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Abstract
Flash memory has gained in popularity as storage
devices for both enterprise and embedded systems
because of its high performance, low energy and reduced
cost. The endurance problem of flash memory, however,
is still a challenge and is getting worse as storage
density increases with the adoption of multi-level cells
(MLC). Prior work has addressed wear leveling and
data reduction, but there is significantly less work on
using the file system to improve flash lifetimes. Some
common mechanisms in traditional file systems, such as
journaling, metadata synchronization, and page-aligned
update, can induce extra write operations and aggravate
the wear of flash memory. This problem is called write
amplification from file systems.

In order to mitigate write amplification, we propose
an object-based flash translation layer design (OFTL), in
which mechanisms are co-designed with flash memory.
By leveraging page metadata, OFTL enables lazy
persistence of index metadata and eliminates journals
while keeping consistency. Coarse-grained block state
maintenance reduces persistent free space management
overhead. With byte-unit access interfaces, OFTL
is able to compact and co-locate the small updates
with metadata to further reduce updates. Experiments
show that an OFTL-based system, OFSS, offers a write
amplification reduction of 47.4% ˜ 89.4% in SYNC mode
and 19.8% ˜ 64.0% in ASYNC mode compared with
ext3, ext2, and btrfs on an up-to-date page-level FTL.

1 Introduction

In recent years, flash memory technology has greatly
improved. As mainstream design moves from single
level cell (SLC) to multi-/triple-level cells (MLC/TLC),
flash-based storage is witnessing an increase of capacity
and a reduction of per-bit cost, which results in a sharp
growth of adoption in both enterprise and embedded

storage systems. However, the increased density of flash
memory requires finer voltage steps inside each cell,
which is less tolerant to leakage and noise interference.
As a result, the reliability and lifetime of flash memory
have declined dramatically, producing the endurance
problem [18, 12, 17].

Wear leveling and data reduction are two common
methods to extend the lifetime of the flash storage. With
wear leveling, program/erase (P/E) operations tend to be
distributed across the flash blocks to make them wear out
evenly [11, 14]. Data reduction is used in both the flash
translation layers (FTLs) and the file systems. The FTLs
introduce deduplication and compression techniques to
avoid updates of redundant data [15, 33, 34]. File
systems try to reduce updates with tail packing [7]
or data compression [2, 13]. However, these data
reduction techniques are inefficient in reducing write
amplification from file systems, because the metadata
updates generated from file systems can hardly be
reduced for the following two reasons. One is that
data reduction should not compromise the file system
mechanisms. E.g., duplicated data in the journals should
not be removed in data reduction. The other is that most
metadata is frequently synchronized for consistency
reasons, preventing data reduction.

Unfortunately, some common mechanisms in legacy
file systems exacerbate flash write amplification. First,
journaling, which is commonly used to keep the updates
atomic, doubles the write size as the data and metadata
are duplicated to the journal logs. Second, metadata is
frequently written synchronously to avoid data loss in
the presence of failure. Even though metadata consumes
little storage space, frequent writes generate tremendous
write traffic, which has a huge impact on the memory
wear. Third, writes to the storage device are page-
aligned even for updates of several bytes. Actual
access sizes from the applications are hidden from the
block device by the system, and thus update intensity
is amplified by the page access granularity. Partial
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page updates nearly always require a read-modify-write.
Even worse, the trend of increasing page size of the
flash memory makes this problem more serious [17].
Last but not least, the layered design principle makes
the file system and the device opaque to each other
because of the narrow block interfaces [35, 29, 28].
The file system mechanisms over flash storage fail to
address the endurance problem, and consequently, flash
memory wears out more quickly with these mechanisms.
Transparency also prevents mechanisms in file systems
from exploiting the characteristics of the storage device.

In fact, flash memory provides opportunities for better
system designs. First, each page has a page metadata
area, also the OOB (out-of-band) area. The reserved
space can be used to keep an inverse index for the lazy
persistence of index metadata, or transaction information
to provide write atomicity. Second, all of a flash
block become clean after the block is erased. The
metadata overhead can be reduced by tracking free
space in units of erase blocks (256 KB) rather than file
system blocks (4 KB). Third, random read performance
is improved dramatically compared to HDDs (Hard
Disk Drives). Partial page updates can be compacted
without introducing significant random read penalty.
As discussed above, flash memory characteristics can
be exploited to mitigate the endurance problem in
cooperation with the system.

We propose an object-based flash translation layer de-
sign named OFTL, which offloads storage management
to the object storage and co-designs the system with flash
memory to reduce write amplification. Our contributions
are summarized as follows:
• We propose OFTL, an object-based flash translation

layer, to facilitate semantic-aware data organization.
• To reduce the cost of the index metadata persistence

and journaling, we flush the indices lazily and
eliminate journaling by keeping the inverse index
and transaction information in the page metadata.

• We also employ coarse grained block state mainte-
nance to track the page statuses to lower the cost of
free space management.

• With byte-unit interfaces in OFTL, we compact
partial page updates and co-locate them with
metadata to reduce the number of page updates.

• We implement an OFTL-based system and evaluate
it under different kinds of workloads. The results
show a tremendous reduction in write amplification
compared with existing file systems.

The rest of the paper is organized as follows. Section
2 gives the background of flash memory and flash-based
storage system architectures. We then present our OFTL
design in section 3 and the co-design of the system
mechanisms with flash memory in section 4. We describe
the implementation in section 5 and evaluate the design

in section 6. Related work is presented in section 7, and
the conclusions are given in section 8.

