
62

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

Proving Prêt à Voter Receipt Free using
Computational Security Models∗

Dalia Khader, Peter Y. A. Ryan, Qiang Tang
Interdisciplinary Centre for Security Reliability and Trust, SnT

and Université du Luxembourg

Abstract
Prêt à Voter is a supervised, end-to-end verifiable voting scheme. Informal

analyses indicate that, subject to certain assumptions, Prêt à Voter is receipt free,
i.e. a voter has no way to construct a proof to a coercer of how she voted. In
this paper we propose a variant of Prêt à Voter and prove receipt freeness of this
scheme using computational methods. Our proof shows that if there exists an
adversary that breaks receipt freeness of the scheme then there exists an adversary
that breaks the IND-CCA2 security of the Naor-Yung encryption scheme.

We propose a security model that defines receipt freeness based on the indis-
tinguishability of receipts. We show that in order to simulate the game we require
an IND-CCA2 encryption scheme to create the ballots and receipts. We show that,
within our model, a non-malleable onion is sufficient to guarantee receipt freeness.
Most of the existing Prêt à Voter schemes do not employ IND-CCA2 encryption
in the construction of the ballots, but they avoid such attacks by various additional
mechanisms such as pre-commitment of ballot material to the bulletin board, dig-
itally signed ballots etc. Our use of the Naor-Yung transformation provides the
IND-CCA2 security required.

1 Introduction
The role of voting is to ascertain the collective intent of the electorate. Voting

systems are required to guarantee that the announced result is a true reflection of the
intent of the electorate, given appropriate rules for the expression of preferences and
computing the outcome.

In order to ensure that voters can express their intent freely, voting systems are
usually required to guarantee ballot privacy, i.e. that no-one other than the voter herself
will know how she cast her vote. Failure to guarantee this will open voters up to being
deflected from expressing their true intent via either vote buying or coercion attacks.
Note that it is not enough for the voting system to provide this property, it is essential
that it is perceived by (vast majority of) the electorate to do so.

Security experts and cryptographers took an interest in the challenge of minimizing
the level of trust in officials or in the technology used in the process. This gave rise
to the notion of voter-verifiability or full auditiability, i.e. to provide every voter with
the means to confirm that her vote is accurately included in the tabulation, while at

∗Funded by the FNR (National Research Fund) Luxembourg under project SeRVTSC09/IS/06

1

63

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

the same time avoiding any violation of ballot secrecy. Typically voter-verifiability
is achieved by providing each voter with an encrypted version of her vote. She can
later use this to confirm that her (encrypted) vote is entered into the tabulation process.
Various implementations of this idea have been proposed, [12,25,31], and in section 3
we will outline a particular approach: Prêt à Voter .

These two requirements, one a form of verifiability and the other of a form of se-
crecy, are clearly in conflict and achieving them simultaneously with minimal trust
assumptions in a hostile environment has proved immensely challenging. In particu-
lar, the mechanisms that provide voter-verifiability (the encrypted ballots, the bulletin
board etc.) can, if not carefully designed, introduce threats to ballot privacy.

This conflict has given rise to the introduction of more elaborate notions of ballot
secrecy, namely receipt-freeness and coercion resistance. We will go into more precise
definitions of these notions later in the paper, but these new properties can be thought
of informally as guaranteeing ballot secrecy against increasingly powerful attackers.
Ballot secrecy ensures that a passive attacker, one who simply observes the unfolding of
the voting protocol, cannot determine how any individual voter cast her vote. Receipt-
freeness (first defined by Benaloh and Tuinstra [11]) takes account of the fact that a
voter might cooperate with an attacker to construct a proof of how she voted, using
the data generated in the execution of the voting protocol. In particular the voter may
be able to reveal certain data that ordinarily is assumed secret, for example passwords,
credentials or randomization factors using in encryption. For coercion resistance we
assume further that the attacker may interact with the voter at various stages of the
voting protocol: before, during and after.

Prêt à Voter is an end–to–end verifiable scheme that gives the voters a receipt when
they submit their vote to verify that their votes were never modified. Informal analysis
of Prêt à Voter indicates that, subject to various assumptions, it is receipt free. however,
certain subtle attacks on Prêt à Voter original version [27], made it not coercion resis-
tance (§4.1). Variants of Prêt à Voter were proposed after to address these attacks [26].
In this paper we focus on analyzing the receipt freeness property using computational
models. Strengthening our models and proofs to include different levels of coercion
resistance is kept for future studies.

1.1 Contribution
Our work is the first game based analysis of the receipt freeness of (a variant of) Prêt

à Voter based on indistinguishablity of receipts. Formal methods (symbolic) techniques
have been used earlier on to analyze the same notion in Prêt à Voter [24,33], but these
methods do not capture non-malleability of the ballot.

It should be noted that the standard versions of Prêt à Voter assume that blank re-
ceipts are posted to the Bulletin Board and signed ahead of the election. Hence, casting
vote corresponds in effect to filling in the vote information in an existing blank bal-
lot. The approach counters related plaintext style attacks on the tabulation that involve
the attacker posting receipts that are constructed in some way from real receipts. Our
model does not assume such a mechanism, hence the need to ensure non-malleability
of receipts. In this model we use the Noar-Yung construction as this meshes nicely with
some existing constructions to enable print-on-demand of Prêt à Voter ballots. These
constructions involved encrypting the candidate order under two, distinct public keys,

2

64

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

one for the tabulation tellers and one for the printer, along with Zero-Knowledge proofs
of the correspondence of the orders.

We will see that the model presented in this paper captures many of the notions
mentioned earlier, essentially those that can be classed as receipt-freeness, but fails to
capture certain attacks that fall into the category of coercion-resistance, e.g randomi-
sation attacks. Capturing notions such as receipt-freeness and coercion resistance has
proved very challenging in any formalism, but poses particular challenges in the con-
text of computational models. We note also that modelling Prêt à Voter poses new
challenges due to the special way that encrypted ballots are created: in contrast to most
voter-verifiable schemes, Prêt à Voter does not directly encrypt the voter’s choice but
rather pre-prepares an encryption of a randomized frame of reference in which the vote
is encoded.

Finally, we should mention that we provide an abstract description of Prêt à Voter
in §3. A voting scheme that fits that description can be proven secure in our security
model in §5. If we make changes on the system level a new model needs to be provided
to analyze the system, however if we make changes on the construction level only, a
new proof of security needs to be provided but the same security model can be used1.

1.2 Related Work
Although e-voting schemes use cryptography to ensure various levels of privacy, lit-

tle work has been done on proving them secure using computational models. The com-
plexity of e–voting schemes and the different security requirements needed, makes it
extremely challenging to find one computational model suitable for all voting schemes,
therefore researchers proposed several models each suitable for specific voting scheme,
we list some below.

