
This paper is included in the Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST ’14).

February 17–20, 2014 • Santa Clara, CA USA

ISBN 978-1-931971-08-9

Open access to the Proceedings of the
12th USENIX Conference on File and Storage

Technologies (FAST ’14)
is sponsored by

MultiLanes: Providing Virtualized Storage
for OS-level Virtualization on Many Cores

Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai,
Beihang University

https://www.usenix.org/conference/fast14/technical-sessions/presentation/kang

USENIX Association 12th USENIX Conference on File and Storage Technologies 317

MultiLanes: Providing Virtualized Storage for OS-level Virtualization on
Many Cores

Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai

Beihang University, Beijing, China

{kangjb, woty, hucm}@act.buaa.edu.cn, zblgeqian@gmail.com, huaijp@buaa.edu.cn

Abstract

OS-level virtualization is an efficient method for server
consolidation. However, the sharing of kernel services
among the co-located virtualized environments (VEs) in-
curs performance interference between each other. Es-
pecially, interference effects within the shared I/O stack
would lead to severe performance degradations on many-
core platforms incorporating fast storage technologies
(e.g., non-volatile memories).

This paper presents MultiLanes, a virtualized storage
system for OS-level virtualization on many cores. Multi-
Lanes builds an isolated I/O stack on top of a virtualized
storage device for each VE to eliminate contention on
kernel data structures and locks between them, thus scal-
ing them to many cores. Moreover, the overhead of stor-
age device virtualization is tuned to be negligible so that
MultiLanes can deliver competitive performance against
Linux. Apart from scalability, MultiLanes also delivers
flexibility and security to all the VEs, as the virtualized
storage device allows each VE to run its own guest file
system.

The evaluation of our prototype system built for Linux
container (LXC) on a 16-core machine with a RAM disk
demonstrates MultiLanes outperforms Linux by up to
11.32X and 11.75X in micro- and macro-benchmarks,
and exhibits nearly linear scalability.

1 Introduction

As many-core architectures exhibit powerful computing
capacity, independent workloads can be consolidated in a
single node of data centers for high efficiency. Operating
system level virtualization (e.g., VServer [32], OpenVZ
[6], Zap [29], and LXC [4]) is an efficient method to run
multiple virtualized environments (VEs) for server con-
solidation, as it comes with significantly lower overhead
than hypervisors [32, 29]. Thus, each independent work-
load can be hosted in a VE for both good isolation and

high efficiency [32]. Previous work on OS-level virtual-
ization mainly focuses on how to efficiently space parti-
tion or time multiplex the hardware resources (e.g., CPU,
memory and disk).

However, the advent of non-volatile memory tech-
nologies (e.g., NAND flash, phase change memories
and memristors) creates challenges for system software.
Specially, emerging fast storage devices built with non-
volatile memories deliver low access latency and enor-
mous data bandwidth, thus enabling high degree of
application-level parallelism [16, 31]. This advance has
shifted the performance bottleneck of the storage sys-
tem from poor hardware performance to system software
inefficiencies. Especially, the sharing of the I/O stack
would incur performance interference between the co-
located VEs on many cores, as the legacy storage stack
scales poorly on many-core platforms [13]. A few scala-
bility bottlenecks exist in the Virtual File System (VFS)
[23] and the underlying file systems. As a consequence,
the overall performance of the storage system suffers sig-
nificant degradations when running multiple VEs with
I/O intensive workloads. The number of concurrently
running VEs may be limited by the software bottlenecks
instead of the capacity of hardware resources, thus de-
grading the utilization of the hardware.

This paper presents MultiLanes, a storage system for
operating system level virtualization on many cores.
MultiLanes eliminates contention on shared kernel data
structures and locks between co-located VEs by provid-
ing an isolated I/O stack for each VE. As a consequence,
it effectively eliminates the interference between the VEs
and scales them well to many cores. The isolated I/O
stack design consists of two components: the virtualized
block device and the partitioned VFS.

The virtualized block device. MultiLanes creates a
file-based virtualized block device for each VE to run a
guest file system instance atop it. This approach avoids
contention on shared data structures within the file sys-
tem layer by providing an isolated file system stack for

318 12th USENIX Conference on File and Storage Technologies USENIX Association

5.0k

10k

15k

20k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

openvz
vserver

lxc

(a) Ext3

5.0k

10.0k

15.0k

20.k

25.0k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(b) Ext4

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

70.0k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(c) XFS

5.0k

10.0k

15.0k

20.k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(d) Btrfs

Figure 1: VE Scalability Evaluation. This figure shows the average throughput of each container performing sequential buffered writes

on different file systems. We choose the latest OpenVZ, Linux-VServer and LXC that are based on Linux kernel 2.6.32, 3.7.10, and 3.8.2 respectively.

The details of experimental setup is to be presented in Section 5.

Ext3 Ext4
lock contention bounces total wait time # lock contention bounces total wait time
1 zone->wait table 5216186 36574149.95 1 journal->j list lock 2085109 138146411.03
2 journal->j state lock 1581931 56979588.44 2 zone->wait table 147386 384074.06
3 journal->j list lock 382055 20804351.46 3 journal->j state lock 46138 541419.08

XFS Btrfs
lock contention bounces total wait time # lock contention bounces total wait time
1 zone->wait table 22185 36190.48 1 found->lock 778055 44325371.60
2 rq->lock 6798 9382.04 2 btrfs-log-02 387846 1124781.19
3 key#3 4869 13463.40 3 btrfs-log-01 230158 1050066.24

Table 1: The Top 3 Hottest Locks. This table shows the contention bounces and total wait time of the top 3 hottest locks when running

16 LXC containers with buffered writes. The total wait time is in us.

each VE. The key challenges to the design of the vir-
tualized block device are (1) how to tune the overhead
induced by the virtualized block device to be negligible,
and (2) how to achieve good scalability with the number
of virtualized block devices on the host file system which
itself scales poorly on many cores.

Hence, we propose a set of techniques to address these
challenges. First, MultiLanes uses a synchronous bypass
strategy to complete block I/O requests of the virtualized
block device. In particular, it translates a block I/O re-
quest from the guest file system into a list of requests
of the host block device using block mapping informa-
tion got from the host file system. Then the new re-
quests will be directly delivered to the host device driver
without the involvement of the host file system. Second,
MultiLanes constrains the work threads interacting with
the host file system for block mapping to a small set of
cores to avoid severe contention on the host, as well as
adopts a prefetching mechanism to reduce the communi-
cation costs between the virtualized devices and the work
threads.

