
DHT Broadcast Optimisation with ID Assignment Rules

Michael Roth, Julia Schmitt, Florian Kluge, Theo Ungerer
Department of Computer Science, University of Augsburg, Germany
{roth, schmitt, kluge, ungerer}@informatik.uni-augsburg.de

Abstract

Decision making in a self-optimising distributed Organic
Computing system requires information about the sys-
tem’s state. Accurate information enables the overall
system to respond better to state changes. Distributed
systems can use different network protocols, e.g UPD or
TCP/IP, to connect the nodes. There is no guarantee that
all of these network protocols are able to send broad-
casts. If all used network protocols support broadcast it
is still not sure that broadcasts can be sent across differ-
ent protocol domains, e.g. from UPD to TCP/IP. We use
therefore distributed hash tables (DHT) to enable an ap-
plication layer broadcast for information dissemination,
which only sends unicast messages in the network layer
to spread node status information in a distributed sys-
tem. In DHTs the node IDs are used to determine the
communication partner. The node IDs are generated ran-
domly in DHTs. In this paper we show how choosing IDs
systematically, instead of generating them randomly, in-
fluences the network usage by using our DHT broadcast
algorithms for information dissemination.

1 Introduction

The Autonomic Computing [1] and Organic Computing
[2] initiatives focus on systems which are self-managing,
self-organizing, decentralised, and do not possess a sin-
gle administrative instance. Different methods are used
to decide which actions must be taken to hold or guide
Organic Computing systems in valid system states: e.g.
genetic algorithms [3], automated planners [4], and
learning classifier systems [5]. All these approaches re-
quire information about the current system state to make
accurate decisions. The more accurate the information
about the system state, the more fitting is the decision.
Each component that influences the system requires such
accurate information.

In our research we develop the self-organizing mid-
dleware OCµ [6] to manage the growing complexity of
computer systems. Like any other middleware, OCµ
allows to develop applications for distributed systems
and manages their distribution. Additionally, OCµ pro-
vides mechanisms for failure recovery and load balanc-
ing among different devices, e.g. smartphones, desktop
computers, and tablets. These devices are the nodes in
our system. They are connected through different net-
works with varying bandwidths. Different applications,
called services, can be deployed on these devices. An
Organic Manager [7] on each device is used to provide
the self-x properties in a decentralised manner. Each Or-
ganic Manager possesses goals which describe a valid
system state. Goals can change, be created or be deleted
during run-time therefore it is not clear which node pos-
sesses which goals. The Organic Manager can start, stop,
and relocate services to other devices to achieve self-
optimisation, self-configuration and self-healing.

To decide whether the system is in an undesired
state the Organic Manager requires accurate information
about each node in the network. Since each node runs an
Organic Manager each node must send status updates to
all other nodes. As the nodes are connected through dif-
ferent network protocols, we cannot guarantee that the
networks are capable of sending broadcasts. Therefore
we evaluated algorithms for efficient information dis-
semination for the use in our middleware.

An efficient algorithm for information dissemination
must be able to distribute the node status information
from each node in the entire network. To avoid flooding
the network, we investigate a structured way for decen-
tralised information spreading. We use distributed hash
table (DHT) algorithms, a form of peer-to-peer network,
to build a structured overlay network without the need
of an administrative instance. With this overlay network
we are able to spread status information from each node
efficiently over the entire network.

In this paper we present an optimisation for the broad-
cast algorithms for information dissemination published
in [8]. In these broadcast algorithms, we use the structure
of DHTs for information dissemination in distributed
systems. In the used DHT algorithms the node IDs are
generated randomly before joining the network. This is
the default behaviour described by the used DHT algo-
rithms. By using the DHT algorithms for information
dissemination we discovered a correlation between the
distance of the sender’s and receiver’s node IDs. Our
research showed that the shorter the distance between
the node IDs the bigger the packages sent. In this paper
we present an enhanced joining algorithm to assign close
node IDs to nodes with good network connection. This
optimisation decreases the hop count of large packages.