Okamoto provided the first provable secure receipt free voting scheme [20]. Moran
and Naor [17, 18] aimed for the everlasting–privacy property in their voting schemes.
They use Universal Composability framework in their proofs and their constructions
are based on commitment schemes. Küsters et al. analyzes four e-voting schemes
using simulation based models: Bingo, TheeBallot, VAV, and Scantegrity II [14–16].
The main idea in all papers is that a coercer can distinguish whether a vote has followed
his orders or have voted as to his intended goal and that is done by running a counter-
strategy. Bernhard et al. [2] proposed a voting-friendly encryption scheme that can be
used in the Helios voting system and proved that such a scheme is needed to prove
ballot secrecy using game based models. Helios is a remote voting scheme and unlike
Prêt à Voter it does not require going to a voting booth.

Work has been done on proving receipt freeness in voting schemes using symbolic
analysis [1, 9, 13], §2.1 explains the difference between the two models briefly.

2 Preliminary Concepts
2.1 Provable Security

In formal method analysis the cryptographic primitives are represented by function
symbols considered as black–boxes, and the analysis assumes perfect cryptography

1Preliminary version of this paper is published on ePrint Archive: Report 2011/594.

3

65

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

(e.g. the algorithms “Encrypt” and “Decrypt” are treated as symbolic operations and
that means agents can decrypt only if they know the right keys, but cannot otherwise
“crack” encrypted messages). In computational models the cryptographic primitives
are functions from bit–strings to bit–strings, and the adversary is any probabilistic Tur-
ing machine. Even though the computational models seem more realistic, but they
complicate the proofs, and it is hard to study a large system using them.

In this paper we study receipt freeness of Prêt à Voter using a computational model
referred to as provable security paradigm. Evaluating the security of a protocol in the
provable security paradigm proceeds in two steps.

1. The first step is to design a security model for a category of cryptographic pro-
tocols. The security model usually takes the form of an adversary vs challenger
game, where the adversary represents the potential attacker which may break the
protocol in practice and the challenger represents the honest parties in the proto-
col execution. In the game, the adversary interacts with the challenger through
some oracles, which reflects the privileges that he can have in practice. More-
over, an advantage will be defined to indicate the condition that the adversary
has broken the security of the protocol and won the game. Section 4 provides a
security model for Prêt à Voter receipt freeness.

2. Given a protocol and the corresponding security model, the proof is essentially
to show that if any adversary can win the game with a non-negligible advantage
then it can actually be used as a subroutine to solve a hard problem, e.g. discrete
logarithm problem. If we can make the assumption that the hard problem is
intractable then we can draw the conclusion that the protocol is secure in the
security model based on the assumption (See §5).

As an example, security models have been defined for public-key encryption schemes
in the next subsection and the same example will be used in our security proof of re-
ceipt freeness (See §5). With respect to provable security, one important notion is
negligibility, formally defined as follows.
Definition 2.1 Function P (k) : Z → R is said to be negligible with respect to k if, for
every polynomial f(k), there exists an integer Nf such that P (k) < 1

f(k)
for all k ≥ Nf .

2.2 Security Notions for Public-key Encryption
A public-key encryption scheme consists of three algorithms (KeyGen,Enc,Dec),

defined as follows. KeyGen(λ) takes a security parameter λ as input and outputs a
public/private key pair (pk, sk). Enc(M,pk) takes a message M and the public key pk

as input, and outputs a ciphertext C. Dec(C, sk) takes a ciphertext C and the private
key sk as input, and outputs a plaintext M or an error symbol ⊥.

For public-key encryption schemes, the strongest security notion is IND-CCA2 (in-
distinguishability under adaptive chosen ciphertext attack). Informally, this property
guarantees that an (adaptive and active) attacker will not be able to learn any informa-
tion about the plaintext in a ciphertext c, even if it can decrypt any ciphertext except
for c. This property is essential when applying public-key encryption schemes to build
interactive security protocols, where an attacker may try to learn private information
through interactions with honest parties.
Definition 2.2 A public-key encryption scheme achieves IND-CCA2 security if any

4

66

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

polynomial time attacker only has negligible advantage in the attack game, shown in
Figure 1. Note that the advantage is defined to be |Pr[b′ = b]− 1

2
|.

1. Setup. The challenger takes the security parameter λ as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses M0,M1 of equal length
and sends them to the challenger for a challenge.

3. Challenge. The challenger selects b ∈R {0, 1} and returns Cb =

Enc(Mb, pk) as the challenge.
4. Phase 2. The attacker can issue a polynomial number of decryption

oracle queries with any input except for Cb.
5. Guess: At some point the attacker terminates Phase 2 by outputting a

guess b′ for b.

Figure 1: IND-CCA2 Game

In Definition2.2, if we remove Phase 2 in the attack game then it becomes the
definition for IND-CCA1 (indistinguishability under chosen ciphertext attack). Fur-
thermore, if we completely disallow the attacker to access the decryption oracle then it
becomes the standard IND-CPA (indistinguishability under chosen plaintext attack).

The above definition for IND-CCA2 is the standard one, but it has other equivalent
forms. Below, we propose a different security model (i.e. IND-CCA2† security) for
public key encryption schemes and show that this new security model is equivalent
to the standard IND-CCA2 (Appendix A). The information format in this definition
matches with the data format in our voting scheme, hence, this new model facilitates
our security analysis in Section 5.
Definition 2.3 A public-key encryption scheme achieves IND-CCA2† security if any
polynomial time attacker only has negligible advantage in the attack game, shown in
Figure 2. Note that the advantage is defined to be |Pr[b′ = b]− 1

2
|.

1. Setup. The challenger takes the security parameter λ as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses M0,M1 of equal length
and sends them to the challenger for a challenge.

3. Challenge. The challenger selects d ∈R {0, 1}. If d = 0, the challenger
returns E0 = (Enc(M0, pk),Enc(M1, pk)) as the challenge, otherwise re-
turns E1 = (Enc(M1, pk),Enc(M0, pk)) as the challenge.

4. Phase 2. The attacker can issue a polynomial number of decryption
queries with any input except for the two ciphertexts in Ed.

5. Guess: At some point the attacker terminates Phase 2 by outputting a
guess d′ for d.

Figure 2: IND-CCA2† Game

5

67

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

It is known that if a public-key encryption scheme is IND-CCA2 secure, then it
must be IND-CPA secure. In appendix A, we prove the following theorem on the
equivalence between IND-CCA2 and IND-CCA2†. This theorem allows us to employ
an IND-CCA2 secure scheme and prove the security in an IND-CCA2† security model.
Theorem 2.4 A public-key encryption scheme (KeyGen,Enc,Dec) is IND-CCA2 secure
if and only if it is IND-CCA2† secure.