Another alternative for block device virtualization is
to give VEs direct accesses to physical devices or log-
ical volumes for native performance. However, there
are several benefits in adopting plain files on the host
as the back-end storage for virtualization environments
[24]. First, using files allows storage space overcommit-
ment as most modern file systems support sparse files
(e.g., Ext3/4 and XFS). Second, it also eases the man-

agement of VE images as we can leverage many existing
file-based storage management tools. Third, snapshot-
ting an image using copy-on-write is simpler at the file
level than the block device level.

The partitioned VFS. In Unix-like operating sys-
tems, VFS provides a standard file system interface for
applications to access different types of concrete file sys-
tems. As it needs to maintain a consistent file system
view, the inevitable use of global data structures (e.g.,
the inode cache and dentry cache) as well as the cor-
responding locks might result in scalability bottlenecks
on many cores. Rather than iteratively eliminating or
mitigating the scalability bottlenecks of the VFS [13],
MultiLanes in turn adopts a straightforward strategy that
partitions the VFS data structures to completely elimi-
nate contention between co-located VEs, as well as to
achieve improved locality of the VFS data structures on
many cores. The partitioned VFS is referred to as the
pVFS in the rest of the paper.

The remainder of the paper is organized as follows.
Section 2 highlights the storage stack bottlenecks in ex-
isting OS-level virtualization approaches for further mo-
tivation. Then we present the design and implementation
of MultiLanes in Section 3 and Section 4 respectively.
Section 5 evaluates its performance and scalability with
micro- and macro-benchmarks. We discuss the related
works in Section 6 and conclude in Section 7. A vir-
tualized environment is referred to as a container in the
following sections also.

USENIX Association 12th USENIX Conference on File and Storage Technologies 319

2 Motivation

In this section, we create a simple microbenchmark to
highlight the storage stack bottlenecks of existing OS-
level virtualization approaches on many-core platforms
incorporating fast storage technologies. The benchmark
performs 4KB sequential writes to a 256MB file. We run
the benchmark program inside each container in paral-
lel and vary the number of containers. Figure 1 shows
the average throughput of containers running the bench-
mark on a variety of file systems (i.e., Ext3/4, XFS and
Btrfs). The results show that the throughput on all the
file systems except XFS decreases dramatically with the
increasing number of containers in the three OS-level
virtualization environments (i.e., OpenVZ, VServer and
LXC). The kernel lock usage statistics in Table 1 presents
the lock bounces and total wait time during the bench-
marking, which results in the decreased performance.
XFS delivers much better scalability than the other three
as much less contention occurred for buffered writes.
Nevertheless it would also suffer from scalability bottle-
necks under other workloads, which will be described in
Section 5.

The poor scalability of the storage system is mainly
caused by the concurrent accesses to shared data struc-
tures and the use of synchronization primitives. The
use of shared data structures modified by multiple cores
would cause frequent transfers of the data structures and
the protecting locks among the cores. As the access la-
tency of remote caches is much larger than that of local
caches on modern shared-memory multicore processors
[12], the overhead of frequent remote accesses would
significantly decrease the overall system performance,
leading to severe scalability bottlenecks. Especially, the
large traffic of non-scalable locks generated by cache
coherence protocols on the interconnect will exacerbate
system performance. Previous studies show that the time
taken to acquire a lock will be proportional to the number
of contending cores [13, 12].

3 MultiLanes Design

MultiLanes is a storage system for OS level virtualiza-
tion that addresses the I/O performance interference be-
tween the co-located VEs on many cores. In this sec-
tion, we present the designing goals, concepts and com-
ponents of MultiLanes.

3.1 Design Goals

Existing OS-level virtualization approaches simply
leverage chroot to realize file system virtualization [32,
6, 29]. The containers co-located share the same I/O

I/O stack

container containercontainer

Host Block Driver

vDrivervDrivervDriver

FS

vDriver

FS FS FS

pVFSpVFS pVFS pVFS

I/O stack I/O stack I/O stack

container

Host File System

Host Block Device

Bypass

Figure 2: MultiLanes Architecture. This figure depicts

the architecture of MultiLanes. The virtualized storage is mapped as a

plain file on the host file system and is left out in the figure.

stack, which not only leads to severe performance inter-
ference between them but also suppresses flexibility.

MultiLanes is designed to eliminate storage system in-
terference between containers to provide good scalabil-
ity on many cores. We aim to meet three design goals:
(1) it should be conceptually simple, self-contained, and
transparent to applications and to various file systems;
(2) it should achieve good scalability with the number
of containers on the host; (3) it should minimize the vir-
tulization overhead on fast storage media so as to offer
near-native performance.

3.2 Architectural Overview
MultiLanes is composed of two key design modules: the
virtualized storage device and the pVFS. Figure 2 illus-
trates the architecture and the overall primary abstrac-
tions of the design. We have left out other kernel compo-
nents to better focus on the I/O subsystem.

At the top of the architecture we host multiple contain-
ers. A container is actually a group of processes which
are completely constrained to execute inside it. Each
container accesses its guest file system through the par-
titioned VFS that provides POSIX APIs. The partitioned
VFS offers a private kernel abstraction to each container
to eliminate contention within the VFS layer. Under each
pVFS there lies the specific guest file system of the con-
tainer. The pVFS remains transparent to the underly-
ing file system by providing the same standard interfaces
with the VFS.

Between the guest file system and the host are the vir-
tualized block device and the corresponding customized

320 12th USENIX Conference on File and Storage Technologies USENIX Association

block device driver. MultiLanes maps regular files in the
host file system as virtualized storage devices to contain-
ers, which provides the fundamental basis for running
multiple guest file systems. This storage virtualization
approach not only eliminates performance interference
between containers in the file system layer, but also al-
lows each container to use a different file system from
each other, which enables flexibility both between the
host and a single guest, and between the guests. The
virtualized device driver is customized for each virtual-
ized device, which provides the standard interfaces to
the Linux generic block layer. Meanwhile, MultiLanes
adopts a proposed synchronous bypass mechanism to
avoid most of the overhead induced by the virtualization
layer.

3.3 Design Components

MultiLanes provides an isolated I/O stack to each con-
tainer to eliminate performance interference between
containers, which consists of the virtualized storage de-
vice, the virtualized block device driver, and the parti-
tioned VFS.

3.3.1 Virtualized Storage

Compared to full virtualization and para-virtualization
that provide virtualized storage devices for virtual ma-
chines (VMs), OS-level virtualization stores the VMs’
data directly on the host file system for I/O efficiency.
However, the virtualized storage has inborn advantage
over shared storage in performance isolation because
each VM has an isolated I/O stack.

