the whole pages, so
as to reduce write size.

In metadata persistence logging, writeback is triggered
when persistence is needed, e.g., explicit synchroniza-
tion or the wake up of pdflush daemon. The metadata
persistence logging mechanism keeps track of the dirty
parts of each metadata page in main memory and
compacts those parts into the logs:
• Memory Dirty Tagging: For each metadata opera-

tion, metadata pages are first updated in the main
memory. ReconFS records the location metadata
(i.e., the offset and the length) of the dirty parts in
each updated metadata page. The location metadata
are attached to the buffer head of the metadata page
to track the dirty parts for each page.

• Writeback Compacting: During writeback, Re-
conFS travels multiple metadata pages and appends
their dirty parts to the log pages. Each dirty part has
its location metadata (i.e., the base page address, the
offset and length in the page) attached in the head of
each log page.

Log truncation is needed when the metadata persis-
tence log runs short of space. Instead of merging the
small updates in the log with base metadata pages,
ReconFS performs a checkpoint operation to write back
all dirty metadata pages to their home locations. To
mitigate the writeback cost, the checkpoint operation is
performed in an asynchronous way using a writeback
daemon, and the daemon starts when the log space drops
below a pre-defined threshold. As such, the log is
truncated without costly merging operations.

Multi-page Update Atomicity. Multi-page update
atomicity is needed for an operation record which size

5
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is larger than one page (e.g., a file creation operation
with a 4KB file name). To provide the consistency of
the metadata operation, these pages need to be updated
atomically. Single-page update atomicity is guaranteed
in flash storage, because the no-overwrite property of
flash memory requires the page to be updated in a new
place followed by atomic mapping entry update in the
FTL mapping table.

Multi-page update atomicity is simply achieved using
a flag bit in each page. Since a metadata operation
record is written in continuously allocated log pages, the
atomicity is achieved by tagging the start and end of these
pages. The last page is tagged with flag ‘1’, and the
others are tagged with ‘0’. The bit is stored in the head of
each log page. It is set when the log page is written back,
and it does not require extra writes. During recovery,
the flag bit ‘1’ is used to determine the atomicity. Pages
between two ‘1’s belong to complete operations, while
pages at the log tail without an ending ‘1’ belong to an
incomplete operation. In this way, multi-page update
atomicity is achieved.

3.4 ReconFS Reconstruction

During normal shutdowns, the volatile directory tree
writes the checkpoint to the persistent directory tree
in persistent storage, which is simply read into main
memory to reconstruct the volatile directory tree for the
next system start. But once the system crashes, ReconFS
needs to reconstruct the volatile directory tree using
the metadata recorded by the embedded connectivity
and the metadata persistence logging mechanisms.
Since the persistent directory tree is the checkpoint
of volatile directory tree when the unindexed zone is
switched or the log is truncated, all page allocations
are performed in the unindexed zone, and all metadata
changes have been logged to the persistent metadata logs.
Therefore, ReconFS only needs to update the directory
tree by scanning the unindexed zone and the metadata
persistence log. ReconFS reconstruction includes:

1. File/directory reconstruction: Each page in the
unindexed zone is connected to its index node using
its inverted index. And then, each page checks
the version number in its inverted index with the
<Vborn,Vcur > in its index node. If this matches, the
page is indexed to the file or directory. Otherwise,
the page is discarded because the page has been
invalidated. After this, all pages, including file data
pages and directory entry pages, are indexed to their
index nodes.

2. Directory tree connectivity reconstruction: The
metadata persistence log is scanned to search the
dirent-inode links. These links are used to connect
those inodes to the directory tree, so as to update the

Inode Page
(flash page)

Ino,off,len,verData Page
(flash page)

data

Page Metadata Page Data

Inode
(V_born, V_cur)

...

Figure 3: An Inverted Index for an Inode-Data Link

directory tree structure.
3. Directory tree content update: Log records in the

metadata persistence log are used to update the
metadata pages in the directory tree, so the content
of the directory tree is updated to the latest.