2.3 Zero Knowledge Proofs
Loosely speaking, a zero knowledge proof is a cryptographic primitive that remark-

ably provides a convincing proof that an assertion holds without yielding any further
information. In this paper we use non–interactive Zero Knowledge proofs (NIZK).
Given language LR defined by NP–relation R. The pair (x,w) ∈ R if w is a witness
that x ∈ LR. A proof of system LR is given by a pair of algorithms (Prove, V erify).
The prover and verifier both have an element x ∈ LR as input. In addition the prover
has witness w such that R(x,w) = 1. The prover computes and sends a proof π to the
verifier. The verifier outputs a decision to accept or reject the proof π. The require-
ments of the proofs is to be sound (if x �∈ LR the verifier should reject π with high
probability), correct (if x ∈ LR then verifier should accept proof) and zero knowledge
(Nothing other than the validity of the assertion is revealed2).

2.4 Naor–Yung Transformation
The Naor-Yung IND-CCA2 construction [19] needs two ingredients: an IND-

CPA encryption scheme (KeyGen,Enc,Dec) and a sound zero-knowledge proof system
(Prove,Verify) that can prove that two ciphertexts encrypt the same message (i.e. A
plaintext equivalence proof of different public keys, See Appendix B.3). In more de-
tail, the Naor-Yung Transformation produces a scheme NY.E = (NY.KeyGen, NY.Enc,
NY.Dec) as follows.

• NY.KeyGen(λ) : Take security parameter λ as input and run KeyGen twice to
produce two key pairs (sk1, pk1) = KeyGen(λ) and (sk2, pk2) = KeyGen(λ). The
secret key NY.sk = (sk1, sk2) and public key NY.pk = (pk1, pk2).

• NY.Enc(m,NY.pk) : Compute c1 = Enc(m, pk1), c2 = Enc(m, pk2), and π =

Prove(m, pk1, pk2, r1, r2, c1, c2), where r1, r2 represents the randomness used in
constructing c1 and c2 respectively. The final ciphertext is (c1, c2, π).

• NY.Dec(c1, c2, π) : If Verify(c1, c2, π) = 1 then output m = Dec(c1, sk1); other-
wise output an error symbol ⊥.

Theorem 2.5 (Sahai [28]): If the zero knowledge proof system (Prove, Verify) is a
proof of knowledge and has uniquely applicable proofs (essentially each proof can
only be used to prove one statement) and if the encryption scheme (KeyGen,Enc,Dec)

is IND-CPA then applying Naor-Yung transformation gives an IND-CCA2 secure en-
cryption scheme.

In Appendix B we provide examples of the zero knowledge proofs that can be used
with exponential ElGamal to obtain a Naor–Yung encryption.

2A proof is zero knowledge if there exist a simulator capable to produce transcripts indistinguishable
from the real transcripts.

6

68

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

3 Prêt à Voter
The Prêt à Voter approach to verifiable voting, randomizing candidate order on

ballot to encode votes, was first proposed by Ryan in [27] and elaborated in, for exam-
ple, [23]. “Classical” Prêt à Voter is a polling station electronic voting scheme shown
to be receipt-free. In this section we describe the key idea behind the design.

To facilitate our discussions, instead of denoting an encryption algorithm as Enc(m, pk),
we use a slightly different notation Enc(pk,m, r), where pk is the public key, m is the
message, and r is the randomness used in the encryption.

3.1 Prêt à Voter Overview
Here we explain the the key elements of Prêt à Voter , abstracting from details that

are not relevant to the present anaysis.
Ballot Structure: We first explain the structure of the “Prêt à Voter ” ballots. The

ballot has a left hand side (LHS) with a randomly permuted list of candidates, and a
right hand side (RHS) which carries an encryption of the order of the candidates in the
LHS, usually referred to as the onion for historical reasons. Each ballot has a unique
serial number (which could be a hash of the onion), (SN), for administrative purposes
such as searching for the ballot on the bulletin board, etc. (See Fig. 3).

Echo
Bravo

Delta

Charlie

Alice
SN: 54241 SN: 54241

X X

Empty Ballot Chosen Candidate Shred Sign and Retain

EchoEcho
Bravo

Delta

Charlie

Alice
SN: 54241

Bravo

Delta

Charlie

Alice

X

Figure 3: Prêt à Voter : The Ceremony

Overall System: Once registered in the polling station, the voter receives, via a con-
fidential channel (e.g. Print–on–demand, sealed envelopes, etc), the ballot. The voter
is offered the choice to cast the vote with this ballot or to audit it. If the chooses the
former, she marks here preferences in the privacy of a voting booth. If the latter, offi-
cials or helpers are available to assist her in the ballot audit, after which she can obtain
a fresh ballot.

In the booth the voter places a mark next to the name of the candidate she wants
to vote for. She separates the RHS from LHS, shreds the LHS and takes the RHS to
an official who scans and sends it to the tallying authority. A signed, franked copy of
the RHS is given to the voter to keep. All receipts and audited ballots are published on
a bulletin board. Voters can verify that their votes has been accurately entered in the
tally by checking the onion, serial number and choice of index, against the published
results on the bulletin board.

Tallying authorities compute the result of the elections and the result is published
on the board. Figure 4 shows the ballots’ cycle from the point its created to the point
where a receipt or audited ballot is published on the bulletin board.

7

69

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

VotersElection Authority

Bulletin Board

A
B
C

XX

A
B
C

REB

B
A
C

A
B
C

XX

XX

RBB

A: 100
B: 800
C: 300

A
B
C

XX

Auditor

Booth

RCO
(audit)

VOTE
(no audit)

XX

Figure 4: Prêt à Voter : The System

Random auditing the ballots is used in all versions of Prêt à Voter to ensure the
well-formedness of ballot forms but differs slightly in style. The auditing procedure
involves decrypting onions on selected ballot forms and checking that they correspond
to the LHS order. Given that the authorities responsible of creating the ballots can not
predict which ballots will be chosen for auditing, it is hard to cheat without a high
possibility of getting caught. An audited ballot can not be used for voting.
Tallying the result: The onions are used in the tabulation to interpret the voters mark
on the scanned RHS, enabling the tallying authorities to count the votes. The details of
the procedure varies in the different versions of Prêt à Voter [23,24,32]. Loosely speak-
ing, the vote processing part of Prêt à Voter takes a set of encrypted votes (receipts) and
outputs a set of unencrypted votes, but without allowing anyone (including those in-
volved in the decryption) to perform end–to–end matching. This is done by mixing,
decrypting, and tallying; where some variants of Prêt à Voter combine the mixing and
decrypting procedure (using mix–nets), and other variants combine the decrypting and
tallying phases (homomorphic tallying). Regardless of what vote processing method is
used in Prêt à Voter the bulletin board will always have the serial number, onion and
the index published.
To be able to provide a proof for the general case of Prêt à Voter we assume:

• Every ballot is identified by a unique serial number and two ballots should not
have the same RHS.