The rest of this paper is organised as follows. In sec-
tion 2 we give a short introduction into distributed hash
tables and present our previously published broadcast al-
gorithms. Related work is shown in section 3. Section
4 introduces the enhanced joining algorithm for the op-
timised ID assignment. We describe the evaluation sce-
nario for the presented algorithm and give the evaluation
results in section 5. Section 6 concludes the paper.

2 Distributed Hash Tables

In 2001 the first distributed hash table (DHT) algorithms
were published. DHT algorithms are decentralised, scal-
able, fault-tolerant peer-to-peer algorithms which pro-
vide a lookup service similar to a hash table. DHTs store
key-value-pairs. The key determines on which node the
pair is stored. These first algorithms are Chord, Pastry,
Tapestry, and CAN.

In Chord [9], the nodes are arranged in a ring. Each
node is connected to the nodes with the closest lower and
higher node ID. The maximum size of the ring is 2m,
the node IDs range from 0 to 2m− 1. Each node stores
short cuts to peers with a distance of 2n,n∈ [0,m−1] in a
local routing table. If a Chord node cannot find the node
with the searched ID the node with the next higher ID is
used. The maximum number of nodes in the Chord ring
must be known by each node to determine the size of the
routing table.

Tapestry [10] and Pastry [11] are two similar peer-to-
peer networks which both use the Plaxton routing algo-
rithm [12]. In Plaxton node IDs are represented by num-
bers with radix m and length n. This leads to a maximum
of mn nodes. Each node has a local routing table with
m−1 rows and n columns. The first column stores node
IDs which have no common prefix with the local node
ID. The common prefix of the node IDs in each column
is one digit longer than the prefix of the previous col-
umn. The last column stores node IDs which match the
local node ID in all but the last digit. The digit after the

matching prefix is defined by the row. If the prefix and
the digit after the prefix match the first digits of the local
node ID the entry is skipped, therefore only m− 1 rows
are needed. Table 1 shows the routing table for the node
23012 with empty entries for matching prefix IDs. En-
tries containing an x allow more than one specific ID as
long as the prefix matches. The routing table stored in
the node only contains non-empty cells. Plaxton uses a
proximity metric to decide which node with a matching
prefix is selected. If no node ID with a given prefix exists
the entry will be left empty. Hop count or ping time can
be used as metrics to determine the best node.

0-xxxx 2-0-xxx 230-0-x 2301-0
1-xxxx 2-1-xxx 23-1-xx 2301-1

2-2-xxx 23-2-xx 230-2-x
3-xxxx 23-3-xx 230-3-x 2301-3

Table 1: Plaxton Routing Table for the Node 23012

CAN [13] uses an n-dimensional torus with coordi-
nates from 0 to m−1 for each dimension. The node IDs
represent coordinates on the surface of this torus, which
leads to a maximum of mn nodes. Each node is respon-
sible for an area on the torus containing the node’s ID.
A node’s routing table consists of the node IDs of the
direct neighbours in each direction of the node’s area.
When a new node joins the network, an area is divided.
Each node has at least one neighbour in each direction.
A message is passed to that neighbour that is closest to
the destination.

All three routing algorithms guarantee that each item
can be located within a bounded number of hops, using
only a small routing table on each host. The hops are
the number of nodes a message must pass to reach its
destination in the overlay network. No prediction over
the hops within the physical network can be given.

2.1 Spreading Algorithms

In the following the term message denotes the status in-
formation from one node which should be spread. Pack-
ages are sent from one node to another containing mul-
tiple messages. A package is compiled by the sending
node and contains all messages for the receiving node.
The receiving node opens all received packages and re-
arranges the messages according to the node ID of the
next hop into new packages for sending.