As described in Section 2, the throughput of each LXC
container will fall dramatically with the increasing num-
ber of containers due to the severe contention on shared
data structures and locks within the shared I/O stack. The
interference is masked by the high latency of the sluggish
mechanical disk in traditional disk-based storage. But it
has to be reconsidered in the context of next generation
storage technologies due to the shift that system software
becomes the main bottleneck on fast storage devices.

In order to eliminate storage system performance in-
terference between containers on many cores, we provide
lightweight virtualized storage for each container. We
map a regular file as a virtualized block device for each
container, and then build the guest file system on top of
it. Note that as most modern file systems support sparse
files for disk space efficiency, the host doesn’t preallo-
cate all blocks in accordance with the file size when the
file system is built on the back-end file. The challenge
is to balance performance gain achieved by performance
isolation against the overhead incurred by storage virtu-
alization. However, scalability and competitive perfor-

mance can both be achieved when the virtualized storage
architecture is efficiently devised.

3.3.2 Driver Model

Like any other virtualization approaches adopted in other
fields, the most important work for virtualization is to
establish the mapping between the virtualized resources
and the physical ones. This is done by the virtualized
block device driver in MultiLanes. As shown in Fig-
ure 2, each virtualized block device driver receives block
I/O requests from the guest file system through the Linux
generic block layer and maps them to requests of the host
block device.

A block I/O request is composed of several segments,
which are contiguous on the block device, but are not
necessarily contiguous in physical memory, depicting a
mapping between a block device sector region and a list
of individual memory segments. On the block device
side, it specifies the data transfer start sector and the
block I/O size. On the buffer side, the segments are or-
ganized as a group of I/O vectors. Each I/O vector is
an abstraction of a segment that is in a memory page,
which specifies the physical page on which it lies, off-
set relative to the start of the page, and the length of the
segment starting from the offset. The data residing in the
block device sector region would be transmitted to/from
the buffer in sequence according to the data transfer di-
rection given in the request.

For the virtualized block device of MultiLanes, the
sector region specified in the request is actually a data
section of the back-end file. The virtualized driver should
translate logical blocks of the back-end file to physical
blocks on the host, and then map each I/O request to the
requests of the host block device according to the transla-
tion. It is composed of two major components: the block
translation and block handling.

Block Translation. Almost all modern file systems
have devised a mapping routine to map a logical block
of a file to the physical block on the host device, which
returns the physical block information to the caller at
last. If the block is not mapped, the mapping process
involves the block allocation of the file system. Mul-
tiLanes achieves block translation with the help of this
routine.

As shown in Figure 3, the block translation unit of
each virtualized driver consists of a cache table, a job
queue and a translation thread. The cache table maintains
the mapping between logical blocks and physical blocks.
The virtulized driver will first look up the table with the
logical block number of the back-end file for block trans-
lation when a container thread submits an I/O request to
it. Note that the driver actually executes in the context
of the container thread as we adopt a synchronous model

USENIX Association 12th USENIX Conference on File and Storage Technologies 321

make request

HOST DRIVER

call back

HIT

JOB QUEUE

THREAD

req req req req

call back

LAST
SLICE

req

BIO LIST

head slice slice slice slice

noyes

submit

BLOCK TRANSLATIONCACHE TABLE

map

GUEST BLOCK LAYER

Figure 3: Driver Structure. This figure presents the structure

of the virtualized storage driver, which comprises the block translation

unit and the request handling unit.

of I/O request processing. If the target block is hit in
the cache table the driver directly gets the target map-
ping physical block number. Otherwise it starts a cache
miss event and then puts the container thread to sleep.
A cache miss event delivers a translation job to the job
queue and wakes up the translation thread. The trans-
lation thread then invokes the interface of the mapping
routine exported by the host file system to get the tar-
get physical block number, stores a new mapping entry
in the cache table, and wakes up the container thread at
last. The cache table is initialized as empty when the
virtualized device is mounted.

Block translation will be extremely inefficient if the
translation thread is woken up to only map a single cache
miss block every time. The driver will suffer from fre-
quent cache misses and thread context switches, which
would waste CPU cycles and cause considerable com-
munication overhead. Hence we adopt a prefetching ap-
proach similar to that of handling CPU cache misses.
The translation thread maps a predefined number of con-
tinuous block region starting from the missed block for
each request in the job queue.

On the other hand, as the block mapping of the host file
system usually involves file system journaling, the map-
ping process may cause severe contention within the host
on many cores when cache misses of multiple virtulized
drivers occur concurrently, thus scaling poorly with the
number of virtualized devices on many cores. We ad-
dress this issue by constraining all translation threads to
work on a small set of cores to reduce contention [18]
and improve data locality on the host file system. Our
current prototype binds all translation threads to a set of
cores inside a processor, due to the observation that shar-
ing data within a processor is much less expensive than
that crossing processors [12].

Request Handling. Since the continuous data region

of the back-end file may not be necessarily continuous
on the host block device, a single block I/O request of
the virtualized block device may be remapped to several
new requests according to the continuity of the requested
blocks on the host block device.

There are two mapping involved when handling the
block I/O requests of the virtualized block device. The
mapping between the memory segments and the virtual-
ized block device sector region is specified in a scatter-
gather manner. The mapping between the virtualized
block device and the host block device gives the phys-
ical block number of a logical block of the back-end file.
For simplicity, the block size of the virtualized block de-
vice should be the same with that of the host block device
in our current prototype. For each segment of the block
I/O request, the virtulized device driver first gets the log-
ical block number of it, then translates the logical block
number to the physical block number with the support
of the block translation unit. When all the segments of
a request are remapped, we have to check whether they
are contiguous on the host block device. The virtualized
device driver combines the segments which are contigu-
ous on the host block device as a whole and allocates a
new block I/O request of the host block device for them.
Then it creates a new block I/O request for each of the re-
maining segments. Thus a single block I/O request of the
virtualized block device might be remapped to several re-
quests of the host block device. Figure 4 illustrates such
an example, which will be described in Section 4.1.

A new block I/O request is referred to as a slice of
the original request. We organize the slices in a doubly-
linked list and allocate a head to keep track of them.
When the list is prepared, each slice would be submit-
ted to the host block device driver in sequence. The host
driver will handle the data transmission requirements of
each slice in the same manner with regular I/O requests.

I/O completion should be carefully handled for the vir-
tualized device driver. As the original request is split into
several slices, the host block device driver will initiate a
completion procedure for each slice. But the original re-
quest should not be terminated until all the slices have
been finished. Hence we offer an I/O completion call-
back, in which we keep track of the finished slices, to the
host driver to invoke when it tries to terminate each slice.
The host driver will terminate the original block I/O re-
quest of the virtualized block device driver only when it
finds out that it has completed the last slice.

