
SFS: Random Write Considered Harmful in Solid State Drives
Changwoo Mina, Kangnyeon Kimb, Hyunjin Choc, Sang-Won Leed, Young Ik Eome

abdeSungkyunkwan University, Korea
acSamsung Electronics, Korea

{multics69a, kangnunib,wonleed,yieome}@ece.skku.ac.kr, hj1120.choc@samsung.com

Abstract

Over the last decade we have witnessed the relent-
less technological improvement in flash-based solid-
state drives (SSDs) and they have many advantages over
hard disk drives (HDDs) as a secondary storage such as
performance and power consumption. However, the ran-
dom write performance in SSDs still remains as a con-
cern. Even in modern SSDs, the disparity between ran-
dom and sequential write bandwidth is more than ten-
fold. Moreover, random writes can shorten the limited
lifespan of SSDs because they incur more NAND block
erases per write.

In order to overcome these problems due to random
writes, in this paper, we propose a new file system
for SSDs, SFS. First, SFS exploits the maximum write
bandwidth of SSD by taking a log-structured approach.
SFS transforms all random writes at file system level to
sequential ones at SSD level. Second, SFS takes a new
data grouping strategy on writing, instead of the existing
data separation strategy on segment cleaning. It puts the
data blocks with similar update likelihood into the same
segment. This minimizes the inevitable segment clean-
ing overhead in any log-structured file system by allow-
ing the segments to form a sharp bimodal distribution of
segment utilization.

We have implemented a prototype SFS by modifying
Linux-based NILFS2 and compared it with three state-
of-the-art file systems using several realistic workloads.
SFS outperforms the traditional LFS by up to 2.5 times
in terms of throughput. Additionally, in comparison to
modern file systems such as ext4 and btrfs, it drastically
reduces the block erase count inside the SSD by up to
7.5 times.

1 Introduction
NAND flash memory based SSDs have been revolution-
izing the storage system. An SSD is a purely electronic
device with no mechanical parts, and thus can provide
lower access latencies, lower power consumption, lack
of noise, shock resistance, and potentially uniform ran-
dom access speed. However, there remain two serious
problems limiting wider deployment of SSDs: limited
lifespan and relatively poor random write performance.

The limited lifespan of SSDs remains a critical concern
in reliability-sensitive environments, such as data cen-
ters [5]. Even worse, the ever-increased bit density for
higher capacity in NAND flash memory chips has re-
sulted in a sharp drop in the number of program/erase
cycles from 10K to 5K for the last two years [4]. Mean-
while, previous work [12, 9] shows that random writes
can cause internal fragmentation of SSDs and thus lead
to performance degradation by an order of magnitude. In
contrast to HDDs, the performance degradation in SSDs
caused by the fragmentation lasts for a while after ran-
dom writes are stopped. The reason for this is that ran-
dom writes cause the data pages in NAND flash blocks
to be copied elsewhere and erased. Therefore, the lifes-
pan of an SSD can be drastically reduced by random
writes.

Not surprisingly, researchers have devoted much ef-
fort to resolving these problems. Most of work has been
focused on a flash translation layer (FTL) – an SSD
firmware emulating an HDD by hiding the complex-
ity of NAND flash memory. Some studies [24, 14] im-
proved random write performance by providing more ef-
ficient logical to physical address mapping. Meanwhile,
other studies [22, 14] propose a separation of hot/cold
data to improve random write performance. However,
such under-the-hood optimizations are purely based on
logical block addresses (LBA) requested by a file sys-
tem so that they would become much less effective for
the no-overwrite file systems [16, 48, 10] in which ev-
ery write to the same file block is always redirected to
a new LBA. There are other attempts to improve ran-
dom write performance especially for database systems
[23, 39]. Each attempt proposes a new database stor-
age scheme, taking into account the performance char-
acteristics of SSDs. However, despite the fact that these
flash-conscious techniques are quite effective in specific
applications, they cannot provide the benefit of such op-
timization to general applications.

In this paper, we propose a novel file system, SFS, that
can improve random write performance and extend the
lifetime of SSDs. Our work is motivated by LFS [32],
which writes all modifications to disk sequentially in a
log-like structure. In LFS, the segment cleaning over-
head can severely degrade performance [35, 36] and

shorten the lifespan of an SSD. This is because quite
a high number of pages need to be copied to secure a
large empty chunk for a sequential write at every seg-
ment cleaning. In designing SFS, we investigate how to
take advantage of performance characteristics of SSD
and I/O workload skewness to reduce the segment clean-
ing overhead.

This paper makes the following specific contributions:

• We introduce the design principles for SSD-based
file systems. The file system should exploit the per-
formance characteristics of SSD and directly utilize
file block level statistics. In fact, the architectural
differences between SSD and HDD results in dif-
ferent performance characteristics for each system.
One interesting example is that, in SSD, the addi-
tional overhead of random write disappears only
when the unit size of random write requests be-
comes a multiple of a certain size. To this end, we
take log-structured approach with a carefully se-
lected segment size.
• To reduce the segment cleaning overhead in the

log-structured approach, we propose an eager on
writing data grouping scheme that classifies file
blocks according to their update likelihood and
writes those with similar update likelihoods into the
same segment. The effectiveness of data grouping
is determined by proper selection of the grouping
criteria. For this, we propose an iterative segment
quantization algorithm to determine the grouping
criteria, while considering disk-wide hotness dis-
tribution. We also propose cost-hotness policy for
victim segment selection. Our eager data grouping
will colocate frequently updated blocks in the same
segments; thus most blocks in those segments are
expected to become rapidly invalid. Consequently,
the segment cleaner can easily find a victim seg-
ment with few live blocks and thus can minimize
the overhead of copying the live blocks.
• Using a number of realistic and synthetic work-

loads, we show that SFS significantly outperforms
LFS and state-of-the-art file systems such as ext4
and btrfs. We also show that SFS can extend the
lifespan of an SSD by drastically reducing the num-
ber of NAND flash block erases. In particular, while
the random write performance of the existing file
systems is highly dependent on the random write
performance of SSD, SFS can achieve nearly max-
imum sequential write bandwidth of SSD for ran-
dom writes at the file system level. Therefore, SFS
can provide high performance even on mid-range
or low-end SSDs as long as their sequential write
performance is comparable to high-end SSDs.

The rest of this paper is organized as follows. Sec-

tion 2 overviews the characteristics of SSD and I/O
workloads. Section 3 describes the design of SFS in
detail, and Section 4 shows the extensive evaluation of
SFS. Related work is described in Section 5. Finally, in
Section 6, we conclude the paper.

2 Background

2.1 Flash Memory and SSD Internals
NAND flash memory is the basic building block of
SSDs. Read and write operations are performed at the
granularity of a page (e.g. 2 KB or 4 KB), and the
erase operation is performed at the granularity of a block
(composed of 64 – 128 pages). NAND flash memory dif-
fers from HDDs in several aspects: (1) asymmetric speed
of read and write operations, (2) no in-place overwrite –
the whole block must be erased before overwriting any
page in that block, and (3) limited program/erase cycles
– a single-level cell (SLC) has roughly 100K erase cy-
cles and a typical multi-level cell (MLC) has roughly
10K erase cycles.

A typical SSD is composed of host interface logic
(SATA, USB, and PCI Express), an array of NAND flash
memories, and an SSD controller. A flash translation
layer (FTL) run by an SSD controller emulates an HDD
by exposing a linear array of logical block addresses
(LBAs) to the host. To hide the unique characteristics
of flash memory, it carries out three main functions: (1)
managing a mapping table from LBAs to physical block
addresses (PBAs), (2) performing garbage collection to
recycle invalidated physical pages, and (3) wear-leveling
to wear out flash blocks evenly in order to extend the
SSD’s lifespan. Agrawal et al. [2] comprehensively de-
scribe the broad design space and tradeoffs of SSD.