Our goal is to spread status information from each
node to all other nodes. In our middleware, all nodes
send messages in predefined time intervals. A time in-
terval is larger than the time a message needs to travel to
other nodes, therefore each package is delivered within

0

2 4

3 5 6

7

1

[1,2) [2,4) [4,0)

[3,4) [5,6) [6,0)

[7,0)

Figure 1: Broadcast Tree of a Chord network with 8
nodes

one interval. Within each time interval all nodes send
packages to their neighbours containing all messages for
them and additional information on how to forward the
messages. We use this time interval to loosely synchro-
nise the nodes. A step is the duration of this time inter-
val. A message travels one hop per step. The informa-
tion is sent continuously. We combine several messages
with identical receivers into one package, to minimize
the network overhead. Each message contains the sta-
tus information from the node and a spreading interval.
The spreading interval informs the node to which other
node the information must be sent. The interval changes
depending on the used spreading algorithm. The receiv-
ing node forwards a message to its neighbours within the
spreading interval and divides the spreading interval for
the new messages. Because of the well defined structure
of the DHT routing tables the spreading intervals don’t
overlap. The full discussion and evaluation of the algo-
rithms can be found in [8].

2.1.1 Chord

To spread information we use trees built from the neigh-
bourhood relationship of the Chord algorithm. Figure 1
shows the trees for all nodes in a Chord network with
8 nodes. The initiating node sends its information and
spreading instructions to all its neighbours. In Chord, the
spreading instruction is the interval between two neigh-
bour’s node IDs. The neighbours then forward the mes-
sage to their neighbours within the spreading interval and
adapt the spreading interval. This Chord based informa-
tion dissemination algorithm with k nodes can reach ev-
ery node in dlog2ke steps.

2.1.2 Plaxton

For Plaxton networks, we use a spreading algorithm sim-
ilar to the one used in Chord networks. Each node sends

Figure 2: Area division in a 2-dimensional unfolded
CAN torus

its messages to all neighbours and specifies the area to
spread the information. Since the IDs in the routing table
are organised by the similarity with the local node ID,
the messages are forwarded in a different way than with
Chord. Instead of a spreading interval with node IDs the
spreading algorithm for Plaxton uses the length of the
common prefix. The column number of the neighbour’s
node ID in the node’s routing table cs is identical with the
length of the common prefix. Therefore, we use the po-
sition in the routing table instead of comparing the node
IDs each time. The initiating node sends messages with
the routing table column number cs to all of its neigh-
bours. The receiving node spreads the information to all
neighbours which are stored in columns c > cs and uses
the column number c as new spreading instruction. A
Plaxton node has more neighbours than a Chord node. It
requires dlogm ke steps, meaning the information dissem-
ination is faster than with Chord. Less steps are required
than in CAN based information dissemination but more
messages and packages per step are sent.

Plaxton uses a proximity metric to choose neighbours
if more node IDs match the required prefix. The chance
of finding a node with a good connection increases if
more node IDs match the required node ID prefix. In
the first column of a Plaxton node routing table all but
the first digit can be chosen freely from a large number
of matching nodes. Therefore nodes with good connec-
tion can be chosen as neighbours. With each column
the length of the prefix increases. In the last column of
the routing table the node IDs must match the searched
node ID completely and the proximity metric has no in-
fluence. Therefore the proximity metric has more im-
pact on neighbours with shorter common prefix and thus
higher distance to the local node ID.

2.1.3 CAN

In CAN the node IDs represent the position on the sur-
face of an n-dimensional torus. The spreading interval
must be a part of this torus. Before sending new informa-

tion the node divides the surface in 2n sections as shown
in figure 2 for a 2-dimensional torus. The initiating node
sends its messages into all 2n directions. A receiving
node is always in the corner of the new cover area and
a message is only forwarded into n directions. Since we
use an n-dimensional torus the maximum distance a mes-
sage can travel in one direction is (k

2) hops in a CAN net-
work with k nodes per edge. This leads to n(k

2) hops to
reach the farthest node with n dimensions.