2 Background

2.1 Flash Memory Basics
Flash memory is read or written in page units, and erased
in flash block units. The page size ranges from 512B
to 16KB [11, 17]. Each flash page has page metadata,
which is atomically accessed along with the page data.
Typically, a 4KB page has 128B page metadata [11]. A
flash block is composed of flash pages, e.g., a 256KB
flash block contains 64 pages [11]. Flash blocks are
further arranged into planes and channels for parallelism
inside a flash drive, known as internal parallelism.

Compared with hard disk drives, flash memory has
two unique characteristics, a no-overwrite property and
an endurance limitation, which are supposed to be taken
into consideration by the file system designs. The
no-overwrite property means that a programmed page
cannot be reprogrammed until the flash block it resides
in is erased. Updates to the programmed pages are
redirected to clean pages in a no-overwrite manner, while
the programmed pages are invalidated for later erasure.
The endurance limitation is that each memory cell has
a limited number of P/E operations. The memory cell
wears out with more P/E cycles, causing the deterioration
of both the lifetime and reliability.

2.2 Architectures of Flash-based Storage
Systems

Flash memory came into wide use in embedded systems.
In embedded systems, flash memory does not support
a block interface and is directly managed by the file
system, where the mapping, garbage collection and
wear leveling are implemented. The file systems are
specialized for flash memory, which are called flash file
systems [10, 32], as shown in Figure 1(a). With increased
capacity and reduced cost, flash devices are adopted in
computer systems from laptops to enterprise servers as
the substitution of HDDs. The FTL is implemented in
device firmware to provide block interfaces, as illustrated
in Figure 1(b).

As embedded FTL requires incredible computing
power from embedded processors and large DRAMs for
increasing device capacity, FusionIO implements FTL in
software, called VSL (Virtual Storage Layer), sharing
the host CPU cycles and the main memory capacity
[4]. Figure 1(c) shows the architecture. The software-
based VSL provides opportunities of optimizations for
file systems. DFS is proposed on VSL to leverage the
storage management in VSL [20], and an atomic-write
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Figure 1: Architectures of Flash-based Storage Systems

interface is exported from VSL using the log-structured
FTL to provide the system with write atomicity [28].

Although software-based FTLs have shown better
performance than embedded FTLs, the narrow block
interfaces between the file system and FTL prevent
optimizations from either the file system or the FTL.
File semantics are hidden behind the narrow interfaces,
preventing intelligent storage management [35, 26].
Also, flash memory properties are opaque to the file
system, leading to missed opportunities in file system
optimizations [20, 29, 28]. Similar to Object-based
SCM [21], we propose object-based FTL design, OFTL,
for better cooperation with the file system and flash
memory, as shown in Figure 1(d). In OFTL-based
architecture, storage management is moved from the file
system to OFTL to directly manage the flash memory, so
that flash properties can be investigated to optimize the
file system mechanism design, such as journal removal
and frequency reduction of metadata synchronization.
OFTL manages the flash memory with read/write/erase
operations, and directly accesses the page metadata of
each flash page. What is more, OFTL exports byte-unit
access interfaces to the file system, which is an object-
based file system free from storage management and only
manages the namespace.

3 Object-based Flash Translation Layer

The OFTL-based architecture offloads storage space
management from the file system to the OFTL for
better co-designs of the file system and the FTL. OFTL
accesses the raw flash device in page-unit interfaces,
while exporting byte-unit access interfaces to the file
system. And thus, OFTL translates the mapping from
the logical offset of each object to the flash page address.
In this section, we will describe the OFTL interfaces and
the data organization.

OFTL Interfaces. OFTL exports byte-unit read/write

Table 1: Object Interface

Operations Description
oread(devid, oid, offset,
len, buf)

read data to bu f from
o f f set of object oid

owrite(devid, oid, offset,
len, buf)

write data bu f to o f f set
of object oid

oflush(devid, oid) flush the data and metada-
ta of object oid stable

ocreate(devid, oid) create object oid
odelete(devid, oid) delete object oid
ogetattr(devid, oid, buf) get attributes of object oid
osetattr(devid, oid, buf) set attributes of object oid

interfaces to the file system in order to directly pass the
access size in bytes to the OFTL. Table 1 shows the
object interfaces. Both oread and owrite interfaces pass
the offset and len in byte units instead of sector units to
the OFTL. Thus, OFTL gets the exact access size from
the applications, making it possible to compact small
updates into fewer pages, which is discussed in section
4.3. In addition, operations are made on each object
with the oid given in the object interface, which makes
OFTL aware of the data type of accessed pages. OFTL
leverages the object semantics to cluster the update
correlated data. Also, OFTL differentiates index pages
from data pages with the type semantics to keep ancillary
metadata in the page metadata for lazy indexing, which
is discussed in section 4.1.

OFTL accesses the flash memory with page-unit
read/write operations and block-unit erase operations.
The page metadata read/write(s) are directly accessed
from the OFTL following the NVMe specification [6],
which defines the host controller interface for accessing
the non-volatile memory on a PCI Express bus.

Data Organization. The OFTL is comprised of two
main parts, the Object Storage and the Block Information
Metadata. A single Root Page identifies the location of

3
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Figure 2: OFTL Layout

each of the Object Storage and the Block Information
Metadata, as shown in Figure 2. The Object Storage is
organized in three levels: the Object Index, the Object
Metadata Pages, and the Object Data Pages. The Object
Index maps an object ID to its Object Metadata using
a B+ tree. The Object Metadata contains information
traditionally stored in a file system inode including
allocation information, which references addresses in the
Object Data Pages.