Much research has been carried out on FTL to im-
prove performance and extend the lifetime [18, 24, 22,
14]. In a block-level FTL scheme, a logical block num-
ber is translated to a physical block number and the log-
ical page offset within a block is fixed. Since the map-
ping in this instance is coarse-grained, the mapping ta-
ble is small enough to be kept in memory entirely. Un-
fortunately, this results in a higher garbage collection
overhead. In contrast, since a page-level FTL scheme
manages a fine-grained page-level mapping table, it re-
sults in a lower garbage collection overhead. However,
such fine-grained mapping requires a large mapping ta-
ble on RAM. To overcome such technical difficulties,
hybrid FTL schemes [18, 24, 22] extend the block-level
FTL. These schemes logically partition flash blocks into
data blocks and log blocks. The majority of data blocks
are mapped using block level mapping to reduce the re-
quired RAM size and log blocks are mapped using page-
level mapping to reduce the garbage collection overhead.
Similarly, DFTL [14] extends the page-level mapping by

SSD-H SSD-M SSD-L
Manufacturer Intel Samsung Transcend
Model X25-E S470 JetFlash 700
Capacity 32 GB 64 GB 32 GB
Interface SATA SATA USB 3.0
Flash Memory SLC MLC MLC
Max Sequential Reads (MB/s) 216.9 212.6 69.1
Random 4 KB Reads (MB/s) 13.8 10.6 5.3
Max Sequential Writes (MB/s) 170 87 38
Random 4 KB Writes (MB/s) 5.3 0.6 0.002
Price ($/GB) 14 2.3 1.4

Table 1: Specification data of the flash devices. List price
is as of September 2011.

selectively caching page-level mapping table entries on
RAM.

2.2 Imbalance between Random and Se-
quential Write Performance in SSDs

Most SSDs are built on an array of NAND flash memo-
ries, which are connected to the SSD controller via mul-
tiple channels. To exploit this inherent parallelism for
better I/O bandwidth, SSDs perform read or write op-
erations as a unit of a clustered page [19] that is com-
posed of physical pages striped over multiple NAND
flash memories. If the request size is not a multiple of
the clustered page size, extra read or write operations
are performed in the SSD and the performance is de-
graded. Thus, the clustered page size is critical in I/O
performance.

Write performance in SSDs is highly workload depen-
dent and is eventually limited by the garbage collection
performance of FTL. Previous work [12, 9, 39, 37, 38]
has reported that random write performance drops by
more than an order of magnitude after extensive random
updates and returns to the initial high performance only
after extensive sequential writes. The reason for this is
that random writes increase the garbage collection over-
head in FTL. In a hybrid FTL, random writes increase
the associativity between log blocks and data blocks, and
incur the costly full merge [24]. In page-level FTL, as it
tends to fragment blocks evenly, garbage collection has
large copying overhead.

In order to improve garbage collection performance,
SSD combines several blocks striped over multiple
NAND flash memories into a clustered block [19]. The
purpose of this is to erase multiple physical blocks in
parallel. If all write requests are aligned in multiples of
the clustered block size and their sizes are also multiples
of the clustered block size, random write updates and in-
validates a clustered block as a whole. Therefore, in hy-
brid FTL, a switch merge [24] with the lowest overhead
occurs. Similarly, in page-level FTL, empty blocks with
no live pages are selected as victims for garbage collec-
tion. The result of this is that random write performance
converges with sequential write performance. To ver-

0

50

100

150

200

Th
ro

u
gh

p
u

t
(M

B
/s

)

Request size

Sequential Write (SSD-H) Random Write (SSD-H)
Sequential Write (SSD-M) Random Write (SSD-M)
Sequential Write (SSD-L) Random Write (SSD-L)

Figure 1: Sequential vs. random write throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
c
u
m

u
la

ti
v
e
 w

ri
te

 f
re

q
u
e
n
c
y

reference ranking (x1000)

TPC-C
RES
WEB

Figure 2: Cumulative write frequency distribution.

ify this, we measured sequential write and random write
throughput on three different SSDs in Table 1, ranging
from a high-end SLC SSD (SSD-H) to a low-end USB
memory stick (SSD-L). To determine sustained write
performance, dummy data equal to twice the device’s
capacity is first written for aging, and the throughput of
subsequent writing for 8GB is measured. Figure 1 shows
that random write performance catches up with sequen-
tial write performance when the request size is 16 MB or
32 MB. These unique performance characteristics moti-
vate the second design principle of SFS: write bandwidth
maximization by sequential writes to SSD.

2.3 Skewness in I/O Workloads
Many researchers have pointed out that I/O workloads
have non-uniform access frequency distribution [34, 31,
23, 6, 3, 33, 11]. A disk-level trace of personal work-
stations at Hewlett Packard laboratories exhibits a high
locality of references in that 90% of the writes go to the
1% of blocks [34]. Roselli et al. [31] analyzed file sys-
tem traces collected from four different groups of ma-
chines: an instructional laboratory, a set of computers
used for research, a single web server, and a set of PCs
running Windows NT. They found that files tend to be
either read-mostly or write-mostly and the writes show
substantial locality. Lee and Moon [23] showed that the
update frequency of TPC-C workloads is highly skewed,
in that 29% writes go to 1.6% of pages.

Bhadkamkar et al. [6] collected and investigated I/O
traces of office and developer desktop workloads, a ver-
sion control server, and a web server. Their analysis con-
firms that the top 20% most frequently accessed blocks
contribute to a substantially large (45-66%) percentage
of total access. Moreover, high and low frequency blocks
are spread over the entire disk area in most cases. Fig-
ure 2 depicts the cumulative write frequency distribution
of three real workloads: an IO trace collected by our-
selves while running TPC-C [40] using Oracle DBMS
(TPC-C), a research group trace (RES), and a web sever
trace equipped with Postgres DBMS (WEB) collected
by Roselli et al [31]. This observation motivates the third
design principle of SFS: block grouping according to
write frequency.

3 Design of SFS
SFS is motivated by a simple question: How can we
utilize the performance characteristics of SSD and the
skewness of the I/O workload in designing an SSD-based
file system? In this section, we describe the rationale be-
hind the design decisions in SFS, its system architecture,
and several key techniques including hotness measure,
segment quantization, segment writing, segment clean-
ing and victim selection policy, and crash recovery.

3.1 SFS: Design for SSD-based File Sys-
tems of the 2010s

Historically, existing file systems and modern SSDs
have evolved separately without consideration of each
other. With the exception of the recently introduced
TRIM command, the two layers communicate with each
other through simple read and write operations using
only LBA information. For this reason, there are many
impedance mismatches between the two layers, thus hin-
dering the optimal performance when both layers are
simply used together. In this section, we explain three
design principles of SFS. First, we identify general per-
formance problems when the existing file systems are
running on modern SSDs and suggest that a file system
should exploit the file block semantics directly. Second,
we propose to take a log-structured approach based on
the observation that the random write bandwidth is much
slower than the sequential one. Third, we criticize that
the existing lazy data grouping in LFS during segment
cleaning fails to fully utilize the skewness in write pat-
terns and argue that an eager data grouping is necessary
to achieve sharper bimodality in segments. In followings
we will describe each principle in detail.

File block level statistics – Beyond LBA: The exist-
ing file systems perform suboptimally when running on
top of SSDs with current FTL technology. This subopti-
mal performance can be attributed to poor random write
performance in SSDs. One of the basic functionalities of

file systems is to allocate an LBA for a file block. With
regard to this LBA allocation, there have been two gen-
eral policies in file system community: in-place-update
and no-overwrite. The in-place-update file systems such
as FAT32 [27] and ext4 [25] always overwrite a dirty file
block to the same LBA so that the same LBA ever cor-
responds to a file block unless the file frees the block.
This unwritten assumption in file systems, together with
the LBA level interface between file systems and storage
devices, allows the underlying FTL mechanism in SSDs
to exploit the overwrites against the same LBA address.
In fact, most FTL research [24, 22, 13, 14] has focused
on improving the random write performance based on
the LBA level write patterns. Despite the relentless im-
provement in FTL technology, the random write band-
width in modern SSDs, as presented in Section 2.2, still
lags far behind the sequential one.

Meanwhile, several no-overwrite file systems have
been implemented, such as btrfs [10], ZFS [48], and
WAFL [16], where dirty file blocks are written to new
LBAs. These systems are known to improve scalabil-
ity, reliability, and manageability [29]. In those systems,
however, because the unwritten assumption between file
blocks and their corresponding LBAs is broken, the FTL
receives new LBA write request for every update of a file
block and thus cannot exploit any file level hotness se-
mantics for random write optimization.

In summary, the LBA-based interface between the no-
overwrite file systems and storage devices does not al-
low the file blocks’ hotness semantic to flow down to
the storage layer. In addition, the relatively poor random
write performance in SSDs is the source of suboptimal
performance in the in-place-update file systems. Conse-
quently, we suggest that file systems should directly ex-
ploit the hotness statistics at the file block level. This al-
lows for optimization of the file system performance re-
gardless of whether the unwritten assumption holds and
how the underlying SSDs perform on random writes.

