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Abstract

We propose and study the notion of concurrent ballot
authorization for coercion-resistant, end-to-end verifi-
able (E2E) internet voting. A central part of providing
coercion resistance is the ability for an election authority
to filter out fake ballots from legitimate ones in a way
that is both private and universally verifiable. This ballot
authorization process, however, can potentially come at
a heavy computational cost. In previous proposals, the
bulk of this computation cannot be performed until the
last ballot has been cast. By contrast, concurrent ballot
authorization allows ballots to be authorized as they are
submitted, allowing the tally to be declared immediately
after polls close. An efficient tally is especially impor-
tant in the coercion-resistant internet voting setting, as
it is particularly vulnerable to denial of service attacks
caused by floods of fake ballots.

We present a proof-of-concept voting system, Cobra,
the first coercion-resistant system to offer concurrent
ballot authorization. Although Cobra offers the fastest
tallying relative to the related work, it has a registration
process that we consider to be too slow to be viable; one
that is quadratic in the number of eligible voters. We
present Cobra as a first-step toward what we hope will
become a standard feature of coercion-resistant internet
voting schemes: concurrent ballot authorization.

1 Introductory Remarks

Internet voting is a hard problem. Out of any way to
cast a ballot, it arguably demands the strongest adversar-
ial model. Casting a ballot online subsumes all the prob-
lems of casting a ballot in-person (integrity and ballot se-
crecy) and by mail (in-person coercion, vote buying and
selling, and secure transport), plus it requires voters to
submit their secret ballots from potentially infected per-
sonal computers over a hostile network for storage on an
internet-facing server.

In the face of these overwhelming odds, researchers
have done well at addressing these problems individu-
ally. In this paper, we focus on the problems of coercion
and vote selling. The lack of a private booth in internet
voting means anyone can potentially observe you as you
vote or cast a ballot on your behalf. This is addressed
in the literature, starting with Juels et al. [32], by pro-
viding each voter with an authentication credential and
the ability to generate fake credentials that are indistin-
guishable from real ones. If coerced, the voter provides
a fake credential and later covertly votes with their real
credential. If a voter wants to sell their vote, they have
no way to prove that the credential they are providing is
indeed their real one, even if they want to. These prop-
erties hold even if the voter is corrupted before obtaining
their credential (during a phase called registration).

Using cryptographic techniques, fake ballots can be
verifiably separated from legitimate ballots without ever
revealing whether a particular submission was real or
fake. We call this process ballot authorization. Ballot
authorization, however, typically is a computationally in-
tensive process, and must be performed before the ballots
can be tallied. To make matters worse, it has been a pro-
cess that, for the most part, must occur after all of the
ballots in an election have been submitted.

Ballot Authorization Function. The intuition behind
concurrent ballot authorization is straightforward. The
trustees of an election authority engage in a secure, uni-
versally verifiable protocol implementing a ballot auth-
orization function. This function is applied to each ballot
individually, resulting in one of two (indistinguishable)
outcomes: If the ballot credential is valid, the function
preserves the encrypted vote. Conversely, if the creden-
tial is invalid, the function replaces the encrypted vote
with an encrypted non-vote (e.g., 0 in the case of a homo-
morphically tallied election). Realizing this ballot auth-
orization functionality is the focus of this paper.
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Contributions. Our primary contributions are as fol-
lows:

1. We introduce the notion of concurrent ballot auth-
orization for coercion-resistant internet voting, al-
lowing ballots to be authorized as they are being
submitted.

2. Through concurrent ballot authorization, we offer
a novel technique to mitigate the impact of board
flooding [33]—a type of denial-of-service attack to
which coercion resistant elections are fundamen-
tally vulnerable.

3. We present a proof of concept system Cobra1 of-
fering the fastest time-to-tally relative to previous
work.

2 Preliminaries

Coercion-Resistance. To define coercion-resistance,
consider the following game [36]. A voter is selected by
the adversary to be coerced (prior to registration). Let the
voter’s true voting intent be γv , e.g., to vote for Alice.2

Within the game, a coin is flipped. If the coin flip
is heads, the voter will comply with the coercer. This
means the voter truthfully tells the coercer anything he
asks and follows his instructions. If the coin flip is tails,
the voter will try to deceive the coercer. She will give him
fake information and when she is instructed to do some-
thing, she will act as if she did so, although she may not
necessarily have complied.

Informally, we say a voting system is coercion-
resistant with respect to γv if two properties hold: (1)
if the coin flip is tails, the voter can always accomplish
γv

3 and (2) the coercer cannot guess whether the voter is
complying or deceiving him with more (or less) success
than he could if he played the same game with an ideal
system where voters give their votes to a trusted party
and the trusted party produces the correct tally.

Registration in Coercion-Resistant Schemes. Most
coercion-resistant internet election systems inherit the ar-
chitecture of the first such system, due to Juels et al. [32]
(JCJ). Well prior to the election, each voter must reg-
ister with a set of Registrars. To be coercion-resistant,
at least one Registrar must not collude with the adver-
sary, the voter must know which one is trusted [32, 16],

1Cobra: Concurrent Ballot–Roster Authorization.
2γv is expressible in general terms, such as a vote for anyone but

Alice, a vote for a random candidate, or an abstention from voting.
3We consider systems that are coercion-resistant with respect to

casting a vote according to any probability distribution across the pos-
sible candidates (including no candidate). If we let γv be anything, it
could be, e.g., to “vote the same way as the voter before me,” which is
in obvious violation of other security properties a system should pro-
vide.

and the adversary cannot even passively eavesdrop on
the communication with this Registrar [35] (e.g., com-
munication is over an untappable channel). The elimi-
nation of all untappable channels appears impossible for
coercion-resistant voting [26]. To simplify things, we as-
sume there is a single Registrar and registration is done
privately in-person.4

The registration process outputs: a credential (e.g., a
cryptographic key) to each voter, an encryption of each
credential posted on a public Roster, and a designated
verifier proof [30] given to each voter that their posted
encryption is correct. If coerced into providing their cre-
dential, the voter can give the adversary a fake crypto-
graphic key and a simulated proof that this fake key is
what is on the Roster.