4. Bitmap reconstruction: The bitmap in the unin-
dexed zone is reset by checking the valid status of
each page, which can be identified using version
numbers. Bitmaps in other zones are not changed
except for deleted pages. With the deletion or
truncation log records, the bitmaps are updated.

After the reconstruction, those obsolete metadata pages
in persistent directory tree are updated to the latest, and
the recent allocated pages are indexed into the directory
tree. The volatile directory tree is reconstructed to
provide hierarchical namespace access.

4 Implementation

ReconFS is implemented based on ext2 file system in
Linux kernel 3.10.11. ReconFS shares both on-disk
and in-memory data structures of ext2 but modifies the
namespace metadata writeback flows.

In volatile directory directory tree, ReconFS employs
two dirty flags for each metadata buffer page: persistence
dirty and checkpoint dirty. Persistence dirty is tagged
for the writeback to the metadata persistence log.
Checkpoint dirty is tagged for the writeback to the
persistent directory tree. Both of them are set when
the buffer page is updated. The persistence dirty flag is
cleared only when the metadata page is written to the
metadata persistence log for metadata persistence. The
checkpoint dirty flag is cleared only when the metadata
are written back to its home location. ReconFS uses the
double dirty flags to separate metadata persistence (the
metadata persistence log) from metadata organization
(the persistent directory tree).

In embedded connectivity, inverted indices for inode-
data and dirent-inode links are stored in different ways.
The inverted index of an inode-data link is stored in the
page metadata of each flash page. It has the form of
(ino,o f f , len,ver), in which ino is the inode number,
o f f and len are the offset and the valid data length in
the file or directory, respectively, and ver is the version
number of the inode. The inverted index of a dirent-

6
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inode link is stored as a log record with the record type
type set to ‘creation’ in the metadata persistence log.
The log record contains both the directory entry and the
inode content and keeps an (o f f , len, lba,ver) extent for
each of them. lba is the logical block address of the
base metadata page. The log record acts as the inverted
index for the inode, which is used to reconnect it to the
directory tree. Unindexed zone in ReconFS is set by
clustering multiple block groups in ext2. ReconFS limits
the new allocations to these block groups, thus making
these block groups as the unindexed zone. The addresses
of these block groups are kept in file system super block
and are made persistent on each zone switch.

In metadata persistence logging, ReconFS tags the
dirty parts of each metadata page using a linked list,
as shown in Figure 4. Each node in the linked list
is a pair of (o f f , len) to indicate which part is dirty.
Before each insertion, the list is checked to merge
the overlapped dirty parts. The persistent log record
also associates the type type, the version number ver
and the logical block address lba for each metadata
page with the linked list pairs, followed by the dirty
content. In current implementation, ReconFS writes
the metadata persistence log as a file in the root
file system. Checkpoint is performed for file system
unmount, unindexed zone switch or log truncation.
Checkpoint for file system unmount is performed when
the unmount command is issued, while checkpoint for
the other two is triggered when the free space in the
unindexed zone or the metadata persistence log drops
below 5%.

Reconstruction of ReconFS is performed in three
phases:

1. Scan Phase: Page metadata from all flash pages
in the unindexed zone and log records from the
metadata persistence log are read into memory.
After this, all addresses of the metadata pages that
appear in either of them are collected. And then, all
these metadata pages are read into memory.

2. Zone Processing Phase: In the unindexed zone,
each flash page is connected to its inode using the
inverted index in its page metadata. Structures of
files and directories are reconstructed, but they may
have obsolete pages.

Table 1: File Systems

ext2 a traditional file system without journaling
ext3 a traditional journaling file system (jour-

naled version of ext2)
btrfs[2] a recent copy-on-write (COW) file system
f2fs[12] a recent log-structured file system opti-

mized for flash

3. Log Processing Phase: Each log record is used
either to connect a file or directory to the directory
tree or to update the metadata page content. For
a creation or hard link log record, the directory
entry is updated for the inode. For a deletion or
truncation log record, the corresponding bitmaps
are read and updated. The other log records are used
to update the page content. And finally, versions
in the pages and inodes are checked to discard the
obsolete pages, files and directories.