Write bandwidth maximization by sequentialized
writes to SSD: In Section 2.2, we show that the ran-
dom write throughput becomes equal to the sequential
write throughput only when the request size is a multiple
of the clustered block size. To exploit such performance
characteristics, SFS takes a log-structured approach that
turns random writes at the file level into sequential writes
at the LBA level. Moreover, in order to utilize nearly
100% of the raw SSD bandwidth, the segment size is set
to a multiple of the clustered block size. The result is that
the performance of SFS will be limited by the maximum
sequential write performance regardless of random write
performance.

Eager on writing data grouping for better bimodal
segmentation: When there are not enough free seg-
ments, a segment cleaner copies the live blocks from vic-

Segment Writing

1. select victim

segments

Segment Cleaning

2. collect dirty blocks

and classify blocks

according to hotness

warm

blocks

hot

blocks

read-only

blocks

cold

blocks

3. schedule segment

writing

1. segment

quantization

write request

2. read the live blocks

and mark dirty

3. trigger segment

writing

not enough free segments

Figure 3: Overview of writing process and segment
cleaning in SFS.

tim segments in order to secure free segments. Since seg-
ment cleaning includes reads and writes of live blocks, it
is the main source of overhead in any log-structured file
system. Segment cleaning cost becomes especially high
when cold data are mixed with hot data in the same seg-
ment. Since cold data are updated less frequently, they
are highly likely to remain live at the segment clean-
ing and thus be migrated to new segments. If hot data
and cold data are grouped into different segments, most
blocks in the hot segment will be quickly invalidated,
while most blocks in the cold segment will remain live.
As a result, the segment utilization distribution becomes
bimodal: most of the segments are almost either full or
empty of live blocks. The cleaning overhead is drasti-
cally reduced, because the segment cleaner can almost
always work with nearly empty segments. To form a bi-
modal distribution, LFS uses a cost-benefit policy [32]
that prefers cold segments over hot segments. However,
LFS writes data regardless of hot/cold and then tries to
separate data lazily on segment cleaning. If we can cate-
gorize hot/cold data when it is first written, there is much
room for improvement.

In SFS, we classify data on writing based on file block
level statistics as well as segment cleaning. In such early
data grouping, since segments are already composed
of homogeneous data with similar update likelihood,
we can significantly reduce segment cleaning overhead.
This is particularly effective because I/O skewness is
common in real world workloads, as shown in Sec-
tion 2.3.

3.2 SFS Architecture
SFS has four core operations: segment writing, segment
cleaning, reading, and crash recovery. Segment writing
and segment cleaning are particularly crucial for perfor-
mance optimization in SFS, as depicted in Figure 3. Be-
cause the read operation in SFS is same as that of ex-
isting log-structured file systems, we will not cover its

detail in this paper.
As a measure for representing the future update like-

lihood of data in SFS, we define hotness for file block,
file, and segment, respectively. As the hotness is higher,
the data is expected to be updated sooner. The first step
of segment writing in SFS is to determine the hotness
criteria for block grouping. This is, in turn, determined
by segment quantization that quantizes a range of hot-
ness values into a single hotness value for a group. For
the sake of brevity, it is assumed throughout this paper
that there are four segment groups: hot, warm, cold, and
read-only groups. The second step of segment writing is
to calculate the block hotness for each block and assign
them to the nearest quantized group by comparing the
block hotness and the group hotness. At this point, those
blocks with similar hotness levels should belong to the
same group (i.e. their future update likelihood is simi-
lar). As the final step of segment writing, SFS always
fills a segment with blocks belonging to the same group.
If the number of blocks in a group is not enough to fill
a segment, the segment writing of the group is deferred
until the segment is filled. This eager grouping of file
blocks according to the hotness measure serves to colo-
cate blocks with similar update likelihoods in the same
segment. Therefore, segment writing in SFS is very ef-
fective at achieving sharper bimodality in segment uti-
lization distribution.

Segment cleaning in SFS consists of three steps: se-
lect victim segments, read the live blocks in victim seg-
ments into the page cache and mark the live blocks as
dirty, and trigger the writing process. The writing pro-
cess treats the live blocks from victim segments the same
as normal blocks; each live block is classified into a spe-
cific quantized group according to its hotness. After all
the live blocks are read into the page cache, the victim
segments are then marked as free so that they can be
reused for writing. For better victim segment selection,
cost-hotness policy is introduced, which takes into ac-
count both the number of live blocks in segment (i.e.
cost) and the segment hotness.

In the following sections, we will explain each com-
ponent of SFS in detail: how to measure hotness (§ 3.3),
segment quantization (§ 3.4), segment writing (§ 3.5),
segment cleaning (§ 3.6), and crash recovery (§ 3.7).

3.3 Measuring Hotness
In SFS, hotness is used as a measure of how likely the
data is to be updated. Hotness is defined for file block,
file, and segment, respectively. Although it is difficult
to estimate data hotness without prior knowledge of fu-
ture access pattern, SFS exploits both the skewness and
the temporal locality in the I/O workload so as to esti-
mate the update likelihood of data. From the skewness
observed in many workloads, frequently updated data

tends to be updated quickly. Moreover, because of the
temporal locality in references, the recently updated data
is likely to be changed quickly. Thus, using the skewness
and the temporal locality, hotness is defined as write count

age .
Each hotness of file block, file, and segment is specifi-
cally defined as follows.

First, block hotness Hb is defined by age and write
count of a block as follows:

Hb =

{
Wb

T−Tm
b

if Wb > 0,

Hf otherwise.

where T is the current time, Tm
b is the last modified time

of the block, and Wb is the total number of writes on the
block since the block was created. If a block is newly
created (Wb = 0), Hb is defined as the hotness of the
file that the block belongs to.

Next, file hotness Hf is used to estimate the hotness
of a newly created block. It is defined by age and write
count of a file as follows:

Hf =
Wf

T − Tm
f

where Tm
f is the last modified time of the file, and Wf

is the total number of block updates since the file was
created.

Finally, segment hotness represents how likely a seg-
ment is to be updated. Since a segment is a collection
of blocks, it is reasonable to derive its hotness from the
hotness of live blocks contained within. That is, as the
hotness of live blocks in a segment is higher, the seg-
ment hotness also becomes higher. Therefore, we define
hotness of a segment Hs as the average hotness of the
live blocks in the segment. However, it is expensive to
calculate Hs because the liveness of all blocks in a seg-
ment must be tested. To determine Hs for all segments
in a disk, the liveness of all blocks in the disk must be
checked. To alleviate this cost, we approximately calcu-
late the average hotness of live blocks in a segment as
follows:

Hs =
1

N

∑
i

Hbi

≈ mean of write count of live blocks
mean of age of live blocks

=

∑
i Wbi

N · T −
∑

i T
m
bi

where N is the number of live blocks in a segment,
Hbi , T

m
bi

, and Wbi are block hotness, last modified time,
and write count of i-th live block, respectively. When
a segment is created, SFS stores

∑
i T

m
bi

and
∑

i Wbi

in the segment usage meta-data file (SUFILE), and up-
dates them by subtracting Tm

bi
and Wbi whenever a block

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

s
e
g
m

e
n
t
h
o
tn

e
s
s

segment hotness ranking

hot group

warm group

cold group

read-only group

Figure 4: Example of segment quantization.

is invalidated. Using this approximation, we can incre-
mentally calculate Hs of a segment without checking the
liveness of blocks in the segment. We will elaborate on
how to manage meta-data for hotness in Section 4.1.

3.4 Segment Quantization
In order to minimize the overhead of copying the live
blocks during segment cleaning, it is crucial for SFS to
properly group blocks according to hotness and then to
write them in grouped segments. The effectiveness of
block grouping is determined by the grouping criteria.
In fact, improper criteria may colocate blocks from dif-
ferent groups into the same segment, thus deteriorating
the effectiveness of grouping. Ideally, grouping criteria
should consider the distribution of all blocks’ hotness
in the file system, yet in reality this is too costly. Thus,
we instead use segment hotness as an approximation of
block hotness and devise an algorithm to calculate the
criterion, iterative segment quantization.