We follow a few modifications of this model as made
by Clark and Hengartner with Selections [15]: first, a
credential is a voter-selected password from a panic pass-
word scheme [14]. Second, registration does not rely on
designated verifier proofs. Together, this absolves the
voter from having to prepare for the possibility of coer-
cion by computing fake values and transcripts. Instead,
to evade coercion, a voter simply has to create a spurious
password, which can be done mentally on-the-fly.

Ballot Authorization & Tallying. Ballot submission
in the JCJ architecture is anonymous and open to any-
one. Were it not, a coercer could tell if a voter he coerced
submitted a second ballot with a different (likely correct)
credential. Each voter submits a well-formed ballot and
an obfuscation of an credential (either real or fake). The
election authority must be able to systematically filter
out (1) ballots that are not well-formed, (2) all-but-one
ballot per credential (e.g., the most recent), and (3) all
ballots with a credential that is not on the Roster. We
call this filtering process ballot-roster authorization or
ballot authorization for short (others have called it vote
authorization [44]).

Of these, ballot authorization is the most difficult. As
part of coercion-resistance, authorization is done cryp-
tographically such that no one learns which submitted
ballots have fake credentials, while at the same assur-
ing everyone the authorization was performed correctly.
The output of ballot authorization is the subset of submit-
ted ballots that are well-formed, each originating from a
unique, registered, voter. The authority can then tally the
ballots by mixing them and decrypting (if they are not
already mixed by the ballot authorization process), or by

4This may raise the question of why, if voters must register in-
person, we do not simply require them to vote in-person. There are
two reasons: (1) registration can be conducted over a longer period
of time and (2) many systems can bootstrap a single registration into
voting securely in an arbitrary number of elections (for Cobra, this is
future work).
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homomorphically adding them and decrypting the sum.

Compromises for Linear Tallying. The computa-
tional complexity (in terms of modular exponentiations)
of the ballot authorization function in JCJ is quadratic
in the number of submitted ballots. Much interest has
been shown for making it linear (see Related Work in
Section 5). Of the successful attempts, each compro-
mises the original set of properties of JCJ/Civitas in
some way. The Araujo et al. systems [5, 6] lack the
ability to efficiently remove voters from a Roster or
move voters to a different Roster. Selections [15] and
SHKS [44] leak a small amount of information about
how many times a voter has voted, which requires ad-
ditional assumptions on adversarial uncertainty to pro-
vide coercion-resistance. Spycher et al. [49] add an addi-
tional trust assumption on the trustees in terms of adding
dummy ballots.

Board Flooding Attacks. Even if ballot authorization
can be made linear in the number of submitted ballots,
it is still computationally intensive. Ballot submission
must be anonymous (and thus open to anyone) as part of
the coercion-resistance mechanism. An adversary could
flood the election with fake but well-formed ballot sub-
missions that would need to be processed [33] (cf. [19]).
In the related work, the bulk of this processing cannot be
started until after the last vote comes in because ballot
authorization requires all the ballots to be mixed. Such
an attack could significantly delay the announcement of
the election results.

Cryptographic Toolkit. We work in the standard set-
ting of a prime-order subgroup Gq of Z∗p where DDH is
hard (until Section 4.3). We denote a CPA-secure en-
cryption of message m as JmK. All encryption is ran-
domized (unless otherwise stated) and performed un-
der a single public key. We assume a distributed key
generation protocol DKG exists for generating the pri-
vate decryption key in a shared and threshold recover-
able manner [40, 23]. We further assume the encryption
scheme is additively homomorphic, rerandomizable, and
the plaintext space is small. Without loss of generality,
the scheme could be exponential Elgamal [18].

We use several standard primitives that are common
in cryptographic voting. We use Σ-protocols for proving
knowledge of a discrete log, correct ciphertext rerandom-
ization, and correct decryption [45, 13]; techniques for
conjunction and disjunction of proofs [17]; techniques
for diverting proofs [39, 27]; and the Fiat-Shamir heuris-
tic to convert Σ-protocols into NIZKPs [20]. We also use
plaintext equality tests [29].

Finally, we rely on secure function evaluation (SFE)

in the following setting: the function will be publicly de-
fined, the inputs to the function will be encrypted un-
der a public key with threshold decryption, the keyshare
holders will provide a universally verifiable proof that
the function was evaluated correctly, and no individual
keyshare holder can learn the output of the function. We
use the Mix & Match protocol [29]. In Mix & Match,
functions that can be represented in a small truth table
can be efficiently evaluated. Each element of the truth
table is published in plaintext and encrypted (initially
with known randomness). The table is then shuffled by
each keyshare holder row-wise (preserving input/output
pairs) with a universally verifiable reencryption mix net-
work. To evaluate the function on an encrypted value,
the keyshare holders perform a plaintext equality test be-
tween the encrypted input to the function and each en-
crypted input in the shuffled truth table until a match is
found; the corresponding encrypted output is returned.

