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Abstract

Increasing mobility and rising traffic demands cause seri-
ous problems in urban road networks. Approaches to re-
duce the negative impacts of traffic include an improved
control of traffic lights and the introduction of dynamic
traffic guidance systems that take current conditions into
account. One solution for the former aspect is Organic
Traffic Control (OTC) which provides a self-organized
and self-adaptive system founding on the principles of
Organic Computing. This paper introduces further steps
in enhancing the current OTC system with a forecasting
technique based on neural networks. The prediction of
short-term traffic conditions is an important component
of an advanced traffic management system. It enables the
system to prevent congestions and is able to react faster
to changes in the traffic flow.

1 Introduction

The signalization of traffic lights at intersections is man-
aged by special intersection controllers in the sense of
embedded systems. These are highly specialized micro-
processors containing components for operation modes,
GPS or loop sensors. Current traffic light controllers nor-
mally have fixed-time signalizations with predefined se-
quences. Therefore, these controllers are not able to re-
act to the current traffic conditions which leaves room for
improvement.

Organic Traffic Control (OTC) [13, 20] offers a new ap-
proach to deal with the rising complexity of urban road
traffic. By applying the principles of Organic Comput-
ing [14] to the field of urban traffic networks, the system
becomes self-organized. It is capable of adapting to the
changing environment while handling unforeseen situa-
tions, i.e. accidents.

With sophisticated techniques which reliably forecast the
complex interactions of urban traffic, the OTC system
can not just react to higher traffic flows and traffic jams,

but proactively take action to prevent congestions. There
are numerous methods used for traffic forecasting, but
no one outperforms all other methods [1]. It was also
discussed that traffic tends to exhibit a chaotic behavior
[18], but many of the existing methods for traffic flow
prediction lack the ability to cope with this aspect. In
this paper we are exploring the benefits of using an arti-
ficial neural network (ANN) for a short-term traffic flow
forecast and present further steps in enhancing the exist-
ing OTC system by a traffic flow forecasting component.
This approach has shown to be able to deal with complex
nonlinear predictions [1], which lets ANN appear as ap-
propriate for the traffic domain.

An ANN is a highly simplified mapping of a biologi-
cal neural system. It offers intelligent processing func-
tions for learning, memorizing and predicting, while si-
multaneously dealing with uncertainty and non-linearity.
The traditional approach for predicting upcoming traffic
flows of a road network with a neural network is to learn
one task at a time [22]. Another approach is using an
ANN with more than one output [19]. As [9] and [12]
state, multitask learning (MTL) may offer improvements
to the generalization performance of the ANN by inte-
grating field-specific training information contained by
the extra tasks. The most considered task is the so-called
main task, while the others are called extra tasks. In this
paper we use a multitask learning recurrent neural net-
work for predicting upcoming traffic flows. Experiments
show that this approach offers reliable and robust predic-
tions.

This paper is structured as follows. Section 2 briefly
presents the current state of the OTC system. Afterwards,
the constructed neural network is described in detail and
possible ways of its integration in the OTC system are
presented in Section 3. Section 4 reports the experimen-
tal results and discusses the possible benefit of applying
this forecast technique to an automated traffic manage-
ment system. Section 5 concludes with a summary of
this paper and gives an outlook to further research.



2 Organic Traffic Control

Urban road networks are characterized by their great
number of distributed, signalized intersections. Con-
sidering the dynamic nature of road traffic and the au-
tonomous behavior of drivers, the traffic domain offers
several characteristics that make it an interesting applica-
tion for Organic Computing techniques. Earlier work ap-
plied the Observer/Controller architecture [16] for traf-
fic signal control resulting in the OTC system [13, 20].
This system is able to optimize an intersection’s signal-
ization according to the observed traffic flows. Further-
more, organic intersections (meaning OTC-controlled)
are able to interact and establish progressive signal sys-
tems (also called “green waves”) in the network. The
resulting signal coordination has shown to be very ef-
fective in minimizing the network-wide number of stops
and travel times and in consequence the fuel consump-
tion and pollution emission.
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Figure 1: Architecture of the Organic Traffic Control sys-
tem