The Block Information Metadata keeps the metadata
information of each flash block, including the flash
block states, the number of invalid pages (whose data
is obsolete but has not been erased), and the erase
count of each flash block. Each flash block has three
states: FREE, UPDATING, and USED, and each page
has three states: FREE, VALID, and INVALID, which
are explained in section 4.2. The Block Information
Metadata is written in a log-structured way. Each block
information entry has 32 bits, of which 20 bits are used
for erase count, 10 bits for invalid pages count, and 2 bits
for flash block states. Instead of being stored with each
flash block, the block information is stored in a separated
space in the flash memory, which results in fewer page
updates during garbage collection.

4 System Co-design with Flash Memory

The OTFL uses three techniques to leverage the
characteristics of the underlying flash device. In section
4.1, we introduce Backpointer-Assisted Lazy Indexing, a
mechanism to efficiently maintain consistency between
data and metadata. In section 4.2, we present our
approach to Coarse-Grained Block State Management,
which reduces the frequency of status writes. In
section 4.3, we present our Compacted Update technique
which amortizes the cost of page writes across multiple
unaligned page writes.
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Figure 3: Page Metadata

4.1 Backpointer-Assisted Lazy Indexing

The index metadata, either the pointers for the data
layout in the object metadata pages to point to the data
pages, or the pointers for the object index to point to the
object metadata page, should be synchronously written
to the storage device in case of data loss or inconsistency.
The synchronization of index metadata is also called
index persistence. While a typical pointer has the size
of 8 bytes, the index persistence updates a whole page,
which is 4KB or even larger. Thus, the frequent index
persistence causes serious write amplification.

The lazy indexing technique, in which the type
specific backpointer is employed in the page metadata
of each indexed page for lazy persistence of the index
metadata, is developed to reduce the frequency of index
persistence while maintaining consistency. As shown in
Figure 2, the object index, the object metadata pages and
the object data pages are indexed in tree structures and
form a three-level hierarchy. Figure 3 illustrates the page
metadata organization. In OFTL, we have two types
of backpointers (oid,o f f set, len). One is used in the
data pages to inversely index the object metadata, and
the oid, o f f set, len represent the object id, the logical
page offset in the object, and the valid data length of
the page, respectively. The other is used in the object
metadata page to reversely index the object index, and
only the oid is set to represent the object id. When the
backpointer is written, the type is first set to indicate
which type the inverse index is, so that the backpointer
can be understood correctly for different types. We
also keep the version in the ver to identify the latest
page version on recovery. Therefore, the type specific
backpointer serves as the inverse index, and the index
persistence is decoupled from the page update.

To reduce the scan time of inverse index to reconstruct
the index metadata after system failures, we use the
updating window to track the recently allocated flash
blocks that have not completed the index metadata
persistence. The updating window is maintained by
the checkpoint process, which is triggered when the
number of free pages in the updating window drops
below a threshold and a window extending is needed.
The updating window describes the set of blocks whose
inverse indices need to be checked after a failure, because
they may not be referenced by the index. Flash blocks

4
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are preallocated and the addresses of the preallocated
blocks are written to a block called the updating window
metadata. This block is written persistently to the flash.
Subsequently, blocks are allocated from the updating
window and referenced via in-memory indices, but the
indices are not written persistently. We call this lazy
persistence. Periodically the checkpoint process removes
from the updating window metadata the addresses of
those blocks whose corresponding indices have been
written persistently and when necessary, preallocates
a new collection of blocks and adds their addresses
the the updating window. After a crash, the recovery
process need only read the blocks whose addresses are
in the updating window metadata and check that they are
referenced by the index.

The updating window also provides update atomicity
of multiple pages. The page metadata keeps transaction
information (tid, tcnt), in which tid is a unique ID in the
updating window for each write operation and tcnt is the
count of pages in the update. For all pages of a write
operation, only one page has the tcnt set and the others
have the tcnt value of zero. The tcnt is used to check
the completeness of the operation after system failures.
Garbage collection is not allowed to be performed on the
flash blocks in the updating window, so that transaction
information is complete for the atomicity check. Thus,
journals can be eliminated with write atomicity provided
from the flash memory.

When rebooting after system failures, object data
pages in the updating window are scanned. The
transaction information is first checked to determine the
completeness of the write operation in which the page
is involved. If a write is incomplete, all the pages of
the write are discarded. In this way, the atomicity is
guaranteed. After the check, the backpointers are read
out to update the object layout if object layout has not
been written stable before system fails. As all the updates
are located in the updating window since last checkpoint,
the object layout can be updated to the latest with
the reconstruction of backpointers in the scanned pages
from current updating window. The file size metadata
is also updated with the recalculation of all the valid
data sizes. While other descriptive metadata, such as
modified time and access control list, may get lost after
unexpected crashes, the system consistency is not hurt.
Similarly, the object index can be updated with the scan
of current updating window of object metadata pages.
With the ancillary information in the page metadata and
the updating window, the index persistence frequency is
reduced and the write atomicity is provided to eliminate
the journals.

Consistency and Durability Discussion. In the lazy
indexing technique, metadata except the index pointer
and the size may get lost after system crashes. This
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Figure 4: State Transition of Flash Blocks

results in the out-of-date versions of metadata, which
hurts the durability of metadata updates. Compared with
durability, we take the consistency as a more important
thing, because the corruption of indices will cause the
inconsistency and even failures of file systems. We use
the lazy indexing technique to guarantee that the indices
and the size can be reconstructed during recovery. But
for durability issues, we opt to let the file system or the
application determine the time to make other metadata
durable with explicit synchronization.