Bloom Filter. A data structure due to Bloom [8] al-
lows for highly efficient membership testing at the cost
of potential false positives. Originally conceived as
a “filter” for querying high latency storage devices, a
Bloom filter can store n elements in O(n) space, and
test for set membership in O(1) operations. An impor-
tant characteristic of Bloom filters is their probabilis-
tic nature. Given a Bloom filter B and query q, a set
membership test Query(q,B) yields the following re-
sult: Pr[Query(q,B) = TRUE | q ∈ B] = 1 whereas
Pr[Query(q,B) = FALSE | q /∈ B] < 1. The proba-
bility of a set membership test giving a false positive is
dependent on a the bit length of the filter, the number of
elements already contained in it, and the number of bits
(i.e., hash functions) used to map a query to a key.5

3 A Template for Concurrent Ballot Auth-
orization

In this section we discuss the high-level notion of con-
current ballot authorization and its importance. There is
a natural arc to the timeline of an election: while matters
typically progress slowly in the beginning, by the end
there is significant interest in declaring the winner. In the
timeline of an internet election, voter registration might
occur on the time span of months or years. The election,
i.e., the ballot submission period, might occur on the time
span of days or weeks. And given the electronic nature
of the tally, it is a reasonable requirement that the results
should be computable on a smaller timescale.

Aside from simply being a matter of convenience, hav-
ing an efficient tally is especially important for coercion-

5In this context we mean ‘key’ as in database key, not cryptographic
key.
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resistant internet voting when considering the very mech-
anism that prevents coercion—the ability to submit ar-
bitrarily many fake ballots. As we have already wit-
nessed in standard internet elections, network-level de-
nial of service attacks are a very real threat.6 Attacks
based on flooding the election authority with fake bal-
lots [33], which are indistinguishable from legitimate
ones by design, has the potential to significantly delay
results-reporting if authorization cannot commence until
after the election.

3.1 The Ballot Authorization Function
Ballot authorization, in essence, is a set membership test.
During registration, voters add a credential authorizing
them to vote, x, to a set of encrypted credentials, Roster,
maintained by the election authority.

Consider a voting system where the voter submits
〈JxK, JvK〉 in which x is the credential authorizing them
to vote if x ∈ Roster and v is the vote encoded in the for-
mat required by the tallying function. Voters must also
submit proof that v is well-formed, and they have knowl-
edge of x. To realize concurrent ballot authorization, we
require a function f defined as follows:

f(JxK) =

{
J1K x ∈ Roster
J0K otherwise. (1)

If such an f existed, we could simply take an en-
crypted vote JvK and credential JxK, and compute under
encryption Jv′K = Jv · f(x)K. This would effectively
nullify (“zero-out”) the vote if the credential was invalid,
while preserving the vote otherwise. We call the result,
Jv′K, an authorized ballot.

The homomorphic multiplication can be accomplished
directly in an encryption scheme like the one due to
Boneh et al. [9] (BGN), which then allows the set of
all authorized ballots Jv′K to be summed homomorphi-
cally. Alternatively, in an additively homomorphic en-
cryption scheme like exponential Elgamal or Paillier, the
multiplication can be accomplished indirectly with Mix
& Match, evaluating the following truth table on JxK:

In Out
J0K J0K
J1K JvK

Recall that as part of the Mix & Match protocol, the
outputs are shuffled and rerandomized by each trustee.
Thus if JvK is the output, it will be indistinguishable from
the value JvK used to construct the truth table.

6“Online voting company blames delays on orchestrated attempt to
thwart democracy,” Toronto Star, March 27, 2012.

All the coercion-resistant internet voting schemes we
compare to (and related work on private set intersection)
achieve authorization through a related function:

g(JxK) =

{
J0K x ∈ Roster
JrK otherwise, (2)

where r is a random value.
For example, if the Roster were an array of encrypted

credentials, one could take JxK and perform a plain-
text equality test between JxK and each ciphertext in the
Roster [32]. For additively homomorphic encryption, a
single test is equivalent to applying g. Similarly, if the
Roster were an encrypted polynomial p with valid cre-
dentials as its roots [21], evaluating the polynomial at
JxK is functionally equivalent to g.

At first glance, it may seem like g provides a basis for
implementing f . This would require g to be modified so
as to map all possible values of r to a single value. If the
result of g(JxK) could be decrypted, then this mapping
could be preformed in the clear. As part of coercion-
resistance, however, the ballots must be anonymized be-
fore their validity is revealed, yet anonymization in this
context (e.g., via mixing) can only occur after the com-
plete set of ballots are submitted. Conversely, imple-
menting this mapping under encryption in an efficient
and universally verifiable way for a random exponent
r ∈ Zq (or a group element) is not forthcoming from
techniques in the literature. Thus for implementing f ,
we must consider constructions other than g. In the next
section we present one possible way of implementing f ,
somewhat efficiently, using encrypted Bloom filters.

3.2 Implementing f with a Bloom Filter

In Construction 1, we present an encrypted Bloom fil-
ter, (m, k)-EBF, with lengthm and k cryptographic hash
functions. Our encrypted Bloom filter differs from a con-
ventional Bloom filter in that the insertion and querying
operations are performed homomorphically under en-
cryption. It differs from other encrypted Bloom filter
constructions in the literature (e.g., [24, 7, 10]) in that
there is no single data holder and the operations are uni-
versally verifiable.

While we present (m, k)-EBF as a generic construc-
tion, we note it is tailored in certain ways to our needs
in the next Section. For example, a sender Alice does
not prove she is inserting an element a, or that she even
knows an a that satisfies what she is inserting. She only
proves that she inserts a single element. The construc-
tion also assumes a is a secret when running Insert but is
a public value when later running Query.
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Encrypted Bloom Filter

An encrypted Bloom filter, (m, k)-EBF, implements the following functions:

• Setup: The authority initializes a lengthm array EBF withm encryptions of 0 under publicly known randomness: 〈J0K, J0K, . . .〉. The
Authority outputs EBF and a description of k hash functions with output space [1,m].