Thus a block I/O request of MultiLanes is remapped to
multiple slices of the host block device and is completed
by the host device driver. The most important feature
of the virtualized driver is that it stays transparent to the
guest file system and the host block device driver, and
only requires minor modification to the host file system
to export the mapping routine interface.

322 12th USENIX Conference on File and Storage Technologies USENIX Association

3.3.3 Partitioned VFS

The virtual file system in Linux provides a generic file
system interface for applications to access different types
of concrete file systems in a uniform way. Although Mul-
tiLanes allows each container to run its own guest file
system independently, there still exists performance in-
terference within the VFS layer. Hence, we propose the
partitioned VFS that provides a private VFS abstraction
to each container, eliminating the contention for shared
data structures within the VFS layer between containers.

Hot VFS Locks Hot Invoking Functions
1 inode hash lock insert inode locked()

remove inode hash()
2 dcache lru lock dput()

dentry lru prune()
3 inode sb list lock evict()

inode sb list add()
4 rename lock write seqlock()

Table 2: Hot VFS Locks. The table shows the hot locks and the

corresponding invoking functions in VFS when running the metadata

intensive microbenchmark ocrd in Linux kernel 3.8.2.

Table 2 shows the top four hottest locks in VFS
when conducting the metadata-intensive microbench-
mark ocrd, which will be described in Section 5. VFS
maintains an inode hash table to speed up inode lookup
and uses the inode hash lock to protect the list. Inodes
that belong to different super blocks are hashed together
into the hash table. Meanwhile, each super block has a
list that links all the inodes that belong to it. Although
this list is independently managed by each super block,
the kernel uses the global inode sb list lock to protect
accesses to all lists, which would introduce unnecessary
contention between multiple file system instances.

For the purpose of path resolution speedup, VFS uses
a hash table to cache directory entries, which allows con-
current read accesses to it without serialization by using
Read-Copy-Update (RCU) locks [27]. The rename lock
is a sequence lock that is indispensable for the hash table
in this context because a rename operation may involve
the edition of two hash buckets which might cause false
lookup results. It is also inappropriate that the VFS pro-
tects the LRU dentry lists of all file system instances with
the global dcache lru lock.

Rather than iteratively fixing or mitigating the lock
bottlenecks in the VFS, we in turn adopts a straight-
forward approach that partitions the VFS data structures
and corresponding locks to eliminate contention, as well
as to improve locality of the VFS data structures. In
particular, MultiLanes allocates an inode hash table and
a dentry hash table for each container to eliminate the
performance interference within the VFS layer. Along
with the separation of the two hash tables from each
other, inode hash lock and rename lock are also sepa-

rated. Meanwhile, each guest file system has its own
inode sb list lock and dcache lru lock also.

By partitioning the resources that would cause con-
tention in the VFS, the VFS data structures and locks
become localized within each partitioned domain. Sup-
posing there are n virtualized block devices built on the
host file system, the original VFS domain now is split
into n+1 independent domains: each guest file system
domain and the host domain that serves the host file sys-
tem along with special file systems (e.g., procfs and de-
bugfs). We refer the partitioned VFS to as the pVFS. The
pVFS is an important complementary part of the isolated
I/O stack.

4 Implementation

We choose to implement the prototype of MultiLanes
for Linux Container (LXC) out of OpenVZ and Linux-
VServer due to that both OpenVZ and Linux-VServer
need customized kernel adaptations while LXC is always
supported by the latest Linux kernel. We implemented
MultiLanes in the Linux 3.8.2 kernel, which consists of
a virtualized block device driver module and adaptations
to the VFS.

4.1 Driver Implementation
We realize the virtualized block device driver based on
the Linux loop device driver that provides the basic func-
tionality of mapping a plain file as a storage device on the
host.

Different from traditional block device drivers that
usually adopt a request queue based asynchronous
model, the virtualized device driver of MultiLanes
adopts a synchronous bypass strategy. In the routine
make request fn, which is the standard interface for de-
livering block I/O requests, our driver finishes request
mapping and redirects the slices to the host driver via the
standard submit bio interface.

When a virtualized block device is mounted, Multi-
Lanes creates a translation thread for it. And we ex-
port the xxx get block function into the inode operations
structure for Ext3, Ext4, Btrfs, Reiserfs and JFS so that
the translation thread can invoke it for block mapping via
the inode of the back-end file.

The multilanes bio end function is implemented for
I/O completion notification, which will be called each
time the host block device driver completes a slice. We
store global information such as the total slice number,
finished slice count and error flags in the list head, and
update the statistics every time it is called. The original
request will be terminated by the host driver by calling
the bi end io method of the original bio when the last
slice is completed.

USENIX Association 12th USENIX Conference on File and Storage Technologies 323

22 1906

21 1688

20 1674PAGE

PAGE

PAGE

start sector

head bio bio bio

New Bio List

1673

1674

...

1688

...

1906

...

...

Back-end File

Host Device
PAGE 19 1673

Figure 4: Request Mapping. This figure shows the mapping

from a single block I/O request of the virtualized block device to a re-

quest list on the host block device.

Figure 4 shows an example of block request mapping.
We assume the page size is 4096 bytes and the block size
of the host block device and the virtualized storage de-
vice are both 4096 bytes. As shown in the figure, a block
I/O request delivered to the virtualized driver consists of
four segments. The start sector of the request is 152 and
the block I/O size is 16KB. The bio contains four individ-
ual memory segments, which lie in four physical pages.
After all the logical blocks of the request are mapped by
the block translation unit, we can see that only the log-
ical block 19 and 20 are contiguous on the host. Mul-
tiLanes allocates a new bio structure for the two con-
tiguous blocks and two new ones for the remaining two
blocks, and then delivers the new bios to the host driver
in sequence.

4.2 pVFS Implementation

The partitioned VFS data structures and locks are orga-
nized in the super block of the file system. We allocate
SLAB caches ihtable cachep and dhtable cachep for in-
ode and dentry hash table allocation when initializing the
VFS at boot time. MultiLanes adds the dentry hashtable
pointer, the inode hashtable pointer, and the correspond-
ing locks (i.e., inode hash lock and rename lock) to the
super block. Meanwhile, each super block has its own
LRU dentry list, and inode list along with the separated
dcache lru lock and inode sb list lock. We also add a
flag field to the superblock structure to distinguish guest
file systems on virtualized storage devices from other

host file systems. For each guest file system, MultiLanes
will allocate a dentry hash table and an inode hash table
from the corresponding SLAB cache when the virtual-
ized block device is mounted, both of which are prede-
fined to have 65536 buckets.