In SFS, segment quantization is a process used to par-
tition the hotness range of a file system into k sub-ranges
and calculate a quantized value for each sub-range rep-
resenting a group. There are many alternative ways to
quantize hotness. For example, each group can be quan-
tized using equi-height partitioning or equi-width par-
titioning. Equi-height partitioning equally divides the
whole hotness range into multiple groups and equi-width
partitioning makes each group have an equal number of
segments. In Figure 4, the segment hotness distribution
is computed by measuring the hotness for all segments
on the disk after running TPC-C workload under 70%
disk utilization. In such a distribution where most seg-
ments are not hot, however, both approaches fail to cor-
rectly reflect the hotness distribution and the resulting
group quantization is suboptimal.

In order to correctly reflect the hotness distribution of
segments and to properly quantize them, we propose an
iterative segment quantization algorithm. Inspired by the
data clustering approach in statistics domain [15], our
iterative segment quantization partitions segments into
k groups and tries to find the centers of natural groups
through an iterative refinement approach. A detailed de-

scription of the algorithm is as follows:

1. If the number of written segments is less than or
equal to k, assign a randomly selected segment hot-
ness to initial value of Hgi , which denotes hotness
of the i-th group.

2. Otherwise update Hgi as follows:

(a) Assign each segment to the group Gi whose
hotness is closest to the segment hotness.

Gi = {Hsj : ‖Hsj −Hgi‖ ≤ ‖Hsj −Hgi∗‖
for all i∗ = 1, . . . , k}

(b) Calculate the new means to be the group hot-
ness Hgi .

Hgi =
1

|Gi|
∑

Hsj
∈Gi

Hsj

3. Repeat Step 2 until Hgi no longer changes or three
times at most.

Despite the fact that its computational overhead in-
creases in proportion to the number of segments, the
large segment size means that the overhead of the pro-
posed algorithm is reasonable (32 segments for 1 GB
disk space given 32 MB segment size). To further reduce
the overhead, SFS stores Hgi in meta-data and reloads
them at mounting for faster convergence.

3.5 Segment Writing
As illustrated in Figure 3, segment writing in SFS con-
sists of two sequential steps: one to group dirty blocks in
the page cache and the other to write the blocks group-
wise in segments. Segment writing is invoked in four
cases: (a) SFS periodically writes dirty blocks every five
seconds, (b) flush daemon forces a reduction in the num-
ber of dirty pages in the page cache, (c) segment clean-
ing occurs, and (d) an fsync or sync occurs. The first
step of segment writing is segment quantization: all Hgi

are updated as described in Section 3.4. Next, the block
hotness Hb of every dirty block is calculated, and each
block is assigned to the group Hgi whose hotness is clos-
est to the block hotness.

To avoid blocks in different groups being colocated in
the same segment, SFS completely fills a segment with
blocks from the same group. In other words, among all
groups, only the groups large enough to completely fill a
segment are written. Thus, when the group size, i.e. the
number of blocks belonging to a group, is less than the
segment size, SFS will defer writing the blocks to the
segment until the group size reaches the segment size.
However, when an fsync or sync occurs or SFS initiates
a check-point, every dirty block including the deferred
blocks should be immediately written to segment regard-
less of the group size. In this case, we take a best-effort

approach: at first, writing out blocks groupwise as many
as possible, then writing only the remaining blocks re-
gardless of group. In all cases, writing a block accom-
panies updating relevant meta-data, Tm

b , Wb, Tm
f , Wf ,∑

i T
m
bi

, and
∑

i Wbi , and invalidating the liveness of
the overwritten block. Since the writing process contin-
uously reorganizes file blocks according to hotness, it
helps to form sharp bimodal distribution of segment uti-
lization, and thus to reduce the segment cleaning over-
head. Further, it almost always generates aligned large
sequential write requests that are optimal for SSD.

Because the blocks under segment cleaning are han-
dled similarly, their writing can also be deferred if the
number of live blocks belonging to a group is not enough
to completely fill a segment. As such, there is a danger
that the not-yet-written blocks under segment cleaning
might be lost if the originating segments of the blocks
are already overwritten by new data but a system crash
or a sudden power off is encountered. To cope with such
data loss, two techniques are introduced. First, SFS man-
ages a free segment list and allocates segments in the
least recently freed (LRF) order. Second, SFS checks
whether writing a normal block could cause a not-yet-
written block under segment cleaning to be overwritten.
Let St denote a newly allocated segment and St+1 de-
note a segment that will be allocated in next segment
allocation. If there are not-yet-written blocks under seg-
ment cleaning that originate in St+1, SFS writes such
blocks to St regardless of grouping. This guarantees
that not-yet-written blocks under segment cleaning are
never overwritten before they are written elsewhere. The
segment-cleaned blocks are thus never lost, even in a
system crash or a sudden power off, because they al-
ways have an on-disk copy. The LRF allocation scheme
increases the opportunity for a segment-cleaned block
to be written by block grouping rather than this scheme.
The details of minimizing the overhead in this process
are omitted from this paper.

3.6 Segment Cleaning: Cost-hotness policy
In any log-structured file system, the victim selection
policy is critical to minimizing the overhead of segment
cleaning. There are two well-known segment clean-
ing policies: greedy policy [32] and cost-benefit policy
[32, 17]. Greedy policy [32] always selects segments
with the smallest number of live blocks, hoping to re-
claim as much space as possible with the least copying
out overhead. However, it does not consider the hotness
of data blocks during segment cleaning. In practice, be-
cause the cold data tends to remain unchanged for a long
time before it becomes invalidated, it would be very ben-
eficial to separate cold data from hot data. To this end,
cost-benefit policy [32, 17] prefers cold segments to hot
segments when the number of live blocks is equal. Even

though it is critical to estimate how long a segment re-
mains unchanged, cost-benefit policy simply uses the
last modified time of any block in the segment (i.e. the
age of the youngest block) as a simple measure of the
segment’s update likelihood.

As a natural extension of cost-benefit policy, we intro-
duce cost-hotness policy; since hotness in SFS directly
represents the update likelihood of segment, we use seg-
ment hotness instead of segment age. Thus, SFS chooses
a victim among the segments, which maximizes the fol-
lowing formula:

cost-hotness =
free space generated

cost ∗ segment hotness

=
(1− Us)

2UsHs

where Us is segment utilization, i.e. the fraction of the
live blocks in a segment. The cost of collecting a seg-
ment is 2Us (one Us to read valid blocks and the other
Us to write them back). Although cost-hotness policy
needs to access the utilization and the hotness of all seg-
ments, it is very efficient because our implementation
keeps them in segment usage meta-data file (SUFILE)
and meta-data size per segment is quite small (48 bytes
long). All segment usage information is very likely to be
cached in memory and can be accessed without access-
ing the disk in most cases. We will describe the detail of
meta-data management in Section 4.1.

In SFS, the segment cleaner is invoked when the disk
utilization exceeds a water-mark. The water-mark for
the our experiments is set to 95% of the disk capacity
and the segment cleaning is allowed to process up to
three segments at once (96 MB given the segment size of
32 MB). The prototype did not implement the idle time
cleaning scheme suggested by Blackwell et al. [7], yet
this could be seamlessly integrated with SFS.

3.7 Crash Recovery
Upon a system crash or a sudden power off, the in
progress write operations may leave the file system in-
consistent. This is because dirty data blocks or meta-
data blocks in the page cache may not be safely writ-
ten to the disk. In order to restore such inconsistencies
from failures, SFS uses a check-point mechanism; on re-
mounting after a crash, the file system is rolled back to
the last check-point state, and then resumes in a normal
manner. A check-point is the state in which all of the file
system structures are consistent and complete. In SFS, a
check-point is carried out in two phases; first, it writes
out all the dirty data and meta-data to the disk, and then
updates the superblock in a special fixed location on the
disk. The superblock keeps the root address of the meta-
data, the position in the last written segment and time-
stamp. SFS can guarantee the atomic write of the su-

perblock by alternating between writing it to two sep-
arate physical blocks on the disk. During re-mounting,
SFS reads both copies of the superblock, compares their
time stamps and uses the more recent one.

Frequent check-pointing can minimize data loss from
crashes but can hinder normal system performance. Con-
sidering this trade-off, SFS performs a check-point in
four cases: (a) every thirty seconds after creating a
check-point, (b) when more than 20 segments (640 MB
given a segment size of 32 MB) are written, (c) when
performing sync or fsync operation, and (d) when the file
system is unmounted.

4 Evaluation

4.1 Experimental Systems
Implementation: SFS is implemented based on
NILFS2 [28] by retrofitting the in-memory and on-
disk meta-data structures to support block grouping and
cost-hotness segment cleaning. NILFS2 in the mainline
Linux kernel is based on log-structured file system [32]
and incorporates advanced features such as b-tree based
block management for scalability and continuous snap-
shot [20] for ease of management.