• Prepare(a): To verifiably insert a single element into EBF, Alice generates a temporary array EBFa containing m ciphertexts as
follows: Alice then evaluates the set of hash functions on her element a to produce a set of k unique (with high probability) indices.
At each of these indices in EBFa, she inserts J1K. She inserts J0K into the remaining indices and publishes EBFa. To prove that she
inserted only one element without revealing the value a, Alice publishes NIZKPs that prove: (a) each entry in EBFa is an encryption
of 0 or 1; and (b) the homomorphic sum of all entries is an encryption of k. Let the set of proofs be πa. Alice outputs 〈EBFa, πa〉.

• Insert(a,EBF): Alice runs Prepare(a) to obtain 〈EBFa, πa〉. She homomorphically adds the ciphertexts of EBFa to those of EBF
entry-wise, and publishes the resulting array as an updated EBF′. Alice outputs 〈EBF,EBFa,EBF′, πa〉.

• Flatten(EBF): Prior to running Flatten, EBF is a counting Bloom filter with an integer between 0 and v at each index, where v is
the total number of inserted elements. To convert EBF into a binary Bloom filter, the Authority uses the Mix and Match protocol to
generate m blinded tables for the “squashing” function s:

s(JxK) =
{

J0K x = 0
J1K 1 ≤ x ≤ v

The Authority evaluates s on each of the m entries in EBF with one of the tables.

• Query(a,EBF): To test if element a is a member of a binary EBF, the Authority publicly evaluates the set of hash functions on a and
retrieves the encrypted entry at each of the k indices. It homomorphically adds these k entries together. Let JxK be the result. The
Authority the uses the Mix and Match protocol to generate a blinded table for the function f :

f(JxK) =
{

J0K 0 ≤ x ≤ k − 1
J1K x = k

The Authority evaluates f on JxK and publishes the result JtK = f(JxK). If the membership test fails, JtK contains J0K with overwhelm-
ing probability and J1K otherwise. If the membership test passes, JtK = J1K.

Construction 1: Encrypted Bloom Filter

4 Cobra

In this section we present our proof-of-concept coercion-
resistant internet voting scheme Cobra. The high-level
phases of an election in the Cobra setting are similar to
those in the literature. Unlike the related work, however,
numerous pre-computations can be performed prior to
the ballot casting phase, and ballot authorization can be
performed during the ballot casting phase.

Setup. First the authority runs the distributed key gen-
eration DKG outputting a description of Gq , generator
g ∈ Gq , and public key y. They then run encrypted
Bloom filter protocol Setup from Construction 1. Ad-
ditionally, all the Mix & Match tables (except for those
in Line 4 of Protocol 3) can be pre-computed at any time
during this phase.

Registration (Protocol 1). The first step is an in-
person registration phase in which voters create and sub-
mit an encrypted credential, which is homomorphically
added to the encrypted Bloom Filter. We follow a regis-
tration model similar to Selections whereby a voter pre-
selects a number of candidate passwords, and registers

one of them. The advantage of this approach relative
to others in the literature is that the voter does not have
to prepare an anti-coercion strategy, e.g., by simulating
a zero-knowledge proof. We assume the voter can per-
form computations, but will discuss how to make it bare-
handed in Section 4.3. Registration requires a divertible
NIZKP that can be implemented exactly as in Hirt’s “K-
out-of-L” voting scheme [27]. In fact, EBF entries in
our scheme are identical in structure to ballots in Hirt’s
scheme.

Casting (Protocol 2). To cast a ballot, a voter en-
crypts their preference (subject to the underlying voting
scheme), issuing the appropriate proofs, and using their
password to regenerate their credential.

If the voter is being coerced, or wishes to sell a cre-
dential, they can simply provide a fake password that
they mentally generate at coercion time (e.g., a “panic
password” [14]). Real and fake passwords are indistin-
guishable from the adversary’s perspective. The voter
can later cast a ballot with their real password, if they
have not done so already. Ballots are submitted over an
anonymous channel to prevent the adversary from learn-
ing if a coerced voter submits (or has submitted) a ballot
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Registration

Prior to registration, each eligible voter performs the following steps:

1. The voter chooses a password ρ̂ and processes it into credential ρ = PBKDF(ρ̂,VoterID) with a password-based key derivation
function. The voter obtains a description of the Authority’s Bloom filter (m, k)-EBF. The voter runs Prepare(gρ) from Construction 1
on gρ to generate EBFa and πa, which we will rename c and π. Recall c is an array of m ciphertexts with exactly k encryptions of 1
in the indices output by evaluating the k hashes on ρ, and m− k encryptions of 0 in each other entry. Also recall π is a proof that c is
well-formed.

2. The voter repeats this process α times, choosing different passwords, to form the set {〈c1, π1〉 , . . . , 〈cα, πα〉}. This set will be used
in a cut-and-choose protocol with soundness 1− 1/α.

Registration is run between each voter and a registrar over an untappable channel:

1. The voter sends their prepared {〈c1, π1〉 , . . . , 〈cα, πα〉} to the registrar. The voter will select one of the α instances, s ← [1, α], to
register and will audit the correct rerandomization of the rest. The voter also sends a commitment to s.

2. For each ci, the Registrar rerandomizes each ciphertext in the array to produce array c′i = ReRand(ci) and records the random factors
in array r′i. The Registrar prints out {

〈
c′1, r

′
1

〉
, . . . , 〈c′α, r′α〉} and gives it to the voter.

3. The voter reveals s to the registrar and erases 〈cs, r′s〉. The voter checks that c′i = ReRand(ci, r′i) for all i 6= s.

4. If satisfied, the voter with plaintext knowledge of cs and registrar with knowledge of r′s generate a joint proof π′
s that c′s is properly

formed.