Then we modify the kernel control flows that access
the hash tables, lists and corresponding locks to allow
each container to access its private VFS abstraction. We
first find out all the code spots where the hash tables,
lists and locks are accessed. Then, a multiplexer is em-
bedded in each code spot to do the branching. Accesses
to each guest file system are redirected to its private VFS
data structures and locks while other accesses keep going
through the original VFS. This work takes much efforts
to finish all the code spots. But this is non-complicated
work since the idea behind all modifications is the same.

5 Evaluation

Fast storage devices mainly include prevailing NAND
flash-based SSDs, and SSDs based on next-generation
technologies (e.g., Phase Change Memory), which
promise to further boost the performance. Unfortunately
when the evaluation was conducted we did not have a
high performance SSD at hand. So we used a RAM disk
to emulate a PCM-based SSD since phase change mem-
ory is expected to have bandwidth and latency character-
istics similar to DRAM [25]. The emulation is appropri-
ate as Multilanes does not concern about the underlying
specific storage media, as long as it is fast enough. More-
over, using a RAM disk could rule out any effect from
SSDs (e.g., global locks adopted in their corresponding
drivers) so as to measure the maximum scalability bene-
fits of MultiLanes.

In this section, we experimentally answer the follow-
ing questions: (1) Does MultiLanes achieve good scala-
bility with the number of containers on many cores ? (2)
Are all of MultiLanes’s design components necessary to
achieve such good scalability? (3) Does the overhead
induced by MultiLanes contribute marginally to the per-
formance under most workloads?

5.1 Experimental Setup

All experiments were carried out on an Intel 16-core
machine with four Intel Xeon(R) E7520 processors and
64GB memory. Each processor has four physical cores
clocked at 1.87GHZ. Each core has 32KB of L1 data
cache, 32KB of L1 instruction cache and 256KB of L2
cache. Each processor has a shared 18MB L3 cache. The
hyperthreading capability is turned off.

We turn on RAM block device support as a kernel
module and set the RAM disk size to 40GB. Lock usage

324 12th USENIX Conference on File and Storage Technologies USENIX Association

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

linux
without pvfs

multilanes

(a) Ocrd on Ext3

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(b) Ocrd on Ext4

1.0k

2.0k

3.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(c) Ocrd on XFS

1.0k

2.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(d) Ocrd on Btrfs

Figure 5: Scalability Evaluation with the Metadata-intensive Benchmark Ocrd. The figure shows the average throughput

of the containers on different file systems when varying the number of LXC containers with ocrd. Inside each container we run a single instance of

the benchmark program.

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(a) Buffered write on Ext3

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(b) Buffered write on Ext4

 60

 120

 180

 240

 300

 360

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(c) Buffered write on XFS

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(d) Buffered write on Btrfs

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(e) Direct write on Ext3

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(f) Direct write on Ext4

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(g) Direct write on XFS

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(h) Direct write on Btrfs

Figure 6: Scalability Evaluation with IOzone (Sequential Workloads). The figure shows the container average throughput

on different file systems when varying the number of LXC containers with IOzone. Inside each container we run an IOzone process performing

sequential writes in buffered mode and direct I/O mode respectively.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(a) Buffered write on Ext3

 30

 60

 90

 120

 150

 180

 0 2 4 6 8 10 12 14 16

of containers

multilanes

baseline

(b) Buffered write on Ext4

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(c) Buffered write on XFS

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(d) Buffered write on Btrfs

Figure 7: Scalability Evaluation with IOzone (Random Workloads). The figure shows the container average throughput on

different file systems when varying the number of LXC containers with IOzone. Inside each container we run an IOzone process performing random

writes in buffered mode.

statistics is enabled to identify the heavily contended ker-
nel locks during the evaluation. In this section, we eval-
uate MuliLanes against canonical Linux as the baseline.
For the baseline groups, we have a RAM disk formatted
with each target file system in turn and build 16 LXC
containers atop it. For MultiLanes, we have the host

RAM disk formatted with Ext3 and mounted in ordered
mode, then build 16 LXC containers over 16 virtualized
devices which are mapped as sixteen 2500MB regular
files formatted with each target file system in turn. In all
the experiments, the guest file system Ext3 and Ext4 are
all mounted in journal mode unless otherwise specified.

USENIX Association 12th USENIX Conference on File and Storage Technologies 325

5.2 Performance Results

The performance evaluation consists of both a collection
of micro-benchmarks and a set of application-level mac-
robenchmarks.

5.2.1 Microbenckmarks

The purpose of the microbenchmarks is two-fold. First,
these microbenchmarks give us the opportunity to mea-
sure an upper-bound on performance, as they effectively
rule out any complex effects from application-specific
behaviors. Second, microbenchmarks allow us to ver-
ify the effectiveness of each design component of Mul-
tiLanes as they stress differently. The benchmarks con-
sist of the metadata-intensive benchmark ocrd developed
from scratch, and IOzone [3] which is a representative
storage system benchmark.

Ocrd. The ocrd benchmark runs 65536 transactions,
and each transaction creates a new file, renames the file
and at last deletes the file. It is set up for the purpose of
illuminating the performance contributions of each in-
dividual design component of MultiLanes because the
metadata-intensive workload could cause heavy con-
tention on both the hot locks in the VFS, as mentioned
in Table 2, and those in the underlying file systems.

Figure 5 presents the average throughput of each con-
tainer running the ocrd benchmark for three situations:
Linux, MultiLanes disabling pVFS and complete Multi-
Lanes. As shown in the figure, the average throughput
suffers severe degradation with the increasing number of
containers on all four file systems in Linux. Lock us-
age statistics show it is caused by severe lock contention
within both the underlying file system and the VFS. Con-
tention bounces between cores can reach as many as sev-
eral million times for the hot locks. MultiLanes without
pVFS achieves great performance gains and much bet-
ter scalability as the isolation via virtualized devices has
eliminated contention in the file system layer. The av-
erage throughput on complete MultiLanes is further im-
proved owing to the pVFS, exhibits marginal degradation
with the increasing number of containers, and achieves
nearly linear scalability. The results have demonstrated
that each design component of MultiLanes is essential
for scaling containers on many cores. Table 3 presents
the contention details on the hot locks of the VFS that
rise during the benchmark on MultiLanes without the
pVFS. These locks are all eliminated by the pVFS.