4.2 Coarse-Grained Block State Mainte-
nance

In flash memory, each page has three states: FREE,
VALID, and INVALID. A free page is a page that has not
been written. A valid page is a page that has been written
and whose data is valid data. An invalid page is a page
that has been written but whose data is obsolete. Valid
and invalid pages are also called INUSE pages. Each
flash block also has three states: FREE, UPDATING,
and USED. Pages in free blocks are all free pages, and
pages in used blocks are all inuse pages, while only the
updating blocks have both free or inuse pages. Since the
pages are written sequentially inside a flash block, the
latest allocated page number is used to separate the free
pages from the inuse for the updating block. Therefore,
OFTL differentiates between free and inuse pages by
tracking the flash block states. For the inuse pages, the
index metadata is used to further differentiate the valid
pages from the invalid. The valid pages are indexed in
the index metadata while the invalid are not. As such, the
free, valid, invalid pages can be identified by tracking the
states of flash blocks, and free space management cost is
reduced with the state maintenance in flash block units
instead of page units.

OFTL further reduces the cost by bringing down the
frequency of metadata persistence. The persistence of
flash block states is only performed when the flash blocks
are allocated to or evicted from the updating window as
shown in the top of Figure 4. The state persistence is
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relaxed but with the two conditions satisfied: (1) the set
of persistent free blocks is a subset of actual free blocks
set; and (2) the number of persistent invalid pages is no
more than the actual number of invalid pages.

The first condition means a free block can be regarded
as non-free, which may lead to missing allocation. But
a non-free block cannot be taken as free, or else the
write fails. It requires the state transition from FREE
to UPDATING to be flushed immediately, but relaxes
the state persistence from USED to FREE. The second
condition relaxes the number persistence of invalid
pages. The number of invalid pages is used to select the
evicted flash block and check the number of valid pages
that are moved during garbage collection. The valid
pages are differentiated from the invalid by checking
the index metadata. Until the number of valid pages is
reached, all the remaining pages are invalid and no more
invalid page checking is needed, so that the page moving
of the evicted block stops. In the worst case, all the pages
have to be checked if the persistent number of invalid
pages is less than the actual. As system crashes seldom
appear, the effect on garbage collection efficiency is
limited. Similar to the number persistence of invalid
pages, the recorded erase count may stay behind, which
is also acceptable as the erase count is not sensitive.

In summary, free space management benefits from
the coarse-grained block state maintenance because of
the reduced metadata cost both from the flash block
granularity state tracking and the reduced persistence of
states.

4.3 Compacted Update
With byte-unit access interfaces, OFTL is able to identify
partial page updates, which update only part of one
page, both for the small updates less than one page and
the heads/tails of large updates. The compacted update
technique compacts the partial page updates of the same
object and co-locates them with its object metadata page
to reduce the update pages.

Partial Page Update. Partial page updates in OFTL
are compacted and inserted into differential pages, a.k.a.
diff-pages. Each data segment stored in the diff-page
is called diff-data. Diff-data is indexed with diff-extent
using the triple < o o f f , len,addr >, where o o f f and
len represent the object offset and the length of the diff-
data, respectively, and addr is the offset of diff-data in
the diff-page. Diff-extents are kept in the ascending order
of the object offset in the diff-layout. Each object has one
diff-layout, which is the collection of all the diff-extents
of one object. Figure 5 shows the data structures.

While partial page updates are absorbed in diff-pages,
which are indexed in the diff-layout, full page updates are
directly written to object pages. Object pages are indexed
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Figure 5: Differential Layout (Diff-Layout)

in the layout, which is the collection of all extents of one
object that keep the start address and length pairs of full
pages. As well as the diff-layout, the layout is recorded
in the object metadata page, as shown in Figure 2. In
the compacted update technique, read, write and merge
operations are described below:
• Write: The write data is divided into pages.

The parts that do not start or end page-aligned
are identified as partial page updates, while the
others as full page updates. Then the partial page
updates are updated in the diff-pages. Because
partial updates always supersede full pages, full
page updates have to invalidate the corresponding
diff-data and remove its diff-extents followed by
updating the layout to refer to the full pages.

• Merge: A merge operation is needed when the
diff-pages are full. When merging, the diff-extents
are scanned to select the evicted logical page
which consumes the most space in diff-pages. The
object page of the evicted logical page is then
read and merged with the diff-data. After that,
the merged page is written to a new object page,
and the corresponding diff-data and diff-extents are
removed.

• Read: A read operation is first checked in diff-
extents. If it is satisfied in the diff-data, the read
buffer is filled with the diff-data. Otherwise, the
object page is read and merged with any existing
corresponding diff-data.

Update Co-location. In most cases, the metadata size
of each object is far less than the page size. Instead
of compacting metadata of multiple objects, OFTL co-
locates diff-page with the object metadata page. Since
each data update is followed by the metadata update such
as the file size or the modify time, the co-location of
the diff-data and metadata page usually saves one page
write. In co-location, the size of diff-page is less than
one page size and varies depending on the size change
of object metadata. The size of diff-page is calculated
by subtracting the metadata size from the flash page size,
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which is used to check whether the diff-page is full. Once
full, the merge operation is triggered to select some diff-
data and merge them to the object data pages. In this
way, the cost of partial page updates is amortized by
compaction and co-location.