5. The registrar publishes 〈VoterID, c′s, π
′
s〉 on the Roster.

After all voters have registered and before voting opens, the Authority does the following:

1. The Authority takes each cs entry on the Roster and computes, entry-wise, its homomorphic sum. It then runs the Flatten protocol
from Construction 1 on it to create a final encrypted binary Bloom filter EBF that holds a ρ from each voter. Note at this point, any
changes to the Roster become non-trivial to make.

Protocol 1: Registration

Ballot Casting

To cast a ballot, a voter performs the following steps:

1. The voter encodes their password (real or panic) ρ̂ into credential ρ = PBKDF(ρ̂,VoterID). The voter commits to their credential,
gρ, and computes a NIZKP of knowledge, π1, of ρ.

2. The voter encrypts their vote as JvK and computes a NIZKP that it is well-formed: π2. The challenges in both π1 and π2 are
functionally-dependent on 〈gρ, JvK〉 using Fiat-Shamir. The voter outputs ballot 〈gρ, JvK, π1, π2〉.

The election authority posts 〈gρ, JvK, π1, π2〉 to the public list AllVotes.

Protocol 2: Ballot Casting

with a different password than the one provided to the
adversary.

If the voter is changing a previously cast vote, the gρ

value will be the same and the trustees can eliminate the
older ballot (the same mechanism used in [5, 6, 15]).
Being able to detect duplicate ballots does not violate
coercion-resistance, as real and fake ballots will have dif-
ferent values. If a voter is coerced more than once (or
sells a vote to each party), they can make up different
fake passwords for each interaction.

Ballot Authorization (Protocol 3). As the Authority
receives ballots, they perform an authorization step: the

encrypted credential is used to perform an encrypted
query of the Bloom Filter. If the credential is invalid,
i.e., is not contained in the encrypted Bloom filter, the
preferences contained inside the encrypted ballot are “ze-
roed.” If the credential is valid, i.e., is contained in the
encrypted Bloom filter, the preferences inside the en-
crypted ballot remain unchanged.

Ballot authorization done concurrently with ballot
casting requires trustees to be online and capable of per-
forming computations. This is a departure from other
cryptographic voting systems, which generally try to
limit the involvement of trustees to after the election.
That said, we believe mitigating the impact of board
flooding is well worth the trade-off of online work, fur-
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Ballot Authorization

An authorized set of trustees can process the ballots as they are posted to the AllVotes list,

1. Upon receiving 〈gρ, JvK, π1, π2〉, the trustees first check proofs π1 and π2. The ballot is discarded if either does not verify. Otherwise
〈gρ, JvK〉 is posted to the public list ProvedVotes.

2. The trustees examine ProvedVotes for previously cast ballots with the same gρ value. If one is found, it is marked (on all lists) as being
a duplicate vote and is disregarded in the tally (Protocol 4).

3. The trustees run Query(gρ,EBF) from Construction 1 and receive JtK. Recall that JtK = J1K if gρ ∈ EBF, and J0K otherwise.

4. The trustees use the Mix & Match protocol to generate a blinded table for the “zeroing” function z:

z(JtK, JvK) =
{

J0K t = 0
JvK t = 1

Recall that Mix & Match ensures the outputs of z are rerandomized prior to its evaluation. The trustees evaluate z on JtK and JvK:
Jv′K = z(JtK, JvK). The trustees publish all associated proofs.

5. The trustees post Jv′K to the public list ValidatedVotes.

Protocol 3: Ballot Authorization

ther noting our setting is open ended as to the degree
of online interaction. Trustees have the flexibility to de-
cide among themselves when, if, and for how long to be
online. For example, ballot authorization could be per-
formed in batches during times when a sufficient number
of trustees are available. It could even serve as a contin-
gency, that is, as an optimistic approach in which con-
current ballot authorization (and hence the online com-
ponent) is only initiated at such time as a board flooding
attack is detected.

Tallying (Protocol 4). After the election ends, the Au-
thority takes all of the encrypted, authorized ballots and
performs the tally. Without loss of generality, the ballots
are homomorphically added, and the sum is verifiably
decrypted and published.

4.1 Security Analysis

In this section, we address the security of Cobra. We
do not perform a rigorous proof of security, however we
assert the properties we claim Cobra holds and sketch an
argument for it.

Eligibility Verification. To qualify for eligibility veri-
fiability [34], it should be universally verifiable that (1)
each vote in the final tally was cast by a registered voter
and (2) there is at most one vote per voter. We claim
that Cobra achieves (1) with overwhelming probability
if we equate a registered voter with a voter in possession
of a registered credential, and we claim (2) holds with
the same probability. It is possible that Query(gρ,EBF)
returns a false positive, and, therefore, possible for unau-

thorized ballots to be counted in the final tally.7 An ad-
versary may attempt to craft a gρ that, when hashed, pro-
duces a database key that overlaps with the keys of other
cast ballots, generating a false positive. Assuming the
hashes are cryptographic, there is no non-negligible way
for the adversary to find a suitable pre-image better than
brute-force. Further, the adversary must start with cre-
dential ρ because a suitable gρ cannot be submitted with-
out knowledge of ρ. A ρ mapped to gρ and queried has
a false-positive probability equivalent to querying a ran-
dom element. Assume that each of the bits of the Bloom
filter can be determined by the adversary. This could
happen, for example, if all registered voters cast a sin-
gle ballot with their actual password. The false positive
rate of the Bloom filter is thus parameterized to make
false positives roughly as hard as finding the decryption
key for the election (e.g., on the order of 2−80).

In Cobra, votes submitted with the same credential
are apparent from inspection and flagged as duplicates.
Given the first property of eligibility verification holds,
the second property can be ascertained from inspection
of the transcript, ensuring duplicate ballots are disre-
garded during the tally.

Integrity. We say Cobra has integrity if the final tally
is the correct sum of eligible votes in the election. Each
step in the election is accompanied by a universally ver-
ifiable proof and integrity follows in the same fashion as
in related schemes.