• The voting takes place in a private booth in the supervised polling station.
• The ballots are distributed in a confidential way (e.g.post or print–on–demand).
• Counter-measures are in place to prevent any subliminal channels leaking infor-

mation about the LHS via data on the RHS (e.g. distributed creation of encryp-
tions to suppress kleptographic channels.)

• The attacker does not get access to ballots forms that are used to cast votes.
• The LHS of the ballot is shredded and destroyed in the booth.

8

70

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

• Audited ballots are not used for voting.
• The tabulation process reveals only the final tally information. Strictly speaking

it will typically also provide proofs of correctness of these results, but these
we assume to be zero–knowledge and hence revealing nothing further that could
undermine ballot secrecy. We might use for example, a tabulation scheme proven
secure in the UC paradigm, such as Wilkstroms, [30].

Different methodologies exist in literature to enforce these properties and counter mea-
sures can be found in the Prêt à Voter literature [23, 24, 32].

3.2 Construction of Ballots in the Versatile Prêt à Voter
We revisit the work [3–5, 32], the latest versions of Prêt à Voter , and adopt cer-

tain ideas used in their work to create the ballots. The ballots in these papers en-
coded the candidates as {M0, . . . ,Mk}. The ballot generator creates a list of cipher-
texts {Enc(pk,M0, 1), . . . , Enc(pk,Mk, 1)}. Anyone can verify that the ciphertexts are
unique encryptions of the candidates since the randomization value is 1. Then the
ciphertexts are re–encrypted and shuffled in a verifiable manner. The output is a per-
mutation of {Enc(pk,M0, r0), Enc(pk,M1, r1), Enc(pk,M2, r2), . . . , Enc(pk,Mk, rk)}
that corresponds to LHS of the ballot. The proof of shuffle and the outputted list of
ciphertext presents the onions. The papers used either exponential ElGamal [10] or
Paillier [21].

3.3 The New Ballot Construction
In this section we show how one can have an IND-CCA2 ballot with minimum

changes to the construct above. We assume the ballot generator has two sets of keys
(pk1, sk1) and (pk2, sk2). The ballot generator creates a “shuffled” list of {(c1, c̀1, π1),
. . . , (ck, c̀k, πk)}, where ci = Enc(pk1,Mi, ri), c̀i = Enc(pk2,Mi, r̀i), πi is a zero knowl-
edge proof as described in §2.4 and Mi is one of the candidates codes. Furthermore,
the ballot generator provides a verifiable proof of shuffle Υ on the input list of ci-
phertexts {Enc(pk1,M0, 1), . . . , Enc(pk1,Mk, 1)} and the output of the shuffle are ci-
phertexts {c1, . . . , ck}. Note that everyone can verify the inputted ciphertexts since the
randomizations are 1, and no need to provide a proof of shuffle of {c̀1, . . . , c̀k} since
π1, . . . , πk are provided. The onion of the ballot this time contains of the following:
{(c1, c̀1, π1), . . . , (ck, c̀k, πk)} and Υ.

A ballot is well formed if an onion includes all ciphers of the different candidates
(done by checking the verifiable shuffle proofs) and if the permutation in the onion
corresponds to the LHS of the ballot (done by auditing). This relies on the soundness
property of the employed zero knowledge proofs for Naor–Yung encryption, shown in
Appendix B.3.

The voting procedure and processing remain the same as explained in §3.1. The
fact that each candidate is encrypted with two different public keys is not entirely new
for Prêt à Voter like schemes. Similar suggestions were proposed in literature [26]
to provide Print–On–Demand for ballots and relax the trust assumptions based on the
chain of custody3.

3In Prêt à Voter the LHS is a plaintext which means that the chain of custody between the ballot generation
and until the ballot reaches the voter should be trusted.

9

71

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

4 The Receipt Freeness Security model
The main advantage of using a cryptographic security model (in §4.3) over existing

symbolic analysis of Prêt à Voter is to base the security of the scheme on exact com-
putational hardness assumptions. A cryptographic proof should answer the question
“How secure should the encryption scheme and proofs (used in creating the ballots)
be, in order for Prêt à Voter to be receipt free?”. Before introducing the security model
of receipt freeness, we first give an overview in §4.1 on existing definitions and attacks
related to confidentiality of the votes and coercion resistance. Our security model will
capture some of them, while leaves the study of others as a future work.

4.1 Discussion on Confidentiality of Votes
The easiest way to preserve confidentiality of the vote is to have the voters encrypt

the votes and then break the link between the voter and the votes by using mix–nets.
Observing however that a coercer could demand that the voter reveal her private key or
the randomness used for the encryption motivates stronger definitions that hold against
such a coercer. In the context of Prêt à Voter , the encryptions are formed in advance
and so the voter does not have access to such information as the randomization.

In literature certain subtle attacks were discovered and studied that relate to the
confidentiality of a vote in an election scheme. A lot were addressed for Prêt à Voter
by changing certain implementation details [26]. The following is a list:

• Auditing voted ballots: if an attacker is able to audit a ballot that is used to cast
a vote he can violate its secrecy. Our model captures such attacks.

• Ballot dependence: if an attacker can construct a ballot from one or more cast
ballots and inject it into the tabulation he may be able to obtain information about
the cast ballots. Our model captures such attacks.

• Chain-voting. This is an attack to which a coercer obtains a blank ballot, marks it
with his candidate and hands it to a voter with instructions to cast it and then pass
him a fresh ballot. The coercer can continue the process indefinitely, marking
each fresh ballot and obtaining another from the next voter. Our model does not
capture such attacks.

• Randomization: if an attacker can instruct a voter before voting on some aspect
of the receipt he may be able to prevent the voter from voting freely, even though
he might not be able to determine the vote. In Prêt à Voter for example the
coercer can instruct the voter to place her X in the first position. In the absence
of counter-measures, this effectively randomizes the vote. Our model does not
capture such attacks.

• Ballot signature (“Italian Attack”): If the options available to the voter as large,
as is the case for example with Single Transferable Vote (STV) systems with
a large number of candidates, it is possible for the coercer to require the voter
to provide a unique “signature” on her ballot, e.g. a particular ranking of low
ranked candidates. Our model does not capture such attacks.