5 Implementation

We implement OFTL as a kernel module in the Linux
kernel 3.2.9. The module is composed of three layers:
the translation layer, the cache layer, and the storage
layer.

The translation layer follows the design shown in
Figure 2. The in-flash Object Index is implemented using
a Log-Structured Merge Tree (LSM-Tree) [27], which
has an in-memory B+ tree for fast lookups and appends
the record < operation,ob ject ID, phy addr > for each
object index update. Each object has one in-memory
object metadata data structure, which records the access
statistics and two extent-based layouts, as well as the
in-flash object metadata page shown in Figure 2. Both
the diff-layout and the layout link their extents in the
list structure in memory. On write requests, the write
data is first split page-aligned. The full page updates
are written to data pages followed by the layout update,
while the partial page updates are inserted into diff-data
followed by the diff-layout update. Object operations are
transformed into read/write operations on the metadata
or data pages and forwarded to the cache layer.

The metadata and data pages are cached in the cache
layer. The OFTL cache follows the design of the page
buffer in the linux kernel, except that the replacement
is done with a whole object. On write operations, the
cache checks the SYNC flag and calls the f lash write
interface from the storage layer if the SYNC flag is set.
Otherwise, the object cache in the cache layer is updated.
Page allocation is delayed until the pages need to be
flushed. Then, the cache layer allocates free pages from
the updating window and calls the f lash write interface
to write the pages via the storage layer.

The storage layer receives the flash read/write/erase
operations from the cache layer, constructs the bio
requests, and sends them to the generic block layer. We
use the TRIM/DISCARD command in the system and
SATA protocol to implement the erase operation. The
DMA transmission of the OOBs follows the design in
the NVMe standard[6]. Due to the hardware limitation,
the OOB operations are currently simulated in memory.

In OFTL, we use a simple garbage collection and
wear leveling strategy. The garbage collection starts
when the percentage of free blocks drops below 15% and
continues until the percentage exceeds the value. In wear
leveling, an upper bound of erase count is used to prevent
flash blocks with higher erase count from erases. The

(a) OFSS (b) File Systems over PFTL

Figure 6: Trace-driven Simulation Framework

upper bound is raised periodically after the average erase
count is increased. We will incorporate better strategies
in the future.

For evaluation against other file systems solutions, we
also implement a simple object file system to resolve
the namespace as shown in Figure 1(d). The object
file system uses an in-memory hash table to keep the
mapping from the path to the object ID, and passes the
IO requests to OFTL by substituting the object ID for
the path. We call the OFTL-based system Object Flash
Storage System (OFSS) in the evaluation section.

6 Evaluation

We measure the write amplification, the total size/count
of writes to the flash memory divided by the total
size/count of writes issued from the application, to
evaluate the write efficiency of OFSS, as well as ext3,
ext2, and btrfs on an up-to-date page-level FTL.

In this section, we first evaluate the overall per-
formance of these four systems and then analyze the
metadata amplification. We also measure the impact
of flash page sizes and the overhead of extending the
updating window brought by the OFTL design.

6.1 Experimental Setup
We extract the read, write and close operations (RWC
Trace) from the system level IO traces and replay them
on file systems and OFSS. Figure 6 shows the trace-
driven simulation framework. In the replay program,
the close operation incurs a fsync operation in the file
systems or an object flush operation in OFSS. In OFSS,
we collect the count and size of I/Os to the flash
memory in the storage layer of OFTL. In file system
evaluations, we use blktrace utility [1] to capture the
I/Os on the storage device in file system evaluations and
then replay the block trace on PFTL, a simulated page-
level FTL implemented as a kernel module in Linux
kernel-3.2.9. We collect the count and size of I/Os
to flash memory in PFTL. In the simulation, PFTL
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Table 2: Characteristics of the Workloads

workload write
cnt

write
size
(KB)

flush
cnt

% of un-
aligned
writes

iPhoto 496,542 6,651,962 37,054 51.2%
iPages 75,661 183,728 565 99.6%
LASR-1 32,249 42,600 1,714 93.3%
LASR-2 111,531 216,114 14,998 99.0%
LASR-3 21,956 24,426 3,056 96.1%
TPC-C 26,144 219,689 489 7.1%

transforms the logical page number to the physical page
number using the two-level page table similar to the
main memory management. LazyFLT [23] features are
integrated into PFTL to reduce the mapping overhead.

We evaluate two workloads from iBench [19] in
the desktop environment, three one-month traces of
LASR [5] in the server environment, and one TPC-
C trace from the database management system. The
TPC-C trace is collected from the DBT2 workload [3]
running on PostgreSQL using the strace utility [8]. The
characteristics of the six workloads are shown in table 2.

The experiments are conducted on SUSE Linux 11.1
with Linux kernel 3.2.9 running on the computer with
a 4-core Intel Xeon X5472 3GHz processor and 8GB
memory. In addition to the disk drive used for the
operating system, a Seagate 7200rpm ST31000524AS
disk drive is used for trace collection. In the experiments,
ext3 and ext2 are mounted with noatime, nodiratime
options, and btrfs is mounted with ssd, discard, and
lzo options. In OFSS settings, the default page size is
4KB and the flash block size is 256KB. Both updating
windows for object data and metadata are set to the size
of 64 flash blocks. Default OFTL cache size is 32MB.