As shown in Fig. 1, the OTC architecture extends the
intersection controller within an existing road network,
the System under Observation and Control (SuOC), by
adding several layers on top. Traffic flows are recorded
by detectors in the street surface and passed to an inter-
section observer on Layer 1. This Layer 1 contains a
modified learning classifier system (based on Wilson’s
XCS [23]) where parameter sets for the signalization,
based on the observed traffic flow data, are selected. In
case of a new situation (no parameter set is known), the
offline learning component on Layer 2, represented by
an evolutionary algorithm, creates new classifiers and
passes these back to Layer 1, where the new parameter
set is applied. Simultaneously, Layer 1 reacts with the
best possible action while Layer 2 searches for a new so-

lution. Mechanisms for a decentralized collaboration be-
tween intersections enable these to communicate and ex-
change data. This allows the network to coordinate sig-
nalizations of traffic lights in response to changing traffic
demands.

3 Short-term traffic forecasting

As presented in [1], numerous approaches exist for deal-
ing with the problem of forecasting of traffic flows.
These contain amongst others techniques like time se-
ries models [10], Bayesian networks [2] or Kalman filter
theory [11]. Many of these approaches lack the ability
to handle unforeseen situations like accidents or other
abnormalities in the traffic flow (which are particularly
targeted by Organic Computing techniques). In contrast,
ANNSs are able to deal with complex nonlinear predic-
tions. As summed up in [6], neural networks were not
only successfully applied to the task of traffic forecast-
ing, but also to many other traffic-related topics like ve-
hicle classification or traffic pattern analysis. They are a
common method for forecasting short-term traffic flows
[1]. By taking the current or the historical data of an in-
tersection, we can predict its future traffic flows. [8] uses
an ANN to forecast congestions for the next 30 minutes.
The network is trained with historical data and contin-
uously adapted to the last available data by a shifting
learning method. The network is able to forecast the cor-
rect trend 85% of the time. [5] takes an object-oriented
approach for predicting short-term traffic conditions of a
section of the Pacific Highway. The ANN was capable of
predicting speed data up to five minutes into the future.
[3] compared different training methods for an ANN and
came to the conclusion that a combination of a hybrid
exponential smoothing and the Levenberg-Marquardt al-
gorithm performed best for the prediction of traffic flow
for some freeways. Besides that, the prediction of traffic
patterns of highways tends to be simpler than the forecast
of urban traffic flows as the traffic flow is usually more
continuous.

3.1 The neural network model

A three-layered Elman neural network [4] with an in-
put layer, a hidden layer and an output layer was used.
This kind of neural network has no cycles between its
nodes. Each neuron has directed connections to all neu-
rons in the subsequent layer. Figure 2 illustrates the net-
work. The input neurons /; to I5s are fully connected to
the nodes H; to Hjg of the hidden layer. Same applies
for the hidden layer and the output layer (Nodes O; to
03). Additional nodes B and B; add a bias to the hidden
and the output nodes. Biases are values that are added to
the output of each node (except input nodes). Thereby,



an ANN is able to represent more functions. In addi-
tion to a normal feedforward neural network [7], Elman’s
network consists of an extra context layer (nodes C; to
Ci0). The neurons of the context layer receive informa-
tion of the hidden neurons and pass their stored infor-
mation back to them during the following iteration. By
storing information, the context layer offers some kind of
short-term memory. Therefore, it performs well on tasks
as sequence-prediction, which let it seem appropriate for
our application.

Traffic flow /l_\

Traffic flow t(n+1)