In general, our model does not capture attacks, in which the attacker not only gets
access to receipts but also interacts with the voters. This can be justified in terms
of assumptions we make about the implementation of the scheme (See §3.1). These
assumptions are reflected in the model in terms of restrictions that the adversary has

10

72

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

when interacting with the challenger. We argue that, for the purposes of defining receipt
freeness for Prêt à Voter , our model embodies the most powerful attacker consistent
with such reasonable assumptions. On the other hand it is not powerful enough to
capture coercion resistance including randomization attacks, Italian attacks and chain
voting. Elaborating the model for this purpose will be the subject of future work.

4.2 Oracles for the Adversary
The security model is defined using an attack game between a hypothetical adver-

sary A and a challenger C, where A tries to win the game by issuing certain oracles to
C. Referring to Figure 4 which shows these oracles and what they represent in the real
system, our security model has the following oracles.

• Retrieve Empty Ballot (REB): A sends a request to C for an empty ballot that
he would like to get. C generates and returns an empty ballot (i.e. a ballot with
both RHS and LHS).

• Reveal Candidate Order (RCO): A sends the RHS of the ballot used or not,
and C responds with the candidate order on that ballot. This oracle reflects the
audit capability that an adversary may have.

• Vote: A sends a vote (i.e a RHS of the ballot marked on the position of A’s
choice) to C. Upon receiving a vote, C first validates it according to the procedure
specified in the underlying voting scheme, and then puts it on the bulletin board
if it is valid. Otherwise, C rejects the vote. It is worth noting that A can either
use an empty ballot from C to construct a vote or forge a vote at its own interest.

• Reveal Status of Bulletin Board (RBB): A sends a request to reveal status of
the bulletin board. C returns the tallying result of the board until the moment of
the query. Votes can be added subsequently and A can query RBB again.

4.3 Receipt Freeness Attack Game
In the game, we assume that there are two candidates (i.e. Alice and Bob) for

simplicity of explanation. Nevertheless, it can be easily extended to include more.
Given the above oracles and the public information in the system, the goal of a receipt
freeness adversary is to distinguish between two honestly generated receipts by telling
which one is for Alice. Formally, the game is shown below.

In the attack game, trusted and compromised parties are each considered to be a
single entity, i.e. the challenger C and adversary A respectively. As we focus here on
proving receipt-freeness only, we assume that A is not interested in any other attacks.
As long as the ballots used to query the oracles are not compromised, A should not be
able to distinguish between the value of the votes of receipts i and j. Note that, if all
voters have voted the same way, the confidentiality of the votes is by nature broken.
Therefore, we require that the two receipts represent votes for different candidates.

We refer to the model above as EXPRF , the probability of guessing the receipt in
case of two candidates should be 1

2
. Receipt freeness for a two-candidate election is

defined in Definition 4.1.
Definition 4.1 A “Prêt à Voter ” voting scheme is receipt free if for all polynomial
time adversaries A, Adv.RF (k) = |Pr(EXPRF = 1)− 1/2| ≤ ε where k is the security
parameter and ε is negligible.

11

73

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

• RF.Setup: C sets up the system by creating the private and public parameters,
then sets up an empty bulletin board. The bulletin board is accessible to A as
“read only”. C sends the public parameters to A.

• RF.Phase[I]: A queries the REB, RCO, RBB, and Vote oracles.

• RF.Challenge: A asks for a challenge challenge and C returns the two re-
ceipts, one as a vote to Alice and the other as vote to Bob, randomly assigned.
The ballots corresponding to the receipts should be generated by C and have
not been queried in the REB, Vote, and RCO oracles. Let’s assume the serial
numbers of the two receipts are i and j

• RF.Phase[II]: A queries the REB, RCO, RBB, and Vote oracles. The chal-
lenged receipts i and j can only be queried in RBB simultaneously.

• RF.Guess: A returns a serial number b ∈ {i, j} as its guess to which ballot
was used in voting for Alice. If the guess is correct then A wins the game and
the output is 1, if the adversary does not guess it right then the output is 0.

Figure 5: Receipt Freness Attack Game

For Prêt à Voter , the receipt freeness is about the ability to construct a proof to
another party via using the receipts and the bulletin board information. The physical
constraints (private booth and shredding LHS) in the real system are presented in the
model by allowing the challenger to submit the challenged votes without the influence
of the adversary while it gives A the receipts and read only access to BB. Relating the
model to §4.1 auditing voted ballots is captured by restricting the RCO oracle where
the receipts i and j are not allowed to be queried in RCO. Ballot dependence is captured
because the votes submitted to RCO or Vote oracles can be constructed based on any
existing ones (including the challenged ones).

5 The Proof of Receipt Freeness
In this section, we prove the following theorem for the new construction in section 3.3.
Theorem 5.1 Given the proofs used in constructing ballots are zero knowledge, if there
exists an Adversary A that can break the receipt freeness of Prêt à Voter then there
exists a simulator S that breaks the IND-CCA2† security of Naor–Yung encryption.

The intuition behind our proof is fairly straightforward. Assuming the existence of
an adversary A who can win the receipt freeness game described in § 4 with a non-
negligible advantage, then we can construct a simulator S which can win the IND–
CCA2† security game of Naor–Yung scheme. Basically, the simulator S takes input
from Naor–Yung challenger C, who sets up the Naor–Yung Encryption scheme, and
uses that input in playing the role of the receipt freeness challenger with A in the
receipt freeness game.

Proof. Let’s assume that A’s advantage in attacking the receipt freeness game is ε∗,
where the game is defined in Figure 5. The proof can be conducted with the standard
game-hopping technique.

12

74

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

Consider a new game, denoted as Game1. In Game1, S plays the role of receipt
freeness challenger and performs identically to what is required in Figure 5, except
for the following: in the RF.Challenge phase, the shuffle proofs of the two receipts
are removed. Note that the shuffle proof on a receipt proves that the two Naor–Yung
ciphertexts are encryptions for Alice and Bob respectively. Let’s assume that A’s ad-
vantage in this game is ε. Given the fact that the shuffle proofs are zero knowledge,
A’s’s advantage should be the same with/without the presence of the proofs, namely
|ε− ε∗| is negligible.

Consider a new game, denoted as Game2. In this game, S tries to win IND–CCA2†

security game of Naor–Yung scheme (shown in Figure 2), by leveraging on A’s re-
sponses. In more detail, S interacts with the Naor–Yung challenger C and A as follows.

• Simulating the RF.Setup
C sets up NY.E by running NY.KeyGen(k). He gives S the public parameters
NY.pk = (pk1, pk2). The S initializes the bulletin board BB which is accessible
to A as read only and is initially empty. He also creates a private database of
ballots DB that will contain (SN , onion, candidates.order, vote). Initially that
database is empty (it gets filled in RF.Phase I, II). He passes to A the values in
NY.pk. See Figure 6.