It is interesting to note that the throughput of complete
MultiLanes marginally outperforms that of Linux at one
container on Ext3 and Ext4. This phenomenon is also
observed in the below Varmail benchmark on Ext3, Ext4
and XFS. This might be because that the use of private
VFS data structures provided by the pVFS speeds up the

lookup in the dentry hash table as there are much less
directory entries in each pVFS than in the global VFS.

IOzone. We use the IOzone benchmark to evaluate
the performance and scalability of MultiLanes for data-
intensive workloads, including sequential and random
workloads. Figure 6 shows the average throughput of
each container performing sequential writes in buffered
mode and direct I/O mode respectively. We run a sin-
gle IOzone process inside each container in parallel and
vary the number of containers. Sequential writes with
4KB I/O size are to a file that ends up with 256MB size.
Note that Ext3 and Ext4 are mounted in ordered jour-
naling mode for direct I/O writes as the data journaling
mode does not support direct I/O.

Lock Ext3 Ext4 XFS Btrfs
inode hash lock 1092k 960k 114k 228k
dcache lru lock 1023k 797k 583k 5k
inode sb list lock 239k 237k 144k 106k
rename lock 541k 618k 446k 252k

Table 3: Contention Bounces. The table shows the contention

bounces using MultiLanes without pVFS.

As shown in the figure, the average throughput of Mul-
tiLanes outperforms that of Linux in all cases except for
buffered writes on XFS. MultiLanes outperforms Linux
by 9.78X, 6.17X and 2.07X on Ext3, Ext4 and Btrfs
for buffered writes respectively. For direct writes, the
throughput improvement of MultiLanes over Linux is
7.98X, 8.67X, 6.29X and 10.32X on the four file systems
respectively. XFS scales well for buffered writes owing
to its own performance optimizations. Specially, XFS
delays block allocation and associated metadata journal-
ing until the dirty pages are to be flushed to disk. De-
layed allocation avoids the contention induced by meta-
data journaling so as to scale well for buffered writes.

Figure 7 presents the results of random writes in
buffered mode. Random writes with 4KB I/O size are
to a 256MB file except for Btrfs. For Btrfs, we set
each file size to 24MB due to the observation that when
the writing data files occupy a certain proportion of the
storage space Btrfs generates many work threads during
the benchmark even for single-threaded random writes,
which causes heavy contention and leads to sharply
dropped throughput. Nevertheless, MultiLanes exhibits
much better scalability and significantly outperforms the
baseline at 16 containers for random writes to a 256MB
file. However, in order to fairly evaluate the normal
performance of both MultiLanes and Linux, we exper-
imentally set a proper data file size for Btrfs. As shown
in the figure, the throughput of MultiLanes outperforms
that of Linux by 10.04X, 11.32X and 39% on Ext3,
Ext4 and Btrfs respectively. As XFS scales well for
buffered writes, MultiLanes exhibits competitive perfor-
mance with it.

326 12th USENIX Conference on File and Storage Technologies USENIX Association

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B/
se

c)

of containers

baseline
multilanes

(a) Mail server on Ext3

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(b) Mail server on Ext4

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(c) Mail server on XFS

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(d) Mail server on Btrfs

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B/
se

c)

of containers

baseline
multilanes

(e) File server on Ext3

 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(f) File server on Ext4

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(g) File server on XFS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(h) File server on Btrfs

Figure 8: Scalability Evaluation with Filebench Fileserver and Varmail. The figure shows the average throughput of the

containers on different file systems when varying the number of LXC containers, with Filebench mail server and file server workload respectively.

5.2.2 Macrobenchmarks

We choose Filebench [2] and MySQL [5] to evalu-
ation performance and scalability of MultiLanes for
application-level workloads.

Filebench. Filebench is a file system and storage
benchmark that allows to generate a variety of work-
loads. Of all the workloads it supports, we choose the
Varmail and Fileserver benchmarks as they are write-
intensive workloads that would cause severe contention
within the I/O stack.

The Varmail workload emulates a mail server, per-
forming a sequence of create-append-sync, read-append-
sync, reads and deletes. The Fileserver workload per-
forms a sequence of creates, deletes, appends, reads, and
writes. The specific parameters of the two workloads are
listed in Table 4. We run a single instance of Filebench
inside each container. The thread number of each in-
stance is configured as 1 to avoid CPU overload when
increasing the number of containers from 1 to 16. Each
workload was run for 60 seconds.

Workload # of Files File Size I/O Size Append Size
Varmail 1000 16KB 1MB 16KB
Fileserver 2000 128KB 1MB 16KB

Table 4: Workload Specification. This table specifies the pa-

rameters configured for Filebench Varmail and Fileserver workloads.

Figure 8 shows the average throughput of multiple
concurrent Filebench instances on MultiLanes compared
to Linux. For the Varmail workload, the average through-
put degrades significantly with the increasing number of
containers on the four file systems in Linux. MultiLanes
exhibits little overhead when there is only one container,

and marginal performance loss when the number of con-
tainers increases. The throughput of MultiLanes outper-
forms that of Linux by 2.83X, 2.68X, 56% and 11.75X
on Ext3, Ext4, XFS and Btrfs respectively.

For the Fileserver workload, although the throughput
of MultiLanes is worse than that of Linux at one single
container, especially for Ext3 and Ext4, it scales well to
16 containers and outperforms that of Linux when the
number of containers exceeds 2. In particular, Multi-
Lanes achieves a speedup of 4.75X, 4.11X, 1.10X and
3.99X over the baseline Linux on the four file systems
at 16 containers respectively. It is impressive that the
throughput of MultiLanes at 16 containers even exceeds
that at one single container on Btrfs. The phenomenon
might relate to the design of Btrfs which is under actively
development and does not become mature.

MySQL. MySQL is an open source relational
database management system that runs as a server pro-
viding multi-user accesses to databases. It is widely used
for data storage and management in web applications.

We install mysql-server-5.1 for each container and
start the service for each of them. The virtualized
MySQL servers are configured to allow remote accesses
and we generate requests with Sysbench [7] on another
identical machine that resides in the same LAN with the
experimental server. The evaluation is conducted in non-
transaction mode that specializes update key operations
as the transaction mode provided by Sysbench is domi-
nated by read operations. Each table is initialized with
10k records at the prepare stage. We use 1 thread to gen-
erate 20k requests for each MySQL server.