Figure 2: Structure of the Elman neural network

The traffic flows of the last five time instants (mea-
sured in vehicles per hour) were given as input to the
neurons of the input layer. That input is preprocessed in
the sense of correcting missing or false data. Filling in
missing values or correcting false data in the datasets be-
comes necessary when information is lost because of de-
fect street detectors or transmission errors. Afterwards,
the processed input data is normalized to a range from
0 to 1. These preprocessed traffic flows are then passed
to the nodes of the hidden layer. For the hidden layer,
ten hidden neurons were chosen, as experiments proved
this to be the most promising setup. An experiment con-
sisted of the repeated run of 50 iterations while the num-
ber of hidden neurons was increased each iteration by
one, starting from 5 up to 20 hidden neurons. By eval-
uating the average training error, the number of hidden
neurons of the run with the best (lowest) training error
was taken. The used activation function between input
and hidden layer is the Sigmoid function, which is de-
fined by formula 1. An activation function defines the
way a node passes his output data to his output nodes.
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A linear function is selected as activation function be-
tween hidden layer and output layer. The output layer

consists of three output neurons for the main and two ex-
tra tasks. The form of this linear function is described as
formula 2.
flx)=x ()

In general, literature in the ANN domain shows that
finding a setup for these parameters is highly application-
specific. We use a hybrid strategy for the training of
the neural network which allows us to use a secondary
training algorithm. First a resilient propagation algo-
rithm [17] is executed until it is no longer improving on
the training error. The second algorithm used for train-
ing was the classic Levenberg-Marquardt algorithm [24].
This approach leads to faster and better improvements
during the training phase. By furthermore using early
stopping to prevent overfitting, the training algorithm has
the ability to complete the training when the error on the
validation set would increase. Further stopping criteria
are the maximal training error and a maximal number
of training epochs. After the training, the network gets
pruned. This is a common method for reducing the size
of the hidden layer. By removing the least important neu-
ron, the network size decreases and improves its gener-
alization capabilities; besides that, a smaller network is
faster and cheaper to build [15].
At last, the prediction is made using MTL for the fore-
cast. By choosing the last k traffic flows, we can predict
the vehicle flow at time n (denoted by #(n)) by selecting
the traffic flows at the timesteps #(n — 1) and t(n+ 1) as
extra tasks correlated to the main task. The traffic flows
one time step in the past #(n — 1) and one time step in
the future #(n+ 1) apparently are related to the forecast
of #(n). Therefore, they play an inductive bias role so as
to increase the forecast accuracy of 7(n).

3.2 Further implementation in the OTC
environment

The generic Observer/Controller architecture [16]
(Fig. 3) contains a prediction component to forecast
trends in the SuOC. At a signalized intersection, pre-
dictions show possible future traffic developments.
These predictions can be based on current or historical
traffic data. Current traffic data allows for short-term
predictions, whereas historical data enables long-term
forecasts by recognizing recurring patterns in traffic
flows. At the moment, only a short-term prediction is
made by the presented neural network.

As shown in Figure 3, the observer on Layer 1 consists
of a component monitoring the detection data from an
intersection, a preproccesor (depicted by the component
labeled Situation Analyzer”) extrapolating the current
traffic flows and a performance analyzer deriving perfor-
mance measures for the intersection’s current signal plan.
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Figure 3: An observer/controller architecture for traffic
signal control [20]

The prediction component might be added right after the
preprocessor component. The extrapolated traffic flow of
the preprocessor then serves as an input for the forecast.
Based on these traffic flows, a short-term prediction is
made and passed as extra input to the situation descriptor
along with the data from the preprocessing component
and the performance analyzer. The situation descriptor
creates an description of the situation and passes it to the
controller on Layer 1.

Detector

Figure 4: An exemplary intersection with turnings and
detectors

Figure 4 shows an example of a four-armed intersec-
tion. The turning movements crossing the intersections
are labeled from A to L. Detectors in the street surface
measure flow-values for each turning movement. The
output of the prediction component are the traffic flow
forecasts of every turning movement of an intersection
(12 forecast values for the example intersection).

4 Experimental results

Beyond others, ANNSs are divided into feedforward, Jor-
dan and Elman neural networks [4]. Jordan and Elman
add an additional context layer to the network, which
stores the value of the previous iterations, therefore of-
fering some kind of short term memory. For measuring
the performance of our approach, we implemented fol-
lowing variants, which will be compared in the follow-
ing.