6.2 Overall Comparison
In this section, both the write efficiency and the IO time
are evaluated for OFSS against ext2, ext3, and btrfs
built on the PFTL. To provide data consistency, ext3
is mounted with data journal option, and btrfs updates
data using Copy-on-Write, while ext2 provides no con-
sistency. OFSS provides data consistency by leveraging
the no-overwrite property of flash memory and keeping
the transaction information in page metadata. The four
systems are evaluated in both SYNC and ASYNC mode.
In the SYNC mode, both data and metadata are required
to be flushed stable before the request returns. Ext2
and ext3 are mounted with sync option to support the
SYNC mode. Btrfs uses O SYNC flag in file open
operations, as the sync mount option is not supported in
btrfs. In the ASYNC mode, the data and metadata are

buffered in memory until the explicit synchronization,
time expiration, or cache eviction. Default mount options
of the three file systems support the ASYNC mode.

Table 3 shows the write amplification measured with
total write count and write size of each system in the
SYNC mode. The average write amplification of the
write count in ext3, ext2, btrfs, and OFSS is 4.60,
2.98, 6.85 and 1.11, respectively. Write amplification
of the write size shows similar results, and the average
is 17.47, 5.03, 24.99 and 2.64 in ext3, ext2, btrfs and
OFSS, respectively. The differences mostly come from
the metadata costs associated with the write operations.
In ext2, a write operation has the sub-operations of a
data update, an inode update, and sometimes the bitmap
updates if space allocation is needed. In ext3 with data
journal, the data and metadata are duplicated to the
journal logs followed by a commit/abort synchronous
write, and later are checkpointed to the actual locations
by the journal daemon. Even though the write counts
are close in ext3 and ext2 due to the coalesced writes
while checkpointing, the write size in ext3 is still much
larger than that in ext2 because of the duplicated data
and metadata appended in the journal logs. In the
SYNC mode, btrfs logs the updates to a special log-
tree to eliminate the whole system update [30], resulting
in a high write amplification. Btrfs is optimized for
performance, which uses ”ssd” allocation scheme for
seek free allocation, and has not been optimized for flash
endurance [2]. With journals eliminated, the reduced
metadata synchronization frequency, and the compacted
update, OFSS offers a write amplification reduction of
47.4% ˜ 89.4% against the other three legacy file systems.

As shown in Table 3, write amplification in the
ASYNC mode is 0.13, 0.09, 0.23 and 0.09 measured with
the write count, and 2.73, 1.23, 1.93 and 0.98 with the
write size, respectively for ext3, ext2, btrfs and OFSS.
In the ASYNC mode, the write amplification is not as
bad as that in the SYNC mode. The reason is that
the metadata synchronization is infrequent and metadata
updates are coalesced in the buffer as well as the data.
However, the write intensity in ext3 doubles because of
the journaling. Btrfs has to update the index metadata for
the Copy-on-Write update mechanism, consuming more
pages. Besides, the page-aligned update mechanism
wastes space when the updates are page unaligned,
which contributes the write amplification to all the three
legacy file systems. Comparatively, OFSS performs
better and offers a write amplification reduction of 19.8%
˜ 64.0% compared with the three legacy file systems.

Total IO time is also shown in Table 3 for performance
comparison. We estimate the performance by issuing the
requests to the SSD instead of the raw flash memory
due to the hardware limitation. As the focus of our
design is the write amplification reduction rather than
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Table 3: Overall Evaluation on Write Amplification

Workload System
write-cnt-amplification write-size-amplification IO-time (unit: s)

sync async sync async sync async

iPhoto

Ext3 2.7519 0.2024 3.5354 1.8725 487.744 257.356
Ext2 5.2292 0.1206 2.4030 0.9163 325.571 126.185
Btrfs 8.9320 0.2602 5.6071 1.0595 770.942 144.671
OFSS 1.2304 0.1428 1.1786 0.8916 64.146 33.264

iPages

Ext3 2.3711 0.0267 9.8083 2.0491 37.174 7.764
Ext2 2.7763 0.0182 5.3058 1.0137 20.538 3.833
Btrfs 6.1918 0.0313 23.1998 1.0914 87.451 4.107
OFSS 1.7143 0.0097 3.5739 0.9758 6.837 0.732

LASR-1

Ext3 3.7777 0.1127 19.2951 2.5593 16.959 2.245
Ext2 1.8656 0.0617 6.3874 1.1445 5.633 1.044
Btrfs 6.1207 0.1992 33.3570 2.0008 29.246 1.744
OFSS 1.2081 0.0636 4.0123 0.9779 2.884 0.928

LASR-2

Ext3 3.7964 0.2147 13.5078 3.2976 60.167 14.784
Ext2 1.7143 0.1892 4.2734 1.5034 19.202 6.761
Btrfs 7.2232 0.5822 32.9221 3.0874 145.612 13.739
OFSS 2.1302 0.1719 4.4045 1.1021 13.332 4.065

LASR-3

Ext3 11.5083 0.1602 53.7069 4.7793 27.083 2.413
Ext2 2.4258 0.1184 9.4100 2.0676 4.768 1.044
Btrfs 6.0922 0.2823 44.7353 3.4276 2.263 1.715
OFSS 1.3935 0.1345 5.2492 1.2647 2.095 0.835

TPC-C

Ext3 3.3749 0.0666 4.9863 1.8068 22.532 8.196
Ext2 3.8604 0.0321 2.3813 0.7050 10.800 3.201
Btrfs 6.5125 0.0336 10.1339 0.8980 45.711 4.044
OFSS 1.0696 0.0352 1.0461 0.6822 2.588 1.380

the performance oriented design of the mapping policy,
garbage collection or wear leveling, the FTL inside the
SSDs poses little impact on the performance evaluation.
We collect and accumulate the device I/O time of each
operation, which is measured from the issue of the
operation to the SSD to the acknowledge from the SSD.
As is shown, the OFSS performance in both modes
significantly outperforms the others. The write size
reduction not only extends the lifetime of the flash-
based storage, but also improves the performance. Also,
the performance improvement partially comes from the
object-based FTL design, which uses delayed space
allocation in OFTL cache for better I/O scheduling.