As Figure 9 shows, MultiLanes improves the through-
put by 87%, 1.34X and 1.03X on Ext3, Ext4, and Btrfs

USENIX Association 12th USENIX Conference on File and Storage Technologies 327

0.3k

0.7k

1.1k

1.5k

1.9k

2.3k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

baseline
multilanes

(a) MySQL on Ext3

0.3k

0.7k

1.1k

1.5k

1.9k

2.3k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(b) MySQL on Ext4

0.3k
0.7k
1.1k
1.5k
1.9k
2.3k
2.7k
3.1k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(c) MySQL on XFS

0.3k
0.4k
0.5k
0.6k
0.7k
0.8k
0.9k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(d) MySQL on Btrfs

Figure 9: Scalability Evaluation with MySQL. This figure shows the average throughput of the containers when varying the number

of LXC containers on different file systems with MySQL. The requests are generated with Sysbench on another identical machine in the same LAN.

 10
 20
 30
 40
 50
 60
 70
 80
 90

Ext3 Ext4 XFS Btrfs

Ti
m

e
(s

)

baseline multilanes

(a) Apache Build

 2

 4

 6

 8

 10

 12

 14

Ext3 Ext4 XFS Btrfs

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

baseline multilanes

(b) Webserver

 100
 200
 300
 400
 500
 600
 700
 800

Ext3 Ext4 XFS Btrfs

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

baseline multilanes

(c) Streamwrite

Figure 10: Overhead Evaluation. This figure shows the overhead of MultiLanes relative to Linux, running Apache build, Filebench

Webserver and Filebench single-stream write inside a single container respectively.

respectively. And once again we have come to see that
XFS scales well on many cores, and MultiLanes shows
competitive performance with it. The throughput of Mul-
tiLanes exhibits nearly linear scalability with the increas-
ing number of containers on the four file systems.

5.3 Overhead Analysis

We also measure the potential overhead of MultiLanes’s
approach to eliminating contention in OS-level virtual-
ization by using an extensive set of benchmarks: Apache
Build, Webserver and Streamwrite, which is file I/O less
intensive, read intensive and write intensive respectively.

Apache Build. The Apache Build benchmark, which
overlaps computation with file I/O, unzips the Apache
source tree, does a complete build in parallel with 16
threads, and then removes all files. Figure 10a shows
the execution time of the benchmark on MultiLanes
over Linux. We can see that MultiLanes exhibits al-
most equivalent performance against Linux. The result
demonstrates that the overhead of MultiLanes would not
affect the performance of workloads which are not dom-
inated by file I/O.

Webserver. We choose the Filebench Webserver
workload to evaluate the overhead of MultiLanes un-
der read-intensive workloads. The parameters of the
benchmark is configured as default. Figure 10b presents
the throughput of MultiLanes against Linux. The result

shows that the virtualization layer of MultiLanes con-
tributes marginally to the performance under the Web-
server workload.

Streamwrite. The single-stream write benchmark
performs 1MB sequential writes to a file that ends up
with about 1GB size. Figure 10c shows the through-
put of benchmark on MultiLanes over Linux. As the
sequential stream writes cause frequent block allocation
of the back-end file, MultiLanes incurs some overheads
of block mapping cache misses. The overhead of Mul-
tiLanes compared to Linux is 9.0%, 10.5%, 10.2% and
44.7% for Ext3, Ext4, XFS and Btrfs respectively.

6 Related Work

This section relates MultiLanes to other work done in
performance isolation, kernel scalability and device vir-
tualization.

Performance Isolation. Most work on performance
isolation mainly focuses on minimizing performance
interference by space partitioning or time multiplex-
ing hardware resources (e.g., CPU, memory, disk and
network bandwidth) between the co-located containers.
VServer [32] enforces resource isolation by carefully al-
locating and scheduling physical resources. Resource
containers [10] provides explicit and fine-grained con-
trol over resource consumption in all levels in the sys-
tem. Eclipse [14] introduces a new operating system ab-

328 12th USENIX Conference on File and Storage Technologies USENIX Association

straction to enable explicit control over the provisioning
of the system resources among applications. Software
Performance Units [35] enforces performance isolation
by restricting the resource consumption of each group of
processes. Cgroup [1], which is used in LXC to pro-
vide resource isolation between co-located containers, is
a Linux kernel feature to limit, account and isolate the
resource usage of process groups. Argon [36] mainly
focuses on the I/O schedule algorithms and the file sys-
tem cache partition mechanisms to provide storage per-
formance isolation.

In contrast, MultiLanes aims to eliminate contention
on shared kernel data structures and locks in the software
to reduce storage performance interference between the
VEs. Hence our work is complementary and orthogonal
to previous studies on performance isolation.

Kernel Scalability. Improving the scalability of op-
erating systems has been a longstanding goal of sys-
tem researchers. Some work investigates new OS struc-
tures to scale operating systems by partitioning the hard-
ware and distributing replicated kernels among the parti-
tioned hardware. Hive [17] structures the operating sys-
tem as an internal distributed system of independent ker-
nels to provide reliability and scalability. Barrelfish [11]
tries to scale applications on multicore systems using a
multi-kernel model, which maintains the operating sys-
tem consistency by message-passing instead of shared-
memory. Corey [12] is an exokernel based operating
system that allows applications to control the sharing of
kernel resources. K42 [9] (and its relative Tornado [20])
are designed to reduce contention and improve locality
on NUMA systems. Other work partitions hardware re-
sources by running a virtualization layer to allow the con-
current execution of multiple commodity operating sys-
tems. For instance, Diso [15] (and its relative Cellular
Diso [22]) runs multiple virtual machines to create a vir-
tual cluster on large-scale shared-memory multiproces-
sors to provide reliability and scalability. Cerberus [33]
scales shared-memory applications with POSIX-APIs on
many cores by running multiple clustered operating sys-
tems atop VMM on a single machine. MultiLanes is in-
fluenced by the philosophy and wisdoms of these work
but strongly foucses on the scalability of I/O stack on fast
storage devices.

Other studies aim to address the scalability problem by
iteratively eliminating the bottlenecks. MCS lock [28],
RCU [27] and local runqueues [8] are strategies proposed
to reduce contention on shared data structures.

Device Virtualization. Traditionally, hardware ab-
straction virtualization adopts three approaches to vir-
tualize devices. First, device emulation [34] is used
to emulate familiar devices such as common network
cards and SCSI devices. Second, para-virtualization
[30] customizes the virtualized device driver to enable

the guest OS to explicitly cooperate with the hypervisor
for performance improvements. Such examples include
KVM’s VirtIO driver, Xen’s para-virtualized driver, and
VMware’s guest tools. Third, direct device assignment
[21, 19, 26] gives the guest direct accesses to physical
devices to achieve near-native hardware performance.