5 Evaluation

We evaluate the performance and endurance of ReconFS
against previous file systems, including ext2, ext3,
btrfs and F2FS, and aim to answer the following four
questions:

1. How does ReconFS compare with previous file
systems in terms of performance and endurance?

2. What kind of operations gain more benefits from
ReconFS? What are the benefits from embedded
connectivity and metadata persistence logging?

3. What is the impact of changes in memory size?
4. What is the overhead of checkpoint and reconstruc-

tion in ReconFS?
In this section, we first describe the experimental setup

before answering the above questions.

5.1 Experimental Setup
We implement ReconFS in Linux kernel 3.10.11, and
evaluate the performance and endurance of ReconFS
against the file systems listed in Table 1.

We use four workloads from filebench benchmark [3].
They emulate different types of servers. Operations and
read-write ratio [21] of each workload are illustrated as
follows:
• fileserver emulates a file server, which performs a

sequence of create, delete, append, read, write and
attribute operations. The read-write ratio is 1:2.

• webproxy emulates a web proxy server, which
performs a mix of create-write-close, open-read-
close and delete operations, as well as log appends.
The read-write ratio is 5:1.

7
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Figure 5: System Comparison on Performance
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Figure 6: System Comparison on Endurance

Table 2: SSD Specification

Capacity 128 GB
Seq. Read Bandwidth 260 MB/s
Seq. Write Bandwidth 200 MB/s

Rand. Read IOPS (4KB) 17,000
Rand. Write IOPS (4KB) 5,000

• varmail emulates a mail server, which performs a
set of create-append-sync, read-append-sync, read
and delete operations. The read-write ratio is 1:1.

• webserver emulates a web server, which performs
open-read-close operations, as well as log appends.
The read-write ratio is 10:1.

Experiments are carried out on Fedora 10 using Linux
kernel 3.10.11, and the computer is equipped with 4-core
2.50GHz processor and 12GB memory. We evaluate all
file systems on a 128GB SSD, and its specification is
shown in Table 2. All file systems are mounted with
default options.

5.2 System Comparison
5.2.1 Overall Comparison

We evaluate the performance of all file systems by
measuring the throughput reported by the benchmark,
and the endurance by measuring the write size to storage.
The write size to storage is collected from the block level
trace using blktrace tool [1].

Figure 5 shows the throughput normalized to the
throughput of ext2 to evaluate the performance. As
shown in the figure, ReconFS is among the best of
all file systems for all evaluated workloads, and gains
performance improvement up to 46.3% than ext2 for
varmail, the metadata intensive workload. For read
intensive workloads, such as webproxy and webserver,
all evaluated file systems do not show a big difference.
But for write intensive workloads, such as fileserver
and varmail, they show different performance. Ext2

shows comparatively higher performance than other
file systems excluding ReconFS. Both ext3 and btrfs
have provided namespace consistency with different
mechanisms, e.g., waiting until the data reach persistent
storage before writing back the metadata, but with poorer
performance compared to ext2. F2FS, the file system
with data layout optimized for flash, shows a comparable
performance to ext2, but has inferior performance in
varmail workload, which is metadata intensive and has
frequent fsyncs. Comparatively, ReconFS achieves
the performance of ext2 in all evaluated workloads,
nearly the best performance of all previous file systems,
and is even better than ext2 in varmail workload.
Moreover, ReconFS provides namespace consistency
with embedded connectivity while ext2 does not.