Implementing SFS requires a significant engineering
effort, despite the fact that it is based on the already ex-
isting NILFS2. NILFS2 uses b-tree for scalable block
mapping and virtual-to-physical block translation in data
address translation (DAT) meta-data file to support con-
tinuous snapshot. One technical issue of b-tree based
block mapping is the excessive meta-data update over-
head. If a leaf block in a b-tree is updated, its effect is
always propagated up to the root node and all the corre-
sponding virtual-to-physical entries in the DAT are also
updated. Consequently, random writes entail a signifi-
cant amount of meta-data updates — writing 3.2 GB
with 4 KB I/O unit generates 3.5 GB of meta-data. To
reduce this meta-data update overhead and support the
check-point creation policy discussed in Section 3.7, we
decided to cut off the continuous snapshot feature. In-
stead, SFS-specific fields are added to several meta-data
structures: superblock, inode file (IFILE), segment us-
age file (SUFILE), and DAT file. Group hotness Hgi is
stored in the superblock and loaded at mounting for the
iterative segment quantization. Per file write count Wf

and the last modified time Tm
f are stored in the IFILE.

The SUFILE contains information for hotness calcula-
tion and segment cleaning: Us, Hs,

∑
i T

m
bi

and
∑

i Wbi .
Per-block write count Wb and the last modified time
Tm
b are stored in the DAT entry along with virtual-to-

physical mapping. Of these, Wb and Tm
b are the largest,

each being eight bytes long. Since the meta-data fields
for continuous snapshot in the DAT entry have been re-
moved, the size of the DAT entry in SFS is the same as

that of NILFS2 (32 bytes). As a result of these changes,
we reduce the runtime overhead of meta-data to 5%–
10% for the workloads used in our experiments. In SFS,
since a meta-data file is treated the same as a normal file
with a special inode number, a meta-data file can also be
cached in the page cache for efficient access.

Segment cleaning in NILFS2 is not elaborated to the
state-of-the-art in academia. It takes simple time-stamp
policy [28] that selects the oldest dirty segment as a vic-
tim. For SFS, we implemented the cost-hotness policy
and segment cleaning triggering policy described in Sec-
tion 3.6.

In our implementation, we used Linux kernel 2.6.37,
and all experiments are performed on a PC using a 2.67
GHz Intel Core i5 quad-core processor with 4 GB of
physical memory.

Target SSDs: Currently, the spectrum of SSDs avail-
able in the market is very wide in terms of price and per-
formance; flash memory chips, RAM buffers, and hard-
ware controllers all vary greatly. For this paper, we se-
lect three state-of-the-art SSDs as shown in Table 1. The
high-end SSD is based on SLC flash memory and the
rest are based on MLC. Hereafter, these three SSDs are
referred to as SSD-H, SSD-M, and SSD-L ranging from
high-end to low-end.

Figure 1 shows sequential vs. random write through-
put of the three devices. The request sizes of random
write whose bandwidth converges to that of sequential
write are 16 MB, 32 MB, and 16 MB for SSD-H, SSD-
M, and SSD-L, respectively. To fully exploit device per-
formance, the segment size is set to 32 MB for all three
devices.

Workloads: To study the impact of SFS on various
workloads, we use a mixture of synthetic and real-world
workloads. Two real-world file system traces are used
in our experiments: OLTP database workload, and desk-
top workload. For OLTP database workload, the file sys-
tem level trace is collected while running TPC-C [40].
The database server runs Oracle 11g DBMS and the
load server runs Benchmark Factory [30] using TPC-
C benchmark scenario. For desktop workload, we used
RES from the University of California at Berkeley [31].
RES is a research workload collected for 113 days on a
system consisting of 13 desktop machines of a research
group. In addition, two traces of random writes with
different distributions are generated as synthetic work-
loads: one with Zipfian distribution and the other with
uniform random distribution. The uniform random write
is the workload that shows the worst case behavior of
SFS, since SFS tries to utilize the skewness in workloads
during block grouping.

Since our main area of interest is in maximum write
performance, write requests in the workloads are re-
played as fast as possible in a single thread and through-

0

2

4

6

8

1 2 3 4 5 6

W
ri

te
 c

o
st

Number of group

Zipf TPC-C

Figure 5: Write cost vs. number of group. Disk utiliza-
tion is 85%.

put is measured at the application level. Native Com-
mand Queuing (NCQ) is enabled to maximize the par-
allelism in the SSD. In order to explore the system be-
havior on various disk utilizations, we sequentially filled
the SSD with enough dummy blocks, which are never
updated after creation, until the desired utilization is
reached. Since the amount of the data block update is
the same for a workload regardless of the disk utiliza-
tion, the amount of the meta-data update is also the same.
Therefore, in our experiment results, we can directly
compare performance metrics for a workload regardless
of the disk utilization.

Write Cost: To write new data in SFS, a new seg-
ment is generated by the segment cleaner. This cleaning
process will incur additional read and write operations
for the live blocks being segment-cleaned. Therefore, the
write cost of data should include the implicit I/O cost of
segment cleaning as well as the pure write cost of new
data. In this paper, we define the write cost Wc to com-
pare the write cost induced by the segment cleaning. It
is defined by three component costs – the write cost of
new data Wnew

c , the read and the write cost of the data
being segment-cleaned, Rsc

c and W sc
c – as follows:

Wc =
Wnew

c +Rsc
c +W sc

c

Wnew
c

Each component cost is defined by division of the
amount of I/O by throughput. Since the unit of write
in SFS is always a large sequential chunk, we choose
the maximum sequential write bandwidth in Table 1 for
throughputs of W sc

c and Wnew
c . Meanwhile, since the

live blocks being segment-cleaned are assumed to be
randomly located in a victim segment, the 4 KB ran-
dom read bandwidth in Table 1 is selected for the read
throughput of Rsc

c . Throughout this paper, we measured
the amount of I/O while replaying the workload trace
and thus calculated the write cost for a workload.

4.2 Effectiveness of SFS Techniques
As discussed in Section 3, the key techniques of SFS
are (a) on writing block grouping, (b) iterative segment
quantization, and (c) cost-hotness segment cleaning. To

0

1

2

3

4

5

6

7

8

Zipf TPC-C

W
ri

te
 c

o
st

equi-width partitioning equi-height partitioning

iterative quantization

Figure 6: Write costs of quantization schemes. Disk uti-
lization is 85%.

0

1

2

3

4

5

Zipf TPC-C

W
ri

te
 c

o
st

cost-benefit cost-hotness

Figure 7: Write cost vs. segment cleaning scheme. Disk
utilization is 85%.

examine how each technique contributes to the overall
performance, we measured the write costs of Zipf and
TPC-C workload under 85% disk utilization on SSD-M.

First, to verify how the block grouping is effective,
we measured the write costs by varying the number of
groups from one to six. As shown in Figure 5, we can
observe that the effect of block grouping is consider-
able. When the blocks are not grouped (i.e. the num-
ber of groups is 1), the write cost is fairly high: 6.96
for Zipf and 5.98 for TPC-C. Even when the number of
groups increases to two or three, no significant reduction
in write cost is observed. However, when the number of
groups reaches four the write costs of Zipf and TPC-C
workloads significantly drop to 4.21 and 2.64, respec-
tively. In the case of five or more groups, the write cost
reduction is marginal. The additional groups do not help
much when there are already enough groups covering
hotness distribution, but may in fact increase the write
cost. Since more blocks can be deferred due to insuffi-
cient blocks in a group, this could result in more blocks
being written without grouping when creating a check-
point.

Next, we compared the write cost of the different seg-
ment quantization schemes across four groups. Figure 6
shows that our iterative segment quantization reduces
the write costs significantly. The equi-width partition-
ing scheme has the highest write cost; 143% for Zipf
and 192% for TPC-C over the iterative segment quan-
tization. The write costs of the equi-height partitioning
scheme are 115% for Zipf and 135% for TPC-C over the

iterative segment quantization.
Finally, to verify how cost-hotness policy affects per-

formance, we compared the write cost of cost-hotness
policy and cost-benefit policy with the iterative segment
quantization for four groups. As shown in Figure 7, cost-
hotness policy can reduce the write cost by approxi-
mately 7% over for both TPC-C and Zipf workload.