A S C
NY.pk←− Initialize BB and DB

NY.pk←− Setup NY.E

Figure 6: Setup Phase

• Simulating RF.Phase[I] and RF.Phase[II]
In these two phases, A queries the REB, RCO, RBB, and Vote oracles, and S
answers as in Figure 7.

A S C
Oracle REB:

REB−→ Create Ballot;
Update DB with vote=null;

response←− response = empty ballot;
Oracle Vote:

V ote:Onion,index−→ If Ballot ∈ DB, vote �= null, Ballot ∈ BB;
response←− response = Ballot used.

If Ballot ∈ DB, vote= null, Ballot �∈ BB;
Update BB, Update DB vote= c.name

If Ballot �∈ DB
Dec:Ballot−→ candidates.order =

Update DB, Update BB
candidate.order←− NY.Dec(ballot,..)

response←− response = receipt,vote accepted
Oracle RCO:

RCO:RHS−→ If Ballot ∈ DB;
response←− response =candidate.order

If Ballot �∈ DB
Dec:Ballot−→ candidates.order =

Update DB
candidate.order←− NY.Dec(ballot,..)

response←− response =candidate.order
Oracle RBB:

RBB−→ Result = Tally BB
Results←−

Figure 7: Phase I and Phase II

13

75

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

The following explains the details of the simulation:
– REB: S receives a request for an empty ballot. He creates a new ballot

by creating the proper encryptions given he has the public parameters re-
quired (i.e. NY.pk). He adds the onion in the database of (SN , onion,
candidates.order, vote), with vote being null. Note that SN is the unique
serial number for the empty ballot.

– Vote: After receiving the query (.ie. an onion and index), S checks the
ballot on the bulletin board if it has been used before. If so, he returns the
used ballot to the adversary. Otherwise, he checks the vote element in the
database, if the ballot exists but the vote does not, he updates bulletin board
and updates database to have vote = c.name. If the ballot does not exist in
database then it must be created by the adversary, S queries the decryption
oracle from C to get the information of the ballot and updates the database
and the bulletin board as required. At the end of this oracle, the adversary
should get one of two responses: either the “ballot has been used” or “the
vote accepted, and a receipt”. If it is the latter response then the adversary
should be able to see an updated bulletin board.

– RCO: S checks if the ballot is in the database to get the candidate’s order
otherwise query the decryption oracle, update the database then return the
candidate order.

– RBB: S tallies the bulletin board and returns the result.

• Simulating RF.Challenge and RF.Guess
In the Challenge and Guess phases, the interactions among different entities are
summarised in Figure 8. Without loss of generality, we assume that the first
element of each ballot is ticked, namely the candidate corresponding to the first
ciphertext is voted and the receipt is a pair of Naor–Yung ciphertexts.

A S C
i,j
−→ MA = Alice, MB = Bob

MA,MB−→
C = (CTA,CTB), or
C = (CTB,CTA)

C′ = (CT ′
B,CT ′

A)

Assign C,C′ to receipti, receiptj
receipti
receiptj

←−
res ∈ {receipti, receiptj}

res−→
If res = C, set α′ = 0;

Otherwise randomly set α′ ∈ {0, 1} α′
−→

Figure 8: Challenge and Guess Phases

As shown in the figure, the essential strategy of S is to simulate the challenge
(i.e. two receipts {receipti, receiptj}) for A with two pieces of information: one
is the Naor–Yung challenge C from C and the other is a Naor–Yung ciphertext
pair C′ generated by itself. With the response from A, S can form a guess for C’s
random coin α. The details of RF.Challenge and RF.Guess are elaborated below.

1. A picks two serial numbers i and j, where the two ballots have not been
queried before in REB, Vote and RCO and sends them to S 4.

4Recall from §3 the game restricts the two ballots i and j from being queried in oracles above because

14

76

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

2. S assigns MA = Alice and MB = Bob and sends them to C.
3. C first computes Naor–Yung ciphertexts CTA, CTB for MA,MB respec-

tively. C then tosses a coin α ∈ {0, 1}, and returns C = (CTA, CTB) if
α = 0 and C = (CTB , CTA) otherwise.

4. After receiving C, S generates C′ = (CT ′
B , CT ′

A), where CT ′
A, CT ′

B are two
new Naor–Yung ciphertexts for MA,MB respectively. Based on C and C′,
S generates two receipts {receipti, receiptj} by flipping a coin β ∈ {0, 1}.
If β = 0, set receipti = C and receiptj = C′; otherwise, set receipti = C′

and receiptj = C. Finally, S sends {receipti, receiptj} to A and adds them
to the bulletin board.

5. A sends a receipt res ∈ {receipti, receiptj} back to indicate a vote for
Alice.

– When C’s random coin is α = 0, {receipti, receiptj} represent two re-
ceipts for Alice and Bob respectively and S is playing a faithful receipt
freeness game with A. Therefore, the probability that A can identify
Alice’s receipt is 1

2
+ ε.

– When C’s random coin is α = 1, {receipti, receiptj} represent two re-
ceipts for Bob and S is not playing a faithful receipt freeness game
with A. Nevertheless, we can still ask A to pick one receipt res and
send it back. Due to the fact that receipti and receiptj have the identi-
cal distribution in this case, the probability that res equals to either of
{C,C′} is exactly 1

2
.

6. After receiving res from A, S answers the challenge from the C as follows.
– If the res is the Naor–Yung ciphertext pair C generated by C, S outputs

a guess α′ = 0.
– If res is the Naor–Yung ciphertext pair C′ generated by S, S randomly

selects α′ from {0, 1} as a guess.
Depending on the value of α, various probabilities are summarised in Table 1.

α = 0 α = 1
C = (CTA, CTB), C′ = (CT ′

B , CT ′
A) C = (CTB , CTA), C′ = (CT ′

B , CT ′
A)}

Pr[res = (CTA, CTB)] = 1
2 + ε Pr[res = (CT ′

B , CT ′
A)] = 1

2
Pr[res = (CT ′

B , CT ′
A)] = 1

2 − ε Pr[res = (CTB , CTA)] = 1
2

Pr[α′ = α|res = (CTA, CTB)] = 1 Pr[α′ = α|res = (CTB , CTA)] = 0
Pr[α′ = α|res = (CT ′

B , CT ′
A)] = 1

2 Pr[α′ = α|res = (CT ′
B , CT ′

A)] = 1
2

Table 1: Probability Summary

In summary, S’s advantage in winning the IND-CCA2† game against the Naor–
Yung scheme is:

ε′ = | 1
2
(1
2
+ ε+ 1

2
(1
2
− ε)) + 1

2
(1
2
· 1
2
)− 1

2
| = ε

4
.