Workload Discussion. In general, OFSS brings larger
benefits for workloads that have a large number of
page unaligned updates or those that have frequent
data synchronization. When a write operation is
synchronized, the legacy file systems require a number
of pages, including the pages for the data, inode, and
bitmap file system blocks, to be updated. The metadata
overhead is significant for small updates, in which only
a few bytes are updated. The LASR-1 and LASR-
3 workloads, which have the average update size less
than 1KB, expose unacceptable write amplification in

the SYNC mode, while OFSS reduces the metadata
overhead tremendously and makes the amplification
much lower. The unaligned page updates can also benefit
more from OFSS because of the compacted update
technique. A counter example is the TPC-C workload,
which has its own buffers in the userspace and writes
data in page units. The improvement of TPC-C workload
from OFSS is not as significant as that of the other
workloads.

6.3 Write Amplification of Metadata
To further understand the improvement of OFSS and
the effects of the journal removal and the metadata
synchronization reduction, we take a closer look at the
metadata amplification. In evaluation, we identify the
file system block type of each access by checking the
physical layout of ext2 and ext3 using the dumped
information of the dump2 f s command. The journal type
is identified with the ”k journald” in the block trace.
We omitted btrfs from this analysis, because we could
not differentiate the metadata and data updates from
the write addresses in the block trace. Figure 7 shows
the total metadata amplification in the tables and the
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system iPhoto iPages LASR1 LASR2 LASR3 TPCC

ext3 2.57 8.59 17.91 11.84 51.04 3.73
ext2 1.06 2.68 2.00 0.91 4.11 1.04
OFSS 0.05 0.30 1.13 0.45 1.05 0.03

(a) Metadata Amplification (sync)

system iPhoto iPages LASR1 LASR2 LASR3 TPCC

ext3 0.29 0.26 0.56 1.54 2.14 0.14
ext2 0.02 0.01 0.08 0.07 0.17 0.01
OFSS 0.01 0.01 0.08 0.04 0.17 0.01

(b) Metadata Amplification (async)

Figure 7: Write Amplification of Metadata

percentage of each kind of metadata in the figures above
the tables for both SYNC and ASYNC modes.

From Figure 7, there are two observations in the
metadata amplification of ext3. One is that the write
amplification of PFTL is negligible compared with
the write amplification from the file system metadata.
The other is that the journaling amplifies the writes
dramatically and dominates the cost. The difference
between ext2 and ext3 verifies the benefit of the journal
removal. In the following, we are going to further
understand the benefits of the metadata synchronization
reduction by comparing OFSS with ext2.

In the metadata synchronization reduction evaluation,
we remove the diff-data from the metadata pages in
OFSS when calculating the metadata amplification of
OFTL. As shown in Figure 7(a), the inode and bitmap
updates consume the most part of the amplification in the
SYNC mode. The write amplification of inode updates
drops from 0.99 in ext2 on average to 0.50 in OFSS
measured with OFTL metadata updates. The benefit
comes not only from the lazy indexing but also from
the amortized metadata page update cost with compacted
update. The write amplification of file system block
bitmap updates drops from 0.93 in ext2 on average to
0.0019 in the OFSS measured with OFTL flash block
information updates, which shows the benefits of coarse-
grained block state maintenance. As the free space is
managed in flash block units, which is 64 pages (256KB)
in the experiment and much larger than the 4KB block in

ext2, the coarse-grained block state maintenance greatly
benefits the free space management.

In the ASYNC mode shown as Figure 7(b), the inode
and the metadata update cost is the dominated cost of
ext2 and OFSS, respectively. Both of them have the write
amplification cost around 0.05 on average. Legacy file
systems compact multiple inodes into one inode table file
system block, which is a different approach to reduce
metadata amplification compared with the compacted
update technique in OFSS. Both of the approaches have
the similar effects in the ASYNC mode. The file system
block bitmaps in ext2 are buffered and coalesced in the
ASYNC mode, bringing the cost close to that of flash
block state maintenance in OFSS.

6.4 Impact of Flash Page Size

The size of flash page has exposed an increasing trend in
flash memory manufacturing [17]. We evaluate the write
efficiency in ext2, ext3, btrfs and OFSS with different
page sizes of 4KB, 8KB, 16KB and 32KB. As ext2
and ext3 support a maximum file system block size of
4KB, and btrfs is unstable when the lead/node/sector
size is set to 8KB or higher, we align the 4KB block
trace accesses to different flash page sizes in PFTL for
evaluation. As shown in Figure 8, the write amplification
increases dramatically with the page size increment in
legacy file systems, while OFSS shows a significant
improvement. Workloads with small access sizes, like
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(a) Page Size Impact on Write Amplification (sync) (b) Page Size Impact on Write Amplification (async)

Figure 8: Page Size Impact on Write Amplification

LASR-1 and LASR-3, deteriorate much more quickly.
Another observation is that the write amplification in
SYNC mode shown as Figure 8(a) is much worse than
ASYNC shown as Figure 8(b) when the flash page
size increases. This is because the access sizes in
the SYNC mode are much smaller than the page size
in most cases. Comparatively, the accesses in the
ASYNC mode are buffered and coalesced into larger
requests. The compacted update technique in OFSS
further compacts partial page updates and co-locates
them with the metadata to reduce the pages to be
updated, leading to the higher page utilization. Thus,
OFSS performs better with the write amplification in
the SYNC mode of around 30, which is nearly 9% in
ext3, and the write amplification in the ASYNC mode of
approximate 3, nearly 25% in btrfs.