Figure 6 shows the write size to storage normalized
to that of ext2 to evaluate the endurance. From the
figure, we can see ReconFS effectively reduces write
size for metadata and reduces write size by up to
27.1% compared to ext2. As same as the performance,
the endurance of ext2 is the best of all file systems
excluding ReconFS. On the while, ext3, btrfs and F2FS
uses journaling or copy-on-write to provide consistency,
which introduces extra writes. For instance, btrfs has the
write size 9 times as large as that of ext2 in the fileserver
workload. ReconFS provides namespace consistency
using embedded connectivity without incurring extra
writes, and further reduces write size by compacting
metadata writeback. As shown in the figure, ReconFS
shows a write size reduction of 18.4%, 7.9% and 27.1%
even compared with ext2 respectively for fileserver,
webproxy and varmail workloads.

5.2.2 Performance

To understand the performance impact of ReconFS, we
evaluate four different operations that have to update
the index node page and/or directory entry page. The
four operations are file creation, deletion, append and
append with fsyncs. They are evaluated using micro-

8
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Figure 7: Performance Evaluation of Operations (File
create, delete, append and append with fsync)

benchmarks. The file creation and deletion benchmarks
create or delete 100K files spread over 100 directories.
f sync is performed following each creation. The append
benchmark appends 4KB pages to a file, and it inserts
a fsync for every 1,000 (one fsync per 4MB) and 10
(one fsync per 40KB) append operations respectively for
evaluating append and append with fsyncs.

Figure 7 shows the throughput of the four operations.
ReconFS shows a significant throughput increase in
file creation and append with fsyncs. File creation
throughput in ReconFS doubles the throughput in ext2.
This is because only one log page is appended in the
metadata persistence log, while multiple pages need
to be written back in ext2. Other file systems have
even worse file creation performance due to consistency
overheads. File deletion operations in ReconFS also
show better performance than the others. File append
throughput in ReconFS almost equals that in ext2 for
append operations with one fsync per 1,000 append
operations. But file append (with fsyncs) throughput in
ext2 drops dramatically as the fsync frequency increases
from 1/1000 to 1/10, as well as in the other journaling or
log-structured file systems. In comparison, file append
(with fsyncs) throughput in ReconFS only drops to half
of previous throughput. When fsync frequency is 1/10,
ReconFS has file append throughput 5 times better than
ext2 and orders of magnitude better than the other file
systems.

5.2.3 Endurance

To further investigate the endurance benefits of ReconFS,
we measure the write size of ext2, ReconFS without log
compacting (denoted as ReconFS-EC) and ReconFS.
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Figure 8: Endurance Evaluation for Embedded Connec-
tivity and Metadata Persistence Logging

Figure 8 shows write sizes of the three file systems.
We compare the write sizes of ext2 and ReconFS-EC to
evaluate the benefit from embedded connectivity, since
ReconFS-EC implements the embedded connectivity but
without log compacting. From the figure, we observe
that the fileserver workload shows a remarkable drop
in write size from ext2 to ReconFS-EC. The benefit
mainly comes from the intensive file creates and appends
in the fileserver workload, which otherwise requires
index pointers to be updated for namespace connectivity.
Embedded connectivity in ReconFS eliminates updates
to these index pointers. We also compare the write sizes
of ReconFS-EC and ReconFS to evaluate the benefit
from log compacting in metadata persistence logging.
As shown in the figure, ReconFS shows a large write
reduction in varmail workload. This is because frequent
fsyncs reduce the effects of buffering, in other words, the
updates to metadata pages are small when written back.
As a result, the log compacting gains more improvement
than other workloads.
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Figure 9: Distribution of Buffer Page Writeback Size

Figure 9 also shows the distribution of buffer page
writeback size, which is the size of dirty parts in each
page. As shown in the figure, over 99.9% of the dirty
data for each page in metadata writeback of varmail
workload are less than 1KB due to frequent fsyncs, while
the others have the fraction varied from 7.3% to 34.7%
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(c) Memory Size Impact on Endurance (fileserver)
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Figure 10: Memory Size Impact on Performance and Endurance

Table 3: Comparision of Full-Write and Compact-Write

Workloads Full Write
Size (KB)

Comp. Write
Size (KB)

Compact
Ratio

fileserver 108,143 48,624 44.96%
webproxy 45,133 21,325 47.25%
varmail 3,060,116 117,235 3.83%

webserver 374 143 38.36%

for dirty size less than 1KB. In addition, we calculate the
compact ratio by dividing the full page update size with
the compact write size, as shown in Table 3. The compact
ratio of varmail workload achieves as low as 3.83%.