4.3 Performance Evaluation
4.3.1 Write Cost and Throughput
To show how SFS and LFS perform against various
workloads with different write patterns, we measured
their write costs and throughput for two synthetic work-
loads and two real workloads, and presented the perfor-
mance results in Figure 8 and 9. For LFS, we imple-
mented the cost-benefit cleaning policy in our code base
(hereafter LFS-CB). Since throughput is measured at the
application level, it includes the effects of the page cache
and thus can exceed the maximum throughput of each
device. Due to space constraints, only the experiments
on SSD-M are shown here. The performance of SFS on
different devices is shown in Section 4.3.3.

First, let us explain how much SFS can improve the
write cost. It is clear from Figure 8 that SFS significantly
reduces the write cost compared to LFS-CB. In partic-
ular, the relative write cost improvement of SFS over
LFS-CB gets higher as disk utilization increases. Since
there is not enough time for the segment cleaner to re-
organize blocks under high disk utilization, our on writ-
ing data grouping shows greater effectiveness. For the
TPC-C workload which has high update skewness, SFS
reduces the write cost by 77.4% under 90% utilization.
Although uniform random workload without skewness
is a worst case workload, SFS reduces the write cost by
27.9% under 90% utilization. This shows that SFS can
effectively reduce the write cost for a variety of work-
loads.

To see if the lower write costs in SFS will result in
higher performance, throughput is also compared. As
Figure 9 shows, SFS improves throughput of the TPC-C
workload by 151.9% and that of uniform random work-
load by 18.5% under 90% utilization. It shows that the
write cost reduction in SFS actually results in perfor-
mance improvement.

4.3.2 Segment Utilization Distribution
To further study why SFS significantly outperforms
LFS-CB, we also compared the segment utilization dis-
tribution of SFS and LFS-CB. Segment utilization is cal-
culated by dividing the number of live blocks in the
segment by the number of total blocks per segment.
After running a workload, the distribution is computed
by measuring the utilizations of all non-dummy seg-

0

5

10

15

20

W
ri

te
 c

o
st

Disk utilization

LFS-CB SFS

(a) Zipf

0

5

10

15

20

25

30

35

W
ri

te
 c

o
st

Disk utilization

LFS-CB SFS

(b) Uniform random

0

5

10

15

20

25

W
ri

te
 c

o
st

Disk utilization

LFS-CB SFS

(c) TPC-C

0
5

10
15
20
25
30
35
40

W
ri

te
 c

o
st

Disk utilization

LFS-CB SFS

(d) RES

Figure 8: Write cost vs. disk utilization with SFS and LFS-CB on SSD-M.

0
20
40
60
80

100
120
140
160

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

LFS-CB SFS

(a) Zipf

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

LFS-CB SFS

(b) Uniform random

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

LFS-CB SFS

(c) TPC-C

0
50

100
150
200
250
300
350
400

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

LFS-CB SFS

(d) RES

Figure 9: Throughput vs. disk utilization with SFS and LFS-CB on SSD-M.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(a) Zipf

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(b) Uniform random

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(c) TPC-C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(d) RES

Figure 10: Segment utilization vs. fraction of segments. Disk utilization is 70%.

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

SSD-H SSD-M SSD-L

(a) Zipf

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

SSD-H SSD-M SSD-L

(b) Uniform random

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

SSD-H SSD-M SSD-L

(c) TPC-C

0
50

100
150
200
250
300
350
400

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk utilization

SSD-H SSD-M SSD-L

(d) RES

Figure 11: Throughput vs. disk utilization with SFS on different devices.

ments on the SSD. Since SFS continuously re-groups
data blocks according to hotness, it is likely that a sharp
bimodal distribution is formed. Figure 10 shows the
segment utilization distribution when disk utilization is
70%. We can see the obvious bimodal segment distri-
bution in SFS for all workloads except for the skewless
uniform random workload. Even in the uniform random
workload, the segment utilization of SFS is skewed to
lower utilization. Under such bimodal distribution, the
segment cleaner can select as victims those segments
with few live blocks. For example, as shown in Fig-
ure 10a, SFS will select a victim segment with 10% uti-
lization, while LFS-CB will select a victim segment with
30% utilization. In this case, the number of live blocks of
a victim in SFS is just one-third of that in LFS-CB, thus
the segment cleaner copies only one-third the amount
of blocks. The reduced cleaning overhead results in a
significant performance gap between SFS and LFS-CB.
This experiment shows that SFS forms a sharp bimodal
distribution of segment utilization by data block group-
ing, and reduces the write cost.

4.3.3 Effects of SSD Performance
In the previous sections, we showed that SFS can sig-
nificantly reduce the write cost and drastically im-
prove throughput on SSD-M. As shown in Section 2.2,
SSDs have various performance characteristics. To see
whether SFS can improve the performance on various
SSDs, we compared throughput of the same workloads
on SSD-H, SSD-M, and SSD-L in Figure 11. As shown
in Table 1, SSD-H is ten-fold more expensive than SSD-
L, the maximum sequential write performance of SSD-
H is 4.5 times faster than SSD-L, and the 4 KB random
write performance of SSD-H is more than 2,500 times
faster than SSD-L. Despite the fact that these three SSDs
show such large variances in performance and price,
Figure 11 shows that SFS performs regardless of the
random write performance. The main limiting factor is
the maximum sequential write performance. This is be-
cause, except for updating superblock, SFS always gen-
erates large sequential writes to fully exploit the max-
imum bandwidth of SSD. The experiment shows that
SFS can provide high performance even on mid-range
or low-end SSD only if sequential write performance is
high enough.

4.4 Comparison with Other File Systems
Up to now, we have analyzed how SFS performs un-
der various environments with different workloads, disk
utilization, and SSDs. In this section, we compared the
performance of SFS using three other file systems, each
with different block update policies: LFS-CB for log-
ging policy, ext4 [25] for in-place-update policy, and
btrfs [10] for no-overwrite policy. To enable btrfs’ SSD

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

B
/s

) SFS LFS-CB btrfs btrfs-nodatacow ext4

Figure 12: Throughput under different file systems.

optimization, btrfs was mounted in SSD mode. The
in-place-update mode of btrfs is also tested with the
nodatacow option enabled to further analyze the be-
havior of btrfs (hereafter btrfs-nodatacow). Four work-
loads were run on SSD-M with 85% disk utilization. To
obtain the sustained performance, we measured 8 GB
writing after 20 GB writing for aging.

First, we compared throughput of the file systems in
Figure 12. SFS significantly outperforms LFS-CB, ext4,
btrfs, and btrfs-nodatacow for all four workloads. The
average throughputs of SFS are higher than those of
other file systems: 1.6 times for LFS-CB, 7.3 times for
btrfs, 1.5 times for btrfs-nodatacow, and 1.5 times for
ext4.

Next, we compared the write amplification that repre-
sents the garbage collection overhead inside SSD. We
collected I/O traces issued by the file systems using
blktrace [8] while running four workloads, and the
traces were run on an FTL simulator, which we imple-
mented, with two FTL schemes – (a) FAST [24] as a rep-
resentative hybrid FTL scheme and (b) page-level FTL
[17]. In both schemes, we configure a large block 32 GB
NAND flash memory with 4 KB page, 512 KB block,
and 10% over-provisioned capacity. Figure 13 shows
write amplifications in FAST and page-level FTL for
the four workloads processed by each file system. In all
cases, write amplifications of log-structured file systems,
SFS and LFS-CB, are very low: 1.1 in FAST and 1.0
in page-level FTL on average. This indicates that both
FTL schemes generate 10% or less additional writings.
Log-structured file systems collect and transform ran-
dom writes at file level to sequential writes at LBA level.
This results in optimal switch merge [24] in FAST and
creates large chunks of contiguous invalid pages in page-
level FTL. In contrast, in-place-update file systems, ext4
and btrfs-nodatacow, have the largest write amplifica-
tion: 5.3 in FAST and 2.8 in page-level FTL on average.
Since in-place-update file systems update a block in-
place, random writes at file-level result in random writes
at LBA-level. This contributes to high write amplifica-
tion. Meanwhile, because btrfs never overwrites a block
and allocates a new block for every update, it is likely to
lower the average write amplification: 2.8 in FAST and

0

1

2

3

4

5

6

7

W
ri

te
 A

m
p

li
fi

ca
ti

o
n

SFS LFS-CB btrfs btrfs-nodatacow ext4

(a) FAST

0
0.5

1
1.5

2
2.5

3
3.5

4

W
ri

te
 A

m
p

li
fi

ca
ti

o
n

SFS LFS-CB btrfs btrfs-nodatacow ext4

(b) Page Mapping

Figure 13: Write amplification with different FTL schemes.