6.5 Overhead of Extending the Updating
Window

The updating window is employed to reduce the scan
time after system crashes, but causes extra writes because
of the index persistence while extending the updating
window. To evaluate the overhead, we collect two
data sets of the I/O latency of each operation, one for
the normal extending and the other for the extending
without index persistence. The cumulative distributions
of the latencies in the two data sets are depicted with
the nearly identical lines in Figure 9, which show the
close performance. We also identify the I/Os during the
extending period and collect the latencies of each I/O to
show the impact on the latency of external I/Os. The
latencies of I/Os during extending show little difference
with the average of all I/Os. In the enlarged part of the

Figure 9: Overhead of Extending the Updating Window

figure, even though the cumulative distribution of I/Os
on extending grows slower than the average when the
latency is smaller than 200us, it grows much faster when
the latency is around 200us. As a result, 99.6% of I/Os
on extending have latencies smaller than 400us. Besides,
the extending operations rarely appear, and only 0.04%
of I/Os meet with the extending. Thus, we conclude that
the updating window extending has limited impact on the
performance.

7 Related Work

Flash file systems [32, 10, 9] have leveraged the no-
overwrite property of flash memory for log-structured
updates to optimize the performance by directly manag-
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ing the flash memory. But they have not done much to
the flash endurance other than wear leveling. Nameless
Writes [35] and Direct File System [20] propose to
remove the mappings of the file system to allow the
FTL to manage the storage space in order to improve the
performance. But file semantics fail to be passed to the
FTL for intelligent storage space management. OFTL
takes the concept of object-based storage [25] to export
the object interfaces to file systems, which easily passes
the file semantics to the device for intelligent data layout.

Recent research has also proposed eliminating the
duplicated writes caused by the journaling in the flash
storage. Write Atomic [28] exports an atomic write
interface by leveraging the log-based structure of VSL
[4] in FusionIO ioDrives. TxFlash [29] uses a cyclic
commit protocol with the help of the page metadata to
export the same interface. However, the cyclic property
is complex to maintain, and the protocol requires a
whole-drive scan after failures. Comparatively, OFTL
takes a simple protocol similar to the transaction
support in the log-structured file system [31], keeps the
transaction information in the page metadata, and tracks
the recently updated flash blocks in the updating window
for fast recovery.

Backpointers have been used in disk storage systems
to avoid file system metadata updates when moving
file system blocks in Backlog [24], or to provide later
consistency checking by embedding the backpointers in
data blocks, directory entries, and inodes in Backpointer-
based Consistency [16]. In flash-based storage, LazyFTL
[23] has proposed to lazily update the mapping entries of
a page-level FTL by keeping the logical page number
(LPN) as the backpointer in page metadata and logging
the pages in an update flash block area, so as to
provide the performance of page-level FTLs at the
cost of block-level FTLs. But it does not touch the
metadata in the file system, which contributes much to
the write amplification. Instead, OFTL leverages the
page metadata to optimize the system design and uses
the backpointer as the inverse index for lazy persistence
of the index metadata.

Both CAFTL [15] and DeltaFTL [33] coalesce
redundant data and compress the similar pages in the
FTLs, while LFS [13], JFFS2 [32], UBIFS [9], and
btrfs [2] compress the data pages in the file systems.
All of them use compression by exploiting the page
content similarity, which is orthogonal to the compacted
update technique using access size information in OFTL.
IPL (In-Page Logging) [22] takes an approach similar
to OFTL and reserves a log region in each flash block
to absorb the small updates. But it suffers from
synchronous writes if data and metadata pages spread
across multiple flash blocks. Tail packing in reiserfs
[7] is most related to the compacted update technique in

OFTL. Reiserfs packs the tails of each file in its inode.
OFTL is different as OFTL updates in a no-overwrite
way, so that OFTL compacts not only the tails but also
the heads of each write operation, including both the
append and update operation.

8 Conclusion

Legacy file systems focus on sequential access optimiza-
tion instead of the write amplification reduction, which is
critical for flash memory. System mechanisms, such as
journaling, metadata synchronization and page-aligned
updates, tremendously amplify the write intensity, while
transparency brought by the indirection prevents the
system from exploiting the flash memory characteristics.
In this paper, we propose an object-based design name
OFTL, in which the storage management is offloaded
to the FTL from the file system for direct management
over the flash memory. Page metadata is used to
keep the inverse index for the lazy indexing and the
transaction information to provide write atomicity for
journal removal, with the help of the updating window to
track the latest allocated flash blocks that have not been
checkpointed. Also, free space management tracks the
flash block states instead of the page states, and brings
down the frequency of state persistence to further reduce
the metadata cost. Using the byte-unit access interfaces,
partial page updates identified in OFTL are compacted
and co-located with the metadata for update reduction.
With the system co-design with flash memory, write
amplification from file systems is significantly reduced.
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