5.3 Impact of Memory Size

To study the memory size impact, we set the memory
size to 1, 2, 3, 7 and 12 gigabytes1 and measure both
performance and endurance of all evaluated file systems.
We measure performance in the unit of the operations
per second (ops/s), and endurance in the unit of bytes
per operation (bytes/op) by dividing the total write size
with the number of operations. Results of webproxy
and webserver workloads are not shown due to space
limitation, as they are read intensive workloads and show
little difference between file systems.

1We limit the memory size to 1, 2, 4, 8 and 12 gigabytes in the
GRUB. The recognized memory sizes (shown in /proc/meminfo) are
997, 2,005, 3,012, 6,980 and 12,044 megabytes, respectively.

Figure 10 (a) shows the throughput of fileserver
workload for all file systems under different memory
sizes. As shown in the figure, ReconFS gains more when
memory size becomes larger, in which case data pages
are written back less frequently and the writeback of
metadata pages has larger impact. When memory size
is small and memory pressure is high, the impact of data
writes dominates. ReconFS has poorer performance than
F2FS, which has optimized data layout. When memory
size increases, the impact from the metadata writes
increases. Little improvement is gained in ext3 and btrfs
when memory size increases from 7GB to 12GB. In
contrast, ReconFS and ext2 gain significant improvement
for their low metadata overhead and approach the
performance of F2FS. Figure 10 (c) shows the endurance
measured in bytes per operation of fileserver. In the
figure, ReconFS has comparable or less write size than
other file systems.

Figure 10 (b) shows the throughput of varmail
workload. Performance is stable under different memory
sizes, and ReconFS achieves the best performance. This
is because varmail workload is metadata intensive work-
load and has frequent fsync operations. Figure 10 (d)
shows the endurance of varmail workload. ReconFS
achieves the best in all file systems.

5.4 Reconstruction Overhead

We measure the unmount time to evaluate the overhead
of checkpoint, which writes back all dirty metadata
to make the persistent directory tree equivalent to the

10
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Figure 11: Unmount Time (Immediate Unmount)
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Figure 12: Unmount Time (Unmount after 90s)

volatile directory tree, as well as the reconstruction time.
Unmount Time. We use time command to measure the
time of unmount operations and use the elapsed time
reported by the time command.

Figure 11 shows the unmount time when the unmount
is performed immediately when each benchmark com-
pletes. The read intensive workloads, webproxy and
webserver, have unmount time less than one second
for all file systems. But the write intensive workloads
have various unmount time for different file systems.
The unmount time in ext2 is 46 seconds, while that of
ReconFS is 58. All the unmount time values are less
than one minute, and they include the time used for
both data and metadata writeback. Figure 12 shows
the unmount time when the unmount is performed 90
seconds later after each benchmark completes. All of
them are less than one second, and ReconFS does not
show a noticeable difference with others.
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Figure 13: Recovery Time

Reconstruction Time. Reconstruction time has two
main parts: scan time and processing time. The scan
time includes the time of the unindexed zone scan and
the log scan. The scan is the sequential read, which
performance is bounded by the device bandwidth. The
processing time is the time used to read the base metadata
pages in the directory tree to be updated in addition to the
recovery logic processing time. As shown in Figure 13,

the scan time is 48 seconds for an 8GB zone on the SSD,
and the processing time is around one second. The scan
time is expected to be reduced with PCIe SSDs. E.g., the
scan time for a 32GB zone on a PCIe SSD with 3GB/s is
around ten seconds. Therefore, with high read bandwidth
and IOPS, the reconstruction of ReconFS can complete
in tens of seconds.