7An interesting open problem is to design a system that would in-
stead generate false negatives (i.e., a small probability of disenfranchis-
ing eligible voters). This would be preferable as there is no incentive
for an adversary to purposefully generate such an error.
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Tallying

After the last vote has been cast and pre-tally processing has been completed on all ballots, the trustees perform the following steps:

1. The trustees homomorphically sum all Jv′Ki values on ValidatedVotes (except the ones marked as duplicates): V =
∏

Jv′Ki = J
∑
v′iK.

2. The trustees distributively decrypt V , each generating a NIZKP of correct partial decryption. The trustees publish the proofs and the
final tally.

Protocol 4: Tallying

Coercion-Resistance. Recall that a system is
coercion-resistant if (1) the voter can always real-
ize their voting intent and (2) an adversary cannot
distinguish a fake credential from a real credential better
than in an ideal system. For simplicity, an ideal system
can be thought of as a correct tally. There are potential
ways to tell how a voter voted from the tally alone (for
example if they are the only voter), and this does not
violate the property of coercion-resistance.

Cobra achieves the first property of coercion resis-
tance by allowing voters to never have to release their
real credential to an adversary, thus allowing them to use
it to cast a ballot of their choosing. Since ballot submis-
sion is anonymous (fully, not just an anonymity set as in
other systems [15, 44]), this ballot cannot be linked to
the voter except by comparing it to the encrypted value
on the Roster, which yields no useful information under
the CPA-security of the underlying encryption scheme.

A necessary condition for the second property to hold
is a coercion-resistant registration process. An adversary
that corrupts the voter can demand the voter registers the
EBF entry associated with a particular password. In this
case, the voter would substitute in their own password
and associated EBF entry, and select it from the set of
passwords involved in the cut and choose protocol. Since
all information about this entry other than the final ci-
phertexts is erased, an adversary cannot distinguish the
final ciphertexts from a rerandomization of the cipher-
texts he provided due to the CPA-security of the encryp-
tion scheme. Erasures would, of course, need to be en-
forced, perhaps by having each password on a separate
thumb drive and destroying it in front of an official. The
commitment could also be physical by having the voter
mark which EBF entry they will register (as long as the
machine doing the rerandomizations cannot tell which is
committed to).

Given a coercion-resistant registration, a voter can al-
ways evade the adversary by providing a fake password
during ballot casting. The ballot authorization step never
reveals, in plaintext, whether a provided credential is real
or not.

Coercion-Resistance in Multiple Elections. In its
present form, Cobra does not maintain coercion-
resistance if a credential is used across multiple elec-
tions. To see this, consider an election that is run in-
cluding a voter Alice, and a set of other voters. After
this election, Alice moves to another jurisdiction and a
second election is run including Alice and a completely
distinct set of voters. Alice must be permitted to sub-
mit the same credential gρ in both elections in order to
achieve the first property of coercion-resistance, and yet
this leaves her ballot submission clearly identifiable as,
in the worst case, the only common credential between
elections (there may be others but we do not want the se-
curity of our scheme to rest on the assumption that there
must be).

An adversary who coerces Alice in the second election
will guess she is cooperating if she can give him a cre-
dential that appeared in the first election, and guess she
is evading him if she does not. This guess will be correct
as long as Alice either did not submit a real ballot in the
first election (making the adversary guess she is evading
if she cooperates), or submitted a fake credential in the
first election (making the adversary guess she is cooper-
ating if she gives the same fake credential). Since we do
not require either of these, the adversary’s guess cannot
be made negligible.

4.2 Performance Analysis

We compare the performance of Cobra in Tables 1 and 2
to four other coercion-resistant internet voting schemes,
JCJ/Civitas [32, 16], Araujo et al. [6], Selections [15],
and Schläpfer et al. [44]. A rough comparison can be
made by counting the number of modular exponentia-
tions. It has the drawback of treating all exponentiations
the same8 and does not account for optimizations due to
precomputation or parallelization.

We draw heavily from analysis completed else-
where [15, 44]. This analysis makes a number of
assumptions across all systems to facilitate a better
comparison: the use of exponential Elgamal, standard

8Except that we do discount the cost of multi-exponentiations.
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JC
J/C

ivi
tas

ARRTY

Sele
cti

on
s

SHKS
Cob

ra

Registration (Before Election)
Voter 11 9 (4α− 1) 11 (4α+ 8)116V + 6
Registrar 8 10 2α 8 (2α+ 12)116V + 6

Casting (During Election)
Submit Ballot 8C + 2 8C + 2 8C + 2 8C + 2 8C + 2
Submit Credential 3 13 4β + 2 3 2

Processing (During Election)
Check Ballots (4C + 4)B (4C + 4)B (4C + 4)B (4C + 4)B (4C + 4)B

Ballot Authorization 0 0 (4β)B 0
(280T + 12CT
+19T + 2)B

Processing & Tallying (After Election)

Ballot Authorization
(6CT + 7V T + 5

2
T )B

+( 7
2
T )B2

(24CT + 14T
+6)B

(12CT + 7T )B
(12CβT + 7βT

+7T )B
0

Tally Ballots 3TC 3TC 3TC 3TC 3TC

Table 1: Performance comparison in number of modular exponentiations assuming V registered voters, C candidates,
B ballots cast and T trustees. α and β are system-specific parameters. Registration and casting cites the work per
voter/ballot, while processing and tallying cites the work for all voters and ballots.