We constructed a MTL ANN with five input neurons,
ten hidden neurons and three output neurons for each
of the mentioned types. The data used for the inputs
are the vehicle flow rates measured in % of a dis-
crete time series which were raised every five minutes.
The used traffic flows refer to the intersection shown in
Fig. 4 which depicts an intersection in Hamburg, Ger-
many. Data sets for testing were previously classified in
traffic flows from Monday to Thursday, Friday, Saturday
and Sunday!. The traffic flows of Monday to Thursday
have great similarities and therefore can be combined in
one data set. The validation set and the training set are
based on traffic flows of two typical weeks resulting in
2016 sample points each, also measured in % The
maximum flow was 1050 cars per hour. The prediction
output is the future traffic flow of a single intersection
five minutes into the future. The network was initially
trained with the mentioned training set. 300 epochs are
selected as the maximal training duration. The training
also finishes in case the training error drops below 0.002
or if the error on the validation set increases during train-
ing.

As seen in Table 1, the Elman network with MTL per-
formed very good for the prediction of Monday to Thurs-
day resulting in an overall prediction error of 4% to 5%.
A graphical representation of the traffic flow forecasting
compared to the ideal results is given in Figure 5. In aver-
age the prediction of the future traffic flow in the next five
minutes was off by 48.9 cars. The network performed al-
most equally good for Friday. Saturday and Sundays per-
formed even better as the number of traffic participants is
decreased and the changes in the traffic flow are smaller
on weekends.

Overall, MTL performed better than singletask learn-
ing (STL) for all three networks (Tab. 2). By only look-
ing at the results of STL, the Jordan neural network per-
formed best. This approach had an average root mean
square error (RMSE) of 51.7 cars compared to the real
flow values. While Jordan only improved slightly by us-
ing MTL (1.5%), feedforward and Elman increased its
prediction accuracy by 12.1%, respectively 10.9% (de-
noted by e). The feedforward network had the biggest

IThe traffic data and the signal schedules are provided by the
Schmeck Ingenieurgesellschaft mbH, Hamburg
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Figure 5: Traffic flow forecasting for monday with an MTL Elman network compared to the ideal values

| Mo.-Th. | Friday | Sat. | Sunday

RMSE 48.9 47.4 32.1 30.9

Deviation in % 4.6% 45% | 3.0% | 2.9%

Table 1: Performance of the MTL Elman network for
daily test sets (root mean square error (RMSE), lower is
better)

RMSE H Feedforward ‘ Jordan ‘ Elman

STL 57.6 51.7 54.9
MTL 50.6 50.9 48.9
e 12.1% 1.5% | 10.9%

Table 2: Comparison of the prediction accuracy of dif-
ferent neural network types with STL and MTL (lower
values are better)

additional benefit of MTL (57.6 cars), compared to STL
(50.6 cars). The Elman network with MTL resulted in
an average RMSE of 48.9 cars for the prediction of a
Monday, while with STL it had an average error of 54.9
cars. Compared to the results of [21], this ANN re-
sults in a 38% better prediction accuracy. Therefore the
combination of an Elman network with the technique of
MTL showed to be the most promising approach and will
therefore be used in the OTC system.

5 Conclusion

This paper presented a forecasting technique based on
artificial neural networks. Based on the awareness, that
other approaches have weaknesses, we chose an artifi-
cial neural network for the traffic flow forecast of an
organic intersection. The evaluation of the neural net-
work was made outside of the Organic Traffic Control
system. Based on real data for an intersection in Ham-
burg, Germany, the experiments for the neural network
showed promising results. A multitask learning Elman
recurrent neural network with three outputs offered the
best predictions resulting in a prediction error below 5
percent. Compared to a feedforward and a Jordan neural
network, this network performed best. Using multitask
learning the prediction resulted in a 11% better predic-
tion accuracy compared to using singletask learning. By
adding other types of data like the current day or time,
or the traffic flows of neighboring intersections as input,
the network might increase its prediction accuracy. By
performing a second training phase with traffic data oc-
curred at incidents, the network might improve its abil-
ity to deal with abnormal situations. Enhancing the pre-
diction component by a long-term forecast may further
enable the system to classify upcoming traffic flows bet-
ter and consequently improve the forecasting accuracy.
Next steps will also include the integration of the neu-
ral network as prediction component into the Observer
component of the Organic Traffic Control environment.
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