6 Related Work

File System Namespace. Research on file system
namespace has been long for efficient and effective
namespace metadata management. Relational database
or table-based technologies have been used to man-
age namespace metadata for either consistency or
performance. Inversion file system [26] manages
namespace metadata using PostGRES database system to
provide transaction protection and crash recovery to the
metadata. TableFS [31] stores namespace metadata in
LevelDB [5] to improve metadata access performance by
leveraging the log-structured merge tree (LSM-tree) [27]
implemented in LevelDB.

The hierarchical structure of namespace has also been
discussed to be implemented in a flexible way to provide
semantic accesses. Semantic file system [16] removes
the tree-structured namespace and accesses files and
directories using attributes. hFAD [33] proposes a
similar approach, which prefers a search-friendly file
system to a hierarchical file system.

Pilot [30] proposes an even aggressive way and
eliminates all indexing in file systems, in which files are
accessed only through a 64-bit universal identifier (UID).
And Pilot does not provide tree-structured file access.
Comparatively, ReconFS removes only the indexing of
persistent storage to lower the metadata cost, and it
emulates the tree-structured file access using the volatile
directory tree.
Backpointers and Inverted Indices. Backpointers have
been used in storage systems for different purposes.
BackLog [24] uses backpointer in data blocks to reduce

11
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the pointer updates when data blocks are moved due to
advanced file system features, such as snapshots, clones.
NoFS [15] uses backpointer for consistency checking
on each read to provide consistency. Both of them use
backpointer as the assistant to enhance new functions,
but ReconFS uses backpointers (inverted indices) as the
only indexing (without forward pointers).

In flash-based SSDs, backpointer (e.g., the logical
page addresses) is stored in the page metadata of each
flash page, which is atomically accessed with the page
data, to recover the FTL mapping table [10]. On
each device booting, all pages are scanned, and the
FTL mapping table is recovered using the backpointer.
OFSS [23] uses backpointer in page metadata in a
similar way. OFSS uses an object-based FTL, and
the backpointer in each page records the information
of the object, which is used to delay the persistence
of the object indexing. ReconFS extends the use of
backpointer in flash storage to the file system namespace
management. Instead of maintaining the indexing
(forward pointers), ReconFS embeds only the reverse
index (backward pointers) with the indexed data, and the
reverse indices are used for reconstruction once system
fails unexpectedly.
File System Logging. File systems have used logging
in two different ways. One is the journaling, which
updates metadata and/or data in the journaling area
before updating them to their home locations, and is
widely used in modern file systems to provide file system
consistency [4, 7, 8, 34, 35]. Log-structured file systems
use logging in the other way [32]. Log-structured file
systems write all data and metadata in a logging way,
making random writes sequential for better performance.

ReconFS employs the logging mechanism for meta-
data persistence. Unlike journaling file systems or log-
structured file systems, which require tracking of valid
and invalid pages for checkpoint and garbage cleaning,
the metadata persistence log in ReconFS is simply
discarded after the writeback of all volatile metadata.
ReconFS also enables compact logging, because the
base metadata pages can be read quickly during
reconstruction due to high random read performance of
flash storage.
File Systems on Flash-based Storage. In addition
to embedded flash file systems [9, 36], researchers
are proposing new general-purpose file systems for
flash storage. DFS [19] is a file system that directly
manages flash memory by leveraging functions (e.g.,
block allocation, atomic update) provided by FusionIO’s
ioDrive. Nameless Write [37] also removes the space
allocation function in the file system and leverage the
FTL space management for space allocation. OFSS [23]
proposes to directly manage flash memory using an
object-based FTL, in which the object indexing, free

space management and data layout can be optimized
with the flash memory characteristics. F2FS [12] is a
promising log-structured file system which is designed
for flash storage. It optimizes data layout in flash
memory, e.g., the hot/cold data grouping. But these file
systems have paid little attention to the high overhead
of namespace metadata, which are frequently written
back and are written in the scattered small write pattern.
ReconFS is the first to address the namespace metadata
problem on flash storage.