JC
J/C

ivi
tas

ARRTY

Sele
cti

on
s

SHKS
Cob

ra

Registration (Before Election)
Voter 11 9 39 11 55, 680, 006
Registrar 8 10 20 8 37, 120, 006

Casting (During Election)
Submit Ballot 42 42 42 42 42
Submit Credential 3 13 202 3 2

Processing (During Election)
Check Ballots 240, 000 240, 000 240, 000 240, 000 240, 000
Ballot Authorization 0 0 2, 000, 000 0 10, 790, 000

Processing & Tallying (After Election)
Ballot Authorization 3, 000, 960, 000 4, 080, 000 2, 010, 000 100,710,000 0
Tally Ballots 45 45 45 45 45

Table 2: Performance comparison in number of modular exponentiations for a moderately-sized election scenario: 5
candidates, 10,000 registered voters, 20,000 submitted ballots, and 3 trustees. Parameters α = 10 and β = 50 follow
examples from the literature.

Σ-protocols, and a single registrar. We also note that all
of these systems use very similar primitives and proto-
cols, which makes the comparison more compelling.

In contrast to previous comparisons in the literature,
we demarcate how much ballot authorization can be done
concurrently with ballot casting. We also use a slightly
different ballot structure. See Appendix A for further
details on our analysis.

Table 1 shows election complexity in terms of modu-
lar exponentiations in an election involving V registered
voters, C candidates, B cast ballots and T trustees. α is
an integer (e.g., 10) that serves as a soundness parameter

for registration in Cobra and Selections. β is an inte-
ger in [1, V ] that serves as an anonymity set in Selec-
tions and Shlapfer et al. For Cobra, we assume an opti-
mally loaded Bloom filter with false positive probability
of 2−80, requiring m = 116V bits, with k = 80 hash
functions for element insertion and membership testing.

Observe that the distributions of computational work
load of the related systems are all similar in that a sig-
nificant amount of computation occurs after the election
closes in the context of ballot authorization. By contrast,
Cobra pushes back its computations to the registration
period, and allows for concurrently authorizing ballots
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during the election period. Because Cobra authorizes
ballots as they are submitted, the elections results are ef-
fectively available immediately after the election ends.

A Sample Election. We provide concrete numbers in
Table 2 for a hypothetical election of moderate size in-
volving 5 candidates, 10,000 registered voters, 20,000
submitted ballots, and 3 trustees.

As a rough number, assume a single CPU core can
compute 1000 modular exponentiations per second. The
voter’s part of the registration protocol in our modestly
sized election, therefore, would last for almost 2 hours
on a fully paralleled 8-core machine. The computational
requirements of the registrar, of course, would be con-
siderably more. On the other hand, authorizing a submit-
ted ballot would take on the order of one CPU second,
reasonably permitting real-time processing of ballots at
submission time.

Since the ballots are authorized prior to the end of
the election period, tallying—consisting only of modu-
lar multiplications and one verifiable decryption—can be
processed almost instantly. By comparison, the fastest
related scheme, Selections, would still require over a
CPU-hour to produce results after the polls closed. Fi-
nally, in the event of a board flooding attack, the wait-
time of the related schemes would increase proportion-
ally, whereas Cobra would have the opportunity to amor-
itize this computation over the submission period.

Interpretation of Performance Results. As we have
shown, previous proposals for coercion-resistant inter-
net voting are computationally top-heavy: all the num-
ber crunching is being done at precisely the time the
electorate is eager to learn the results. Cobra’s regis-
tration protocol is quadratic in the number of registered
voters. Though impractical, we have shown it possible
for coercion-resistant elections to make results available
immediately after polls close.

4.3 Performance Optimizations
Registration requires voters to use a computational de-
vice to generate the joint proof that the EBF entry is cor-
rectly formed. Instead of having the voter prove it, the
trustees could test it. In this case, registration could be
bare-handed with preprocessing [42]. To test, the trustees
would precompute a set ofm tuples 〈J0K, J1K〉 and verifi-
ably shuffle their order (e.g., with a switching gate [1, 28]
or 2-input mixnet). They would test if each entry is a 0
or 1 through a plaintext equality test with the ciphertexts
in the tuple. If it matches one of them, the test passes
and if it matches neither, the test fails. To test that the
EBF contains exactly k encryptions of 1, the entries can
be added homomorphically and decrypted.

Instead of using exponential Elgamal, we could con-
sider a pairing-based cryptosystem9 like BGN for fur-
ther optimizations [9] . The Freeman variant [22] is
implemented in a prime order group which may bet-
ter allow efficient distributed key generation and dis-
tributed decryption. BGN is additively homomorphic
(like exponential Elgamal, decryption is possible only in
small plaintext spaces) plus it offers a single homomor-
phic multiplication between two ciphertexts that have not
been multiplied before.10

With BGN, the test of correctness for the EBF entries
can be done very efficiently with a multiplication. For
encrypted entry JxK, the trustees compute JxK(JxK − 1)
and decrypt the result. Iff 0, the test passes. Tests
on all entries can be batched together by computing∑
riJxiK(JxiK − 1)

?
= 0 for randomly chosen constants

ri [9]. Further, step 4 of Protocol 3 can be done without
SFE by simply multiplying Jv′K = JtK · JvK.

5 Related Work

The first coercion-resistant remote voting system was
proposed by Juels et al. [32], which we refer to JCJ. It
was slightly refined and implemented as Civitas [16].
Tallying in JCJ/Civitas is expensive: quadratic in the
number of submitted ballots. A number of initial at-
tempts at reducing the complexity [2, 47, 46, 38, 50] have
been broken [5, 16, 6]. Other attempts have been more
successful.

Araujo et al. provide a linear-time system [5, 6]. In
this system, voter credentials are essentially signed under
encryption and during vote submission, the signature can
be checked. It has one difficulty: signed values cannot
be revoked without a change of keys making it difficult
to remove voters from the Roster. Spycher et al.’s pro-
posal [49] and Selections [15] both exploit the fact that
voters know where they are in the Roster and can include
this information in their ballots. The former requires
some trust in the election trustees. In the latter, ballot
submission is only anonymous within an anonymity set.
Anonymity sets are also used by Schläpfer et al. [44] who
additionally trade-off the amount of work the voter per-
forms in Selections with additional work during ballot
authorization.