Based on Theorem 2.4 and Theorem 2.5, ε′ is negligible so that ε is also negligible.
Recall that |ε − ε∗| is negligible. As a result, ε∗ is negligible and the theorem follows.

they reveal the candidate order which contradicts with the challenge. In REB or RCO the order of the
candidates get known directly. On the other hand, in Vote, the order can get to be known by querying these
oracles as votes then tallying the bulletin board using RBB.

15

77

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

6 Conclusion
Prêt à Voter has been introduced in [23] as an end-to-end verifiable, receipt free

voting scheme. Several formal method analysis exist in the literature to prove the
properties of the scheme [24, 33]. In this paper we provide a proof of receipt freeness
of Prêt à Voter using computational models. In order to do so, we defined a new
security model that presents receipt freeness for Prêt à Voter . We show that creating
the onions on the ballots with an IND–CCA2† secure encryption scheme is sufficient
to achieve receipt freeness. We propose using Naor–Yung encryption for that purpose
and that helps in maintaining the properties of one of the latest versions of Prêt à Voter
[32]. We prove that the existence of an adversary that wins the receipt freeness security
model implies the existence of a simulator that can break the IND-CCA2† security
of Naor–Yung transformation. Extending this work to cover a larger family of voting
schemes and to include stronger security notions such as receipt freeness is left for
future work.

References
[1] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended

abstract). In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, STOC ’94, pages 544–553, New York, NY, USA, 1994. ACM.

[2] David Bernhard, Vèronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan
Warinschi. Adapting helios for provable ballot privacy. In (ESORICS’11), 2011.

[3] Richard Buckland and Roland Wen. The future of e-voting in australia. IEEE
Security and Privacy, 10(5):25–32, 2012.

[4] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,
Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland Wen, and
Zhe Xia. A supervised verifiable voting protocol for the victorian electoral com-
mission. In Electronic Voting, pages 81–94, 2012.

[5] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,
Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland Wen, and
Zhe Xia. Using prêt à voter in victorian state elections. In Proceedings of the 2012
international conference on Electronic Voting Technology/Workshop on Trustwor-
thy Elections, EVT/WOTE’12, pages 1–1, Berkeley, CA, USA, 2012. USENIX
Association.

[6] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An Improved Pro-
tocol for Demonstrating Possession of Discrete Logarithms and Some General-
izations. In EUROCRYPT’87, LNCS, pages 127–141. Springer.

[7] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René Peralta.
Demonstrating Possession of a Discrete Logarithm Without Revealing It. In
CRYPTO’86, volume 263 of LNCS, pages 200–212. Springer.

[8] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, 1993.

16

78

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

[9] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal of Computer Security,
17(4):435–487, jul 2009.

[10] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology –
CRYPTO 1984, volume 196 of LNCS, pages 10–18. Springer, 1985.

[11] Benaloh Josh and Tuinstra Dwight. Receipt-free secret-ballot elections (extended
abstract). In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, STOC ’94, 1994.

[12] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Electronic
Elections. In WPES’05, pages 61–70. ACM Press, 2005. See also http://
www.rsa.com/rsalabs/node.asp?id=2860.

[13] Ralf Küsters and Tomasz Truderung. An epistemic approach to coercion-
resistance for electronic voting protocols. CoRR, abs/0903.0802, 2009.

[14] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A game-based definition of
coercion-resistance and its applications. In CSF, pages 122–136, 2010.

[15] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Proving coercion-resistance
of scantegrity ii. In ICICS, pages 281–295, 2010.

[16] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, privacy, and
coercion-resistance: New insights from a case study. In IEEE Symposium on
Security and Privacy, pages 538–553, 2011.

[17] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Voting with Ever-
lasting Privacy . In Crypto’06, volume 4117 of LNCS, pages 373–392. Springer-
Verlag, 2006.

[18] Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with dis-
tributed trust. ACM Trans. Inf. Syst. Secur., 13:16:1–16:43, March 2010.

[19] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In In Proc. of the 22nd STOC, pages 427–437. ACM
Press, 1995.

[20] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elec-
tions. In Security Protocols Workshop, pages 25–35, 1997.

[21] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern, editor, Advances in Cryptology – EUROCRYPT 1999, volume
1592 of LNCS, pages 223–238. Springer, 1999.

[22] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted Party. In EU-
ROCRYPT’91, number 547 in LNCS, pages 522–526. Springer, 1991.

[23] Peter Y. A. Ryan. A variant of the chaum voter-verifiable scheme. In Issues in
the theory of security, WITS, pages 81–88. ACM, 2005.

17

79

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

[24] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
Prêt à voter: a voter-verifiable voting system. Trans. Info. For. Sec., 4:662–673,
December 2009.

[25] Peter Y. A. Ryan and Vanessa Teague. Pretty Good Democracy. In Proc. of the
17th Security Protocols Workshop, LNCS. Springer, 2009.

[26] Peter Y.A. RYAN, David BISMARK, James HEATHER, Steve SCHNEIDER,
and ZHE XIA. The Prêt à Voter Verifiable Election System. In Transactions in
Information Security and Forensics. IEEE, 2009.

[27] P.Y.A. Ryan. A variant of the chaum voting scheme. Technical Report CS-TR-
864, UNT, 2004.

[28] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. Foundations of Computer Science, Annual IEEE Symposium
on, 0:543, 1999.

[29] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer.

[30] Douglas Wikström. A sender verifiable mix-net and a new proof of a shuffle. In
ASIACRYPT 05, volume 3788 of LNCS, page 273292. Springer-Verlag.

[31] Z. Xia, S. Schneider, J. Heather, P. Ryan, D.Lundin, R. Peel, and P. Howard. Prêt
à Voter: All-In-One. In IAVoSS (WOTE’07), 2007.

[32] Zhe Xia, Chris Culnane, James Heather, Hugo Jonker, Peter Y. A. Ryan, Steve
Schneider, and Sriramkrishnan Srinivasan. Versatile Prêt à Voter : Handling Mul-
tiple Election Methods with a Unified Interface. In INDOCRYPT, volume 6498
of LNCS, pages 98–114. Springer-Verlag, 2010.

[33] Zhe Xia, Steve A. Schneider, James Heather, and Jacques Traoré. Analysis,
improvement and simplification of prêt à voter; voter with paillier encryption.
In Proceedings of the conference on Electronic voting technology, pages 13:1–
13:15, Berkeley, CA, USA, 2008. USENIX Association.

A Analysis of IND-CCA2†

Proof of Theorem 2.4. We first show that an IND-CCA2† secure scheme is also
IND-CCA2 secure (namely the “if” part). Suppose that the scheme is not IND-CCA2
secure, then some attacker A has a non-negligible advantage in the game shown in
Fig. 1. Then we construct an attacker A†, which runs A as a subroutine to attack the
encryption scheme in the game shown in Fig. 2. The attack is described in Fig. 9.