7 Conclusion

Properties of namespace metadata, such as intensive
writeback and scattered small updates, make the over-
head of namespace management high on flash storage
in terms of both performance and endurance. ReconFS
removes maintenance of the persistent directory tree and
emulates hierarchical access using a volatile directory
tree. ReconFS is reconstructable after unexpected system
failures using both embedded connectivity and metadata
persistence logging mechanisms. Embedded connec-
tivity enables directory tree structure reconstruction by
embedding the reverted index with the indexed data.
With elimination of updates to parent pages (in the
directory tree) for pointer updating, the consistency
maintenance is simplified and the writeback frequency
is reduced. Metadata persistence logging provides
persistence to metadata pages, and the logged metadata
are used for directory tree content reconstruction. Since
only the dirty parts of metadata pages are logged and
compacted in the logs, the writeback size is reduced.
Reconstruction is fast due to high bandwidth and IOPS of
flash storage. Through the new namespace management,
ReconFS improves both performance and endurance
of flash-based storage system without compromising
consistency or persistence.

Acknowledgments

We would like to thank our shepherd Remzi Arpaci-
Dusseau and the anonymous reviewers for their com-
ments and suggestions. This work is supported by the
National Natural Science Foundation of China (Grant
No. 61232003, 60925006), the National High Tech-
nology Research and Development Program of China
(Grant No. 2013AA013201), Shanghai Key Laboratory
of Scalable Computing and Systems, Tsinghua-Tencent
Joint Laboratory for Internet Innovation Technology,
Huawei Technologies Co. Ltd., and Tsinghua University
Initiative Scientific Research Program.

12



USENIX Association  12th USENIX Conference on File and Storage Technologies 87

References

[1] blktrace(8) - linux man page. http://linux.

die.net/man/8/blktrace.

[2] Btrfs. http://btrfs.wiki.kernel.org.

[3] Filebench benchmark. http://sourceforge.

net/apps/mediawiki/filebench/index.

php?title=Main_Page.

[4] Journaled file system technology for linux. http:

//jfs.sourceforge.net/.

[5] LevelDB, a fast and lightweight key/value database
library by Google. https://code.google.com/
p/leveldb/.

[6] The NVM express standard. http://www.

nvmexpress.org.

[7] ReiserFS. http://reiser4.wiki.kernel.org.

[8] XFS: A high-performance journaling filesystem.
http://oss.sgi.com/projects/xfs/.

[9] Yaffs. http://www.yaffs.net.

[10] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina
Panigrahy. Design tradeoffs for SSD performance.
In Proceedings of 2008 USENIX Annual Technical
Conference (USENIX’08), 2008.

[11] David G Andersen, Jason Franklin, Michael
Kaminsky, Amar Phanishayee, Lawrence Tan, and
Vijay Vasudevan. FAWN: A fast array of wimpy
nodes. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP’09), 2009.

[12] Neil Brown. An F2FS teardown. http://lwn.

net/Articles/518988/.

[13] Adrian M. Caulfield, Laura M. Grupp, and Steven
Swanson. Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive
applications. In Proceedings of the 14th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS XIV), 2009.

[14] Feng Chen, Tian Luo, and Xiaodong Zhang.
CAFTL: A content-aware flash translation layer
enhancing the lifespan of flash memory based solid
state drives. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies
(FAST’11), 2011.

[15] Vijay Chidambaram, Tushar Sharma, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Consistency without ordering. In Proceedings of
the 10th USENIX Conference on File and Storage
Technologies (FAST’12), 2012.