A few systems offer protection against weaker forms
of coercion resistance. Some systems [51, 52] allow a
voter to deceive an adversary (Property 2 in the coercion-
resistance definition) but doing so prevents them from re-

9Note that the security of our system is not impacted by removing
the DDH assumption if Elgamal itself is replaced with a CPA-secure
scheme in the new setting

10The multiplication is achieved via the pairing, so the output ci-
phertext is in a different group than the inputs. Addition can only occur
between pre- or post-multiplication ciphertexts.
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liably submitting the ballot of their choice (Property 1).
In these systems, the voter registers a blinding factor un-
der encryption, and submits a ballot offset by this factor.
If the factors match, the vote is reconstructed but if the
voter lies about their factor to an adversary (who does not
tell them who he is voting for), it may result in a random
vote. Other systems [37, 48] allow voters to cast more
than one ballot, overwriting their previous vote. This al-
lows voters to update a coerced ballot but only if they are
not coerced, or arrange to sell their votes, at the end of
the election. Finally, one system [41] protects against re-
mote adversaries, assuming the coercer does not interact
in real-time with the voter during vote casting.

Cryptographic internet voting systems have also been
designed for low-coercion elections. These include He-
lios [3, 4, 11]. Other Internet voting systems concentrate
on the untrusted platform issue through “code voting,”
where a translation of codes to candidates is given to the
voter out-of-band [12, 31, 43, 25].

Board flooding attacks are considered by Koenig et
al. [33]. They mitigate the problem by issuing a finite
number of tokens to registered votes, and a token is re-
quired to submit a ballot. Voters receive a random num-
ber of tokens so they can still deceive a coercer. The de-
tails are more complex (the token and credential are com-
bined into a single unit). We consider this approach sup-
plementary to addressing what we feel is the real root of
the problem: that ballot authorization is expensive and,
prior to this work, could not be done on ballots as they
are submitted.

6 Concluding Remarks

In this paper, we introduced the notion of concurrent
ballot authorization for coercion-resistant internet vot-
ing. With concurrent ballot authorization, ballots can be
authorized as they are submitted, allowing near instant
reporting of results after the polls close. We also pro-
posed Cobra, a proof-of-concept construction for con-
current ballot authorization.

Although Cobra offers the fastest tally relative to
related work, it requires a registration process that is
quadratic in the number of eligible voters, making it not
viable for practical elections. We hope our first step
in this direction will interest researchers in finding new
methods that offer concurrent ballot authorization with
linear registration (or at least quadratic with a smaller
constant). Another interesting open problem is allowing
the safe reuse of registered credentials across multiple
elections with Cobra.
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A Further Details on Performance

We assume in all systems that all votes are cast with
a standard multi-candidate cryptographic ballot suitable
for homomorphic tallying under exponential Elgamal.
The voter forms a vector of bit encryptions, one for each
candidate, with J1K assigned to the candidate they want
to vote for and J0K for the rest (as per [26] and many
other voting schemes).

Even though ballots are mixed in JCJ, Civitas, Araujo
et al., Selections, and Shläpfer et al., and each ballot
can be simply decrypted, it is cheaper to decrypt their
homomorphic sum than each ballot individually (1 dis-
tributed decryption vs. B). However the cost to the voter
is slightly higher as they must prove the ballot is well-
formed. Recall though, for coercion-resistance, the voter
still has to prove their ballot encrypts a correct candidate
in mix-based tallying (otherwise an adversary wanting
to test if the voter supplied the correct credential would
vote for a random string and see if it shows up in the fi-
nal decryption stage—an adaptation of a pattern/Italian
attack). Given the voter must do a proof linear in the
number of candidates either way, the work for the voter
does not increase much with the change (8C+2 modular
exponentiations vs. 4C + 2).

We use the number of modular exponentiations for
common primitives according to Table 1 in [44]. For Co-
bra, registration requires the voter to do αm encryptions
(2αm). The registrar then rerandomizes each encryption
(2αm) and provides the random factors. For the α − 1

12



EBF entries the voter audits, the voter checks their reran-
domization (2m(α−1)). For the selected entry, the voter
and registrar do a joint proof that each ciphertext is a 0
or 1 and that they sum to k. The voter proves each is 0
or 1 (6m) and proves they sum to k: 0 to sum and 2 to
prove decryption. The registrar (8m) simulates the same
proofs (8m and 2) and generates the diverted proof. Both
should verify the final diverted proofs (4m and 4).

To cast a ballot, the voter constructs a vote using a vec-
tor of encrypted bits equal to the length of the candidate
(2C) and proves each is a 0 or 1 (6C). They also prove
the sum decrypts to 1 (2). For authorization, the voter
commits to their credential (1) and proves knowledge of
it (1).

Upon receiving a ballot, the authority checks that the
candidate vector is properly formed (4C+4). They check
the proof of knowledge of the commitment (2). They
query the BF by hashing the credential, fetching the en-
tries and summing them (free). They then conduct a mix
and match, which consists of k plaintext equality tests
(PETs) at worst and k/2 on average (we assume tables
are precomputed during setup). Performing the plain-
text equality test is (k/2)(3T ) and proving correctness
is (k/2)(4T ). Next, the trustees perform the second mix
and match. Here the table must be generated since JvK
is not known before the election. Mixing 2 tuples of
length C + 1 (input plus a ciphertext for each candidate)
is 8(C + 1)T and the generating proofs is 4(C + 1)T .
Evaluating the SFE is a single PET on average: 3T to do
and 4T to prove.
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