MultiLanes maps a regular file as the virtualized de-
vice of a VE rather than giving it direct accesses to a
physical device or a logical volume. The use of back-
end files eases the management of the storage images
[24]. Our virtualized block device approach is more
efficient when compared to device emulation and para-
virtualization as it comes with little overhead by adopting
a bypass strategy.

7 Conclusions

The advent of fast storage technologies has shifted the
I/O bottlenecks from the storage devices to system soft-
ware. The co-located containers in OS-level virtualiza-
tion will suffer from severe storage performance inter-
ference on many cores due to the fact that they share
the same I/O stack. In this work, we propose Multi-
Lanes, which consists of the virtualized storage device,
and the partitioned VFS, to provide an isolate I/O stack
to each container on many cores. The evaluation demon-
strates that MultiLanes effectively addresses the I/O per-
formance interference between the VEs on many cores
and exhibits significant performance improvement com-
pared to Linux for most workloads.

As we try to eliminate contention on shared data struc-
tures and locks within the file system layer with the virtu-
alized storage device, the effectiveness of our approach is
based on the premise that multiple file system instances
work independently and share almost nothing. For those
file systems in which the instances share the same worker
thread pool (e.g., JFS), there might still exist perfor-
mance interference between containers.

8 Acknowledgements

We would like to thank our shepherd Anand Sivasubra-
maniam and the anonymous reviewers for their excel-
lent feedback and suggestions. This work was funded
by China 973 Program (No.2011CB302602), China 863
Program (No.2011AA01A202, 2013AA01A213), HGJ
Program (2010ZX01045-001-002-4) and Projects from
NSFC (No.61170294, 91118008). Tianyu Wo and Chun-
ming Hu are the corresponding authors of this paper.

References
[1] Cgroup. https://www.kernel.org/doc/

Documentation/cgroups.

USENIX Association 12th USENIX Conference on File and Storage Technologies 329

[2] Filebench. http://sourceforge.net/projects/
filebench/.

[3] IOzone. http://www.iozone.org/.

[4] LXC. http://en.wikipedia.org/wiki/LXC.

[5] MySQL. http://www.mysql.com/.

[6] OpenVZ. http://en.wikipedia.org/wiki/OpenVZ.

[7] Sysbench. http://sysbench.sourceforge.net/.

[8] AAS, J. Understanding the Linux 2.6.8.1 CPU scheduler. http:
//josh.trancesoftware.com/linux/.

[9] APPAVOO, J., SILVA, D. D., KRIEGER, O., AUSLANDER,
M. A., OSTROWSKI, M., ROSENBURG, B. S., WATERLAND,
A., WISNIEWSKI, R. W., XENIDIS, J., STUMM, M., AND
SOARES, L. Experience distributing objects in an SMMP OS.
ACM Trans. Comput. Syst. 25, 3 (2007).

[10] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
Containers: A new facility for resource management in server
systems. In OSDI (1999).

[11] BAUMANN, A., BARHAM, P., DAGAND, P.-É., HARRIS, T. L.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for
scalable multicore systems. In SOSP (2009).

[12] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, M. F., MORRIS, R., PESTEREV, A., STEIN, L.,
WU, M., HUA DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey:
An operating system for many cores. In OSDI (2008).

[13] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DOVICH, N. An analysis of Linux scalability to many cores. In
OSDI (2010).

[14] BRUNO, J., GABBER, E., OZDEN, B., AND SILBERSCHATZ, A.
The Eclipse operating system: Providing quality of service via
reservation domains. In USENIX Annual Technical Conference
(1998).

[15] BUGNION, E., DEVINE, S., AND ROSENBLUM, M. Disco: Run-
ning commodity operating systems on scalable multiprocessors.
In SOSP (1997).

[16] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,
GUPTA, R. K., AND SWANSON, S. Moneta: A high-
performance storage array architecture for next-generation, non-
volatile memories. In MICRO (2010).

[17] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. Hive: Fault containment for shared-
memory multiprocessors. In SOSP (1995).

[18] CUI, Y., WANG, Y., CHEN, Y., AND SHI, Y. Lock-contention-
aware scheduler: A scalable and energy-efficient method for ad-
dressing scalability collapse on multicore systems. TACO 9, 4
(2013), 44.

[19] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMSON, M. Safe hardware access
with the Xen virtual machine monitor. In 1st Workshop on Op-
erating System and Architectural Support for the on demand IT
InfraStructure (OASIS) (2004).

[20] GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M.
Tornado: Maximizing locality and concurrency in a shared mem-
ory multiprocessor operating system. In OSDI (1999).

[21] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ASPLOS (2012).

[22] GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM,
M. Cellular Disco: resource management using virtual clusters
on shared-memory multiprocessors. In SOSP (1999).

[23] KLEIMAN, S. R. Vnodes: An architecture for multiple file sys-
tem types in Sun UNIX. In USENIX Summer (1986).

[24] LE, D., HUANG, H., AND WANG, H. Understanding perfor-
mance implications of nested file systems in a virtualized envi-
ronment. In FAST (2012).

[25] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable DRAM alternative. In
ISCA (2009).

[26] MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: Safe and
fast device access from unprivileged domains. In Euro-Par Work-
shops (2007).

[27] MCKENNEY, P. E., SARMA, D., ARCANGELI, A., KLEEN, A.,
KRIEGER, O., AND RUSSELL, R. Read-copy update. In Linux
Symposium (2002).

[28] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algorithms
for scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst. 9, 1 (1991), 21–65.

[29] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The
design and implementation of Zap: A system for migrating com-
puting environments. In OSDI (2002).

[30] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O
devices. Operating Systems Review 42, 5 (2008), 95–103.

[31] SEPPANEN, E., O’KEEFE, M. T., AND LILJA, D. J. High per-
formance solid state storage under Linux. In MSST (2010).

[32] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A. C.,
AND PETERSON, L. L. Container-based operating system virtu-
alization: a scalable, high-performance alternative to hypervisors.
In EuroSys (2007).

[33] SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A
case for scaling applications to many-core with OS clustering. In
EuroSys (2011).

[34] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtu-
alizing I/O devices on VMware Workstation’s hosted virtual ma-
chine monitor. In USENIX Annual Technical Conference, Gen-
eral Track (2001).

[35] VERGHESE, B., GUPTA, A., AND ROSENBLUM, M. Perfor-
mance isolation: Sharing and isolation in shared-memory multi-
processors. In ASPLOS (1998).

[36] WACHS, M., ABD-EL-MALEK, M., THERESKA, E., AND
GANGER, G. R. Argon: Performance insulation for shared stor-
age servers. In FAST (2007).