0

50

100

150

200

250

300

N
u

m
b

er
 o

f
E

ra
se

s
(x

 1
0

0
0

)

SFS LFS-CB btrfs btrfs-nodatacow ext4

(a) FAST

0

20

40

60

80

100

120

140

160

N
u

m
b

er
 o

f
E

ra
se

s
(x

 1
0

0
0

)

SFS LFS-CB btrfs btrfs-nodatacow ext4

(b) Page Mapping

Figure 14: Number of erases with different FTL schemes.

1.2 in page-level FTL on average.
Finally, we compared the number of block erases that

determine the lifespan of SSD in Figure 14. As can
be expected from the write amplification analysis, the
number of block erases in SFS and LFS-CB are signifi-
cantly lower than in all others. Since the segment clean-
ing overhead of SFS is lower than that of LFS-CB, the
number of block erases in SFS is smallest: LFS-CB in-
curs totally 20% more block erases in FAST and page-
level FTL. Erase counts of overwrite file systems, ext4
and btrfs-nodatacow, are significantly higher than that
of SFS. In total, ext4 incurs 3.1 times more block erases
in FAST and 1.8 times more block erases in page-level
FTL. Similarly, total erase counts of btrfs-nodatacow are
3.4 times higher in FAST and 2.0 times higher in page-
level FTL. Interestingly, btrfs incurs the largest number
of block erases: in total, 6.1 times more block erases
in FAST and 3.8 times more block erases in page-level
FTL, and in worst case 7.5 times more block erases than
SFS. Although the no-overwrite scheme in btrfs incurs
lower write amplification compared to ext4 and btrfs-
nodatacow, btrfs shows large overhead to support copy-
on-write and manage fragmentation [21, 46] induced by
random writes at file-level.

In summary, the erase count of the in-place-update
file system is high because of high write amplification.
That of the no-overwrite file system is also high due
to the number of write requests from the file system,
even at relatively low write amplification. The major-

ity of the overhead comes from supporting no-overwrite
and handling fragmentation in the file system. Frag-
mentation of the no-overwrite file system under ran-
dom write is a widely known problem [21, 46]: succes-
sive random writes eventually move all blocks into ar-
bitrary positions, and this makes all I/O access random
at the LBA level. Defragmentation, which is similar to
segment cleaning in a log-structured file system, is im-
plemented [21, 1] to reduce the performance problem
of fragmentation. Similarly to segment cleaning, it also
has additional overhead to move blocks. In case of log-
structured file systems, if we carefully choose segment
size to be aligned with the clustered block size, write
amplification can be minimal. In this case, the segment
cleaning overhead is the major overhead that increases
the erase count. SFS is shown to drastically reduce the
segment cleaning overhead. It can also be seen that the
write amplification and erase count of SFS are signifi-
cantly lower than for all other file systems. Therefore,
SFS can significantly increase the lifetime as well as the
performance of SSDs.

5 Related Work
Flash memory based storage systems and log-structured
techniques have received a lot of interests in both
academia and industry. Here we only present the papers
most related to our work.

FTL-level approaches: There are many FTL-level
approaches to improve random write performance.

Among hybrid FTL schemes, FAST [24] and LAST
[22] are representative. FAST [24] enhances random
write performance by improving the log area utilization
with flexible mapping in log area. LAST [22] further
improves FAST [24] by separating random log blocks
into hot and cold regions to reduce the full merge cost.
Among page-level FTL schemes, DAC [13] and DFTL
[14] are representative. DAC [13] clusters data blocks of
the similar write frequencies into the same logical group
to reduce the garbage collection cost. DFTL [14] reduces
the required RAM size for the page-level mapping table
by using dynamic caching. FTL-level approaches exhibit
a serious limitation in that they depend almost exclu-
sively on LBA to decide sequentiality, hotness, cluster-
ing, and caching. Such approaches deteriorate when a
file system adopts a no-overwrite block allocation pol-
icy.

Disk-based log-structured file systems: There is
much research to optimize log-structured file systems
on conventional hard disks. In the hole plugging method
[44], the valid blocks in victim segments are overwritten
to the holes, i.e. invalid blocks, in other segments with
a few invalid blocks. This reduces the copying cost of
valid blocks in segment cleaning. However, this method
is beneficial only under a storage media that allows in-
place updates. Matthews et al. [26] proposed the adap-
tive method that combines cost-benefit policy and hole-
plugging. It first estimates the cost of cost-benefit pol-
icy and hole-plugging respectively, and then adaptively
selects the policy with the lower cost. However, their
cost model is based on the performance characteristics
of HDD, seek and rotational delay. WOLF [42] sepa-
rates hot pages and cold pages into two different seg-
ment buffers according to the update frequency of data
pages, and writes two segments to disk at once. This sys-
tem works well only when hot pages and cold pages are
roughly half and half, so that they can be separated into
two segments. HyLog [43] uses a hybrid approach: log-
ging for hot pages to achieve high write performance and
overwrite for cold pages to reduce the segment cleaning
cost. In HyLog, it is critical to estimate the ratio of hot
pages to determine the update policy. However, similar
to the adaptive method, its cost model is based on the
performance characteristics of HDD.

Flash-based log-structured file systems: In embed-
ded systems with limited CPU and main memory, spe-
cially designed file systems that directly access raw
flash devices are commonly used. To handle the unique
characteristics of flash memory including no in-place-
update, wear-leveling and bad block management, these
systems take the log-structured approach. JFFS2 [45],
YAFFS2 [47], and UBIFS [41] are widely used flash-
based log-structured file systems. In terms of segment
cleaning, each uses a turn-based selection algorithm

[45, 47, 41] that incorporates wear-leveling into the
segment cleaning process. This consists of two phases,
namely X and Y turns. In the X turn, it selects a victim
segment using greedy policy without considering wear-
leveling. During the Y turn, it probabilistically selects a
full valid segment as a victim block for wear-leveling.

6 Conclusion and Future Work
In this paper, we proposed a next generation file system
for SSD, SFS. It takes a log-structured approach which
transforms the random writes at the file system into the
sequential writes at the SSD, thus achieving high per-
formance and also prolonging the lifespan of the SSD.
Also, in order to exploit the skewness in I/O workloads,
SFS captures the hotness semantics at file block level
and utilizes these in grouping data eagerly on writing. In
particular, we devised an iterative segment quantization
algorithm for correct data grouping and also proposed
the cost-hotness policy for victim segment selection. Our
experimental evaluation confirms that SFS considerably
outperforms existing file systems such as LFS, ext4, and
btrfs, and prolongs the lifespan of SSDs by drastically
reducing block erase count inside the SSD.

Another interesting question is the applicability of
SFS for HDD. Though SFS was originally designed for
targeting primarily for SSDs, its key techniques are ag-
nostic to storage devices. While random write is more
serious in SSD since it hurts the lifespan as well as per-
formance, it hurts performance also in HDD due to in-
creased seek-time. We did preliminary experiments to
see if SFS is beneficial in HDD and got promising ex-
perimental results. As future work, we intend to explore
the applicability of SFS for HDD in greater depth.

Acknowledgements
We thank the anonymous reviewers and our shep-
herd Keith Smith for their feedback and comments,
which have substantially improved the content and pre-
sentation of this paper. This research was supported
by Next-Generation Information Computing Develop-
ment Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Edu-
cation, Science and Technology (2011-0020520). This
work was supported by the National Research Founda-
tion of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 2011-0027613).

References
[1] Linux 3.0. http://kernelnewbies.org/

Linux_3.0.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for SSD performance. In Proceeding of

http://kernelnewbies.org/Linux_3.0
http://kernelnewbies.org/Linux_3.0

USENIX 2008 Annual Technical Conference, pages
57–70, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[3] S. Akyürek and K. Salem. Adaptive block rear-
rangement. ACM Trans. Comput. Syst., 13:89–121,
May 1995.

[4] D. G. Andersen and S. Swanson. Rethinking Flash
in the Data Center. IEEE Micro, 30:52–54, July
2010.

[5] L. Barroso. Warehouse-scale computing. In
Keynote in the SIGMOD’10 conference, 2010.

[6] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett,
J. Liptak, R. Rangaswami, and V. Hristidis. BORG:
block-reORGanization for self-optimizing storage
systems. In Proccedings of the 7th conference
on File and storage technologies, pages 183–196,
Berkeley, CA, USA, 2009. USENIX Association.