[16] David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and James W. O’Toole, Jr. Semantic
file systems. In Proceedings of the thirteenth
ACM Symposium on Operating Systems Principles
(SOSP’91), 1991.

[17] Laura M Grupp, John D Davis, and Steven
Swanson. The bleak future of NAND flash
memory. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies
(FAST’12), 2012.

[18] Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: understanding
the I/O behavior of Apple desktop applications.
In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP’11), 2011.

[19] William K. Josephson, Lars A. Bongo, David
Flynn, and Kai Li. DFS: a file system for
virtualized flash storage. In Proceedings of the
8th USENIX Conference on File and Storage
Technologies (FAST’10), 2010.

[20] Hyojun Kim, Nitin Agrawal, and Cristian Un-
gureanu. Revisiting storage for smartphones. In
Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST’12), 2012.

[21] Eunji Lee, Hyokyung Bahn, and Sam H Noh.
Unioning of the buffer cache and journaling layers
with non-volatile memory. In Proceedings of the
11th USENIX Conference on File and Storage
Technologies (FAST’13), 2013.

[22] Youyou Lu, Jiwu Shu, Jia Guo, Shuai Li, and
Onur Mutlu. LightTx: A lightweight transactional
design in flash-based SSDs to support flexible
transactions. In Proceedings of the 31st IEEE
International Conference on Computer Design
(ICCD’13), 2013.

[23] Youyou Lu, Jiwu Shu, and Weimin Zheng. Ex-
tending the lifetime of flash-based storage through
reducing write amplification from file systems. In
Proceedings of the 11th USENIX Conference on
File and Storage Technologies (FAST’13), 2013.

[24] Peter Macko, Margo I Seltzer, and Keith A
Smith. Tracking back references in a write-
anywhere file system. In Proceedings of the

13



88 12th USENIX Conference on File and Storage Technologies  USENIX Association

8th USENIX Conference on File and storage
technologies (FAST’10), 2010.

[25] David Nellans, Michael Zappe, Jens Axboe, and
David Flynn. ptrim ()+ exists (): Exposing new
FTL primitives to applications. In the 2nd Annual
Non-Volatile Memory Workshop, 2011.

[26] Michael A Olson. The design and implementation
of the inversion file system. In USENIX Winter,
1993.

[27] Patrick O’Neil, Edward Cheng, Dieter Gawlick,
and Elizabeth O’Neil. The log-structured merge-
tree (LSM-tree). Acta Informatica, 33(4):351–385,
1996.

[28] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K Panda. Be-
yond block I/O: Rethinking traditional storage
primitives. In Proceedings of the 17th IEEE
International Symposium on High Performance
Computer Architecture (HPCA’11), 2011.

[29] Vijayan Prabhakaran, Thomas L Rodeheffer, and
Lidong Zhou. Transactional flash. In Proceedings
of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI’08),
2008.

[30] David D Redell, Yogen K Dalal, Thomas R
Horsley, Hugh C Lauer, William C Lynch, Paul R
McJones, Hal G Murray, and Stephen C Purcell.
Pilot: An operating system for a personal computer.
Communications of the ACM, 23(2):81–92, 1980.

[31] Kai Ren and Garth Gibson. TABLEFS: Enhancing
metadata efficiency in the local file system. In
Proceedings of 2013 USENIX Annual Technical
Conference (USENIX’13), 2013.

[32] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[33] Margo I Seltzer and Nicholas Murphy. Hierarchical
file systems are dead. In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems
(HotOS XII), 2009.

[34] Stephen Tweedie. Ext3, journaling filesystem. In
Ottawa Linux Symposium, 2000.

[35] Stephen C Tweedie. Journaling the linux ext2fs
filesystem. In The Fourth Annual Linux Expo, 1998.

[36] David Woodhouse. Jffs2: The journalling flash
file system, version 2. http://sourceware.org/
jffs2.

[37] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
De-indirection for flash-based SSDs with nameless
writes. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies
(FAST’12), 2012.

14