In this attack, A† can faithfully answer A’s decryption queries as long as the two
ciphertexts in Ed are not queried by A. We take d = 0 as an example, where E0 =

(Enc(M0, pk),Enc(M1, pk)). In this case, Enc(M0, pk) is not allowed to be the input of
the decryption oracle in the game shown in Fig. 1 because it is the challenge, so that
it will not be queried. We only need to show that A can only generate Enc(M1, pk)

with a negligible probability. This is a straightforward fact from the IND-CPA security

18

80

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

1. Setup. The challenger takes the security parameter λ as input, and runs KeyGen

to generate (pk, sk).
2. Phase 1. The attacker A† is given pk, and it sends pk to A. If A issues a decryp-

tion query with C, A† submits C to the challenger. Once A† receives Dec(C, sk)

from the challenger, it forwards this value to A. When A submits M0,M1 for a
challenge, A† send them to the challenger.

3. Challenge. Once receiving Ed from the challenger, A† sends the first cipher-
text of Ed to A. In more detail, if d = 0, then Enc(M0, pk) is sent; otherwise
Enc(M1, pk) is sent.

4. Phase 2. The attacker A† deals with A’s decryption queries in the same way
as in Phase 1. If A terminates by outputting a guess b′, then A† terminates by
outputting a guess d′ = b′.

Figure 9: IND-CCA2† Attack

property: if A can predicate the output of Enc for the input M1, then it can trivially tell
the ciphertext of M1 from anything else and break the IND-CPA security. As a result,
A† faithfully answer A’s decryption queries! It is clear that A wins if and only if A†

wins, so that A† has a non-negligible advantage. This conflicts with the assumption that
the scheme is IND-CCA2† secure, hence, the scheme should be IND-CCA2 secure.

We next show that an IND-CCA2 secure scheme is also IND-CCA2† secure (namely
the “only if” part). Suppose that the scheme is not IND-CCA2† secure, then some at-
tacker A† has a non-negligible advantage ε in the game shown in Fig. 2. Then we
construct an attacker A, which runs A† as a subroutine to attack the encryption scheme
in the game shown in Fig. 1. The attack is described in Fig. 10.

1. Setup. The challenger takes the security parameter λ as input, and runs KeyGen

to generate (pk, sk).
2. Phase 1. The attacker A is given pk, and it sends pk to A†. If A† issues a decryp-

tion query with C, A submits C to the challenger. Once A receives Dec(C, sk)

from the challenger, it forwards this value to A†. When A† submits M0,M1 for
a challenge, A sends them to the challenger.

3. Challenge. Once receiving Cb from the challenger, A selects t ∈R {0, 1} and
sends Ed = (Cb,Enc(Mt, pk)) to A†. Note that, if t �= b then Ed is a valid
challenge, otherwise it is not valid.

4. Phase 2. The attacker A deals with A†’s decryption queries in the same way
as in Phase 1. If A† terminates by outputting a guess d′, then A† terminates by
outputting a guess b′ = d′.

Figure 10: IND-CCA2 Attack

In this attack, A can faithfully answer A† decryption queries but the challenge is
faithfully generated only when t �= b. Moreover, when t �= b, A wins if and only if A†

wins. Therefore, if t �= b, A’s advantage is ε. When t = b, suppose A’s advantage is ε′,
which is a positive number and can be negligible with respect to the security parameter.
As a result, A’s overall advantage is ε+ε′

2
, which is non-negligible given that ε is non-

negligible. This conflicts with the assumption that the scheme is IND-CCA2 secure,

19

81

USENIX Journal of Election Technology and Systems (JETS)

Volume 1, Number 1 • August 2013

hence, the scheme should also be IND-CCA2† secure.

B Non-interactive Zero knowledge proofs
We start with some notations and conventions. Let H denote a hash function and

(p, q, g) be cryptographic parameters, where p and q are large primes such that q | p− 1

and g is a generator of the multiplicative subgroup Z∗
p of order q.

B.1 Knowledge of discrete logs:
Proving knowledge of x, given h where h ≡ gx mod p [6, 7, 29].
• Sign. Given x, select a random nonce w ∈R Z∗

q and compute, Witness g′ =

gw mod p, Challenge c = H(g′) mod q and Response s = w+ c ·x mod q. Output
Signature (g′, s).

• Verify. Given h and signature (g′, s), check gs ≡ g′ · hc (mod p), where c =

H(g′) mod q.
A valid proof asserts knowledge of x such that x = logg h; that is, h ≡ gx mod p.

B.2 Equality between discrete logs:
Proving knowledge of the discrete logarithm x to bases f, g ∈ Z∗

p, given h, k where
h ≡ fx mod p and k ≡ gx mod p [8, 22].

• Sign. Given f, g, x, select a random nonce w ∈R Z∗
q . Compute Witnesses f ′ =

fw mod p and g′ = gw mod p, Challenge c = H(f ′, g′) mod q and Response
s = w + c · x mod q. Output signature as (f ′, g′, s)

• Verify. Given f, g, h, k and signature (f ′, g′, s, c), check fs ≡ f ′ · hc (mod p) and
gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k; that is, there exists x, such that h ≡ fx mod p

and k ≡ gx mod p. Note that this proof of knowledge can be used to prove equality
of plaintexts for two ElGamal ciphertext encryptions such a proof is referred to as
plaintext equivalence proof (PEP).

B.3 Plaintext Equivalence Proof
This proof relies on Equality between discrete logs (see appendix B.2). Let CT1 =

Enc(pk1,m, ζ1) = (u1, v1) = (gζ1 , h1
ζ1gm), CT2 = Enc(pk2,m, ζ2) = (u2, v2) =

(gζ2 , h2
ζ2gm), where h1 = gsk1 and h2 = gsk2 . The PEP is as follows:

• Compute e1 = h1
ζ2 , and e2 = h2

ζ1

• Compute two Zero knowledge proofs of Equality between discrete logs. One
between (u1, e2) and one between (u2, e1). This is to prove that e1, and e2 are
well formed.

• Compute e3 = u1
u2

= gζ1−ζ2

• Compute e4 = v1
v2

· e1−1 · e2=(h1 · h2)
ζ1−ζ2

The PEP is a proof of knowledge of the equality of the exponent ζ1 − ζ2 in (e3, e4)

to the bases (g, h1 · h2). Given we have a Fiat–Shamir proof one can add to the hash
function used in appendix B.2 the order of the ciphertexts that we are testing. In other
words, commit to the order of either (CT1, CT2) or (CT2, CT1) such that if an adversary
manipulates the order the proof fails to verify.

20