[7] T. Blackwell, J. Harris, and M. Seltzer. Heuris-
tic cleaning algorithms in log-structured file sys-
tems. In Proceedings of the USENIX 1995 Techni-
cal Conference Proceedings, TCON’95, pages 23–
23, Berkeley, CA, USA, 1995. USENIX Associa-
tion.

[8] blktrace. http://linux.die.net/man/8/
blktrace.

[9] L. Bouganim, B. n Jónsson, and P. Bonnet. uFLIP:
Understanding Flash IO Patterns. In Proceedings
of the Conference on Innovative Data Systems Re-
search, CIDR ’09, 2009.

[10] Btrfs. http://btrfs.wiki.kernel.org.

[11] S. D. Carson. A system for adaptive disk rearrange-
ment. Softw. Pract. Exper., 20:225–242, March
1990.

[12] F. Chen, D. A. Koufaty, and X. Zhang. Under-
standing intrinsic characteristics and system impli-
cations of flash memory based solid state drives.
In Proceedings of the eleventh international joint
conference on Measurement and modeling of com-
puter systems, SIGMETRICS ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[13] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang.
Using data clustering to improve cleaning perfor-
mance for plash memory. Softw. Pract. Exper.,
29:267–290, March 1999.

[14] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selec-
tive caching of page-level address mappings. In
Proceeding of the 14th international conference on
Architectural support for programming languages
and operating systems, ASPLOS ’09, pages 229–
240, New York, NY, USA, 2009. ACM.

[15] J. A. Hartigan and M. A. Wong. Algorithm AS
136: A K-Means Clustering Algorithm. Journal
of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):pp. 100–108, 1979.

[16] D. Hitz, J. Lau, and M. Malcolm. File system de-
sign for an NFS file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Con-
ference, pages 19–19, Berkeley, CA, USA, 1994.
USENIX Association.

[17] A. Kawaguchi, S. Nishioka, and H. Motoda. A
flash-memory based file system. In Proceed-
ings of the USENIX 1995 Technical Conference,
TCON’95, pages 13–13, Berkeley, CA, USA,
1995. USENIX Association.

[18] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho.
A space-efficient flash translation layer for Com-
pactFlash systems. IEEE Transactions on Con-
sumer Electronics, 48:366–375, May 2002.

[19] J. Kim, S. Seo, D. Jung, J. Kim, and J. Huh.
Parameter-Aware I/O Management for Solid State
Disks (SSDs). To Appear in IEEE Transactions on
Computers, 2011.

[20] R. Konishi, K. Sato, and Y. Amagai. Filesys-
tem support for Continuous Snapshotting.
http://www.nilfs.org/papers/
ols2007-snapshot-bof.pdf, 2007.
Ottawa Linux Symposium 2007 BOFS material.

[21] J. Kára. Ext4, btrfs, and the others. In Proceed-
ing of Linux-Kongress and OpenSolaris Developer
Conference, pages 99–111, 2009.

[22] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper.
Syst. Rev., 42:36–42, October 2008.

[23] S.-W. Lee and B. Moon. Design of flash-based
DBMS: an in-page logging approach. In Proceed-
ings of the 2007 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’07,
pages 55–66, New York, NY, USA, 2007. ACM.

[24] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based
flash translation layer using fully-associative sec-
tor translation. ACM Trans. Embed. Comput. Syst.,
6, July 2007.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of
of the Linux Symposium, June 2007.

[26] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.
Wang, and T. E. Anderson. Improving the per-
formance of log-structured file systems with adap-

http://linux.die.net/man/8/blktrace
http://linux.die.net/man/8/blktrace
http://btrfs.wiki.kernel.org
http://www.nilfs.org/papers/ols2007-snapshot-bof.pdf
http://www.nilfs.org/papers/ols2007-snapshot-bof.pdf

tive methods. In Proceedings of the sixteenth ACM
symposium on Operating systems principles, SOSP
’97, pages 238–251, New York, NY, USA, 1997.
ACM.

[27] S. Mitchel. Inside the Windows 95 File System.
O’Reilly and Associates, 1997.

[28] NILFS2. http://www.nilfs.org/.

[29] R. Paul. Panelists ponder the kernel at Linux Col-
laboration Summit. http://tinyurl.com/
d7sht7, 2009.

[30] QuestSoftware. Benchmark Factory for
Databases. http://www.quest.com/
benchmark-factory/.

[31] D. Roselli, J. R. Lorch, and T. E. Anderson. A com-
parison of file system workloads. In Proceedings of
USENIX Annual Technical Conference, ATEC ’00,
pages 4–4, Berkeley, CA, USA, 2000. USENIX
Association.

[32] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Trans. Comput. Syst., 10:26–52, Febru-
ary 1992.

[33] C. Ruemmler and J. Wilkes. Disk Shuffling. Tech-
nical Report HPL-CSP-91-30, Hewlett-Packard
Laboratories, October 1991.

[34] C. Ruemmler and J. Wilkes. UNIX disk access
patterns. In Proceedings of USENIX Winter 1993
Technical Conference, page 405–420, 1993.

[35] M. Seltzer, K. Bostic, M. K. Mckusick, and
C. Staelin. An implementation of a log-structured
file system for UNIX. In Proceedings of the
USENIX Winter 1993 Conference Proceedings on
USENIX Winter 1993 Conference Proceedings,
pages 3–3, Berkeley, CA, USA, 1993. USENIX
Association.

[36] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File system
logging versus clustering: a performance compari-
son. In Proceedings of the USENIX 1995 Technical
Conference Proceedings, TCON’95, pages 21–21,
Berkeley, CA, USA, 1995. USENIX Association.

[37] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High
performance solid state storage under Linux. In
Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies, MSST
’10, pages 1–12, Washington, DC, USA, 2010.
IEEE Computer Society.

[38] SNIA. Solid State Storage (SSS) Performance
Test Specification (PTS) Enterprise Version
1.0. http://www.snia.org/sites/

default/files/SSS_PTS_Enterprise_
v1.0.pdf, 2011.

[39] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write per-
formance on flash devices. In Proceedings of the
Fifth International Workshop on Data Manage-
ment on New Hardware, DaMoN ’09, pages 9–14,
New York, NY, USA, 2009. ACM.

[40] Transaction Processing Performance Council. TPC
Benchmark C. http://www.tpc.org/
tpcc/spec/tpcc_current.pdf.

[41] UBIFS. Unsorted Block Image File System.
http://www.linux-mtd.infradead.
org/doc/ubifs.html.

[42] J. Wang and Y. Hu. A Novel Reordering Write
Buffer to Improve Write Performance of Log-
Structured File Systems. IEEE Trans. Comput.,
52:1559–1572, December 2003.

[43] W. Wang, Y. Zhao, and R. Bunt. HyLog: A High
Performance Approach to Managing Disk Layout.
In Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, pages 145–158,
Berkeley, CA, USA, 2004. USENIX Association.

[44] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan.
The HP AutoRAID hierarchical storage system.
ACM Trans. Comput. Syst., 14:108–136, February
1996.

[45] D. Woodhouse. JFFS : The Journalling Flash File
System. In Proceedings of the Ottowa Linux Sym-
posium, 2001.

[46] M. Xie and L. Zefan. Performance Improvement
of Btrfs. In LinuxCon Japan, 2011.

[47] YAFFS. Yet Another Flash File System. http:
//www.yaffs.net/.

[48] ZFS. http://opensolaris.org/os/
community/zfs/.

http://www.nilfs.org/
http://tinyurl.com/d7sht7
http://tinyurl.com/d7sht7
http://www.quest.com/benchmark-factory/
http://www.quest.com/benchmark-factory/
http://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.0.pdf
http://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.0.pdf
http://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.0.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.yaffs.net/
http://www.yaffs.net/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

	Introduction
	Background
	Flash Memory and SSD Internals
	Imbalance between Random and Sequential Write Performance in SSDs
	Skewness in I/O Workloads

	Design of SFS
	SFS: Design for SSD-based File Systems of the 2010s
	SFS Architecture
	Measuring Hotness
	Segment Quantization
	Segment Writing
	Segment Cleaning: Cost-hotness policy
	Crash Recovery

	Evaluation
	Experimental Systems
	Effectiveness of SFS Techniques
	Performance Evaluation
	Write Cost and Throughput
	Segment Utilization Distribution
	Effects of SSD Performance

	Comparison with Other File Systems

	Related Work
	Conclusion and Future Work