2.2 Evaluation Results

Our research in [8] has shown, that we can use these
DHT based algorithms for information dissemination to
spread the information to all nodes. Plaxton and Chord
do not send redundant messages. The CAN based algo-
rithm divides the surface of the torus into spreading in-
tervals. It is possible that a CAN node is responsible for
portions of different spreading intervals. Therefore some
CAN nodes will receive the same message with different
spreading intervals. A Plaxton node has the most neigh-
bours, therefore the node sends the most packages. The
Plaxton based algorithm spreads the information fastest.
The CAN based algorithm spreads the information slow-
est, but has the least number of neighbours and number of
packages per step. Our evaluations also show that large
messages are sent to neighbours with a close node ID
in the Chord and Plaxton based algorithm. In the CAN
based algorithm the package size is not related to the dis-
tance between the node IDs. A CAN node sends a mes-
sage to all nodes in the spreading interval. The spreading
interval does not decrease with the distance of the node
IDs like in Chord or Plaxton. As mentioned above, Plax-
ton’s proximity metric works best if the common pre-
fix with the neighbour’s node ID is short. Therefore the
Plaxton’s built-in optimisation has little impact on the
network utilization when used for information dissemi-
nation.

2.3 Challenges

For information dissemination the node status informa-
tion must reach the entire network. Therefore we must
send messages to nodes with a great distance. To opti-
mise the network usage we want to minimise the package
size for distant nodes. Our evaluation showed, that large
packages are sent to nodes with a close node ID. There-
fore we are looking for ways to assign nearby nodes close
node IDs. The used algorithm should not put additional
strain on the network. Because of the decentralised na-
ture of our middleware we are looking for an algorithm
which works decentralised.

3 Related Work

Proximity aware Peer-to-Peer networks has inspired a lot
of research. Ratnasamy et al. presented the topology-
aware CAN [14] in 2002. Topology-aware CAN requires
landmark servers. Each node calculates the distance to
these servers. The nodes are put in bins according to
their distance to the different landmark servers. A new
node chooses an ID near the nodes in its bin. Topology-
aware CAN fits the overlay network to the physical net-
work and thereby optimises the network usage. In [15]
Xu et al. optimise CAN and use in the first step landmark
servers for rough grouping. In the second step nodes with
a close match measure their round-trip time (RTT) and
then connect to close nodes. This method performs bet-
ter than other methods which measure the RTT to all or
random nodes. The landmark servers are single points
of failure. Organic Computing Systems are failure tol-
erant and decentralised which contradicts the concept of
landmark servers.

Xiong et al. presented Chord6 [16] in 2005. Chord6 is
an enhancement for Chord on IPv6 networks. The Chord
ID is generated by hashing the IPv6 address. The first
half of the Chord ID is the hash of the first digits of the
IPv6 address. The last part of the Chord ID is the hash
of the remaining IPv6 address. This leads to close Chord
IDs if the Chord nodes are in the same subnet. Our mid-
dleware can handle a lot of different devices with differ-
ent connection types (e.g. Bluetooth). Therefore we can
not use network addresses for ID generation.

PChord [17] enhances the Chord algorithm to use a
proximity list in addition to the routing table. The prox-
imity list contains nodes with low RTT. To determine
which node should be placed into the proximity list the
node checks the RTT on each received message. The
proximity list is used to route messages to nearby nodes
instead of the routing table. Using DHT algorithms for
information dissemination presents new problems. For
information dissemination we must cover the entire net-
work. PChord introduces additional routing information
to reach the destination node faster, but destroys the well
defined structure of the DHT. Therefore we cannot guar-
antee that no redundant messages will be sent.

Kyasanur et al. [18] presented an algorithm to spread
information through gossiping. Each node forwards a
message with a given probability to all nearby neigh-
bours. The messages can be spread in the entire network
with a high probability. The authors presented a novel
algorithm to reduce the message overhead and send the
messages only over short distances in the physical net-
work. This approach still produces a message overhead
since a message is sent to all neighbours and a node can
receive the same information twice. By using Chord or

Plaxton we can guarantee that the information reaches
the entire network without any redundant messages.

Ucan et al. [19] investigated information dissemina-
tion in sensor networks. They presented a way to com-
bine messages from multiple senders to minimise the
network traffic by building a Minimal Spanning Tree
(MST). This MST construction is topology aware and
chooses nodes with a good connections. Each node
must compute the MST before sending the first broad-
cast, which is very expensive. By using DHT networks
we can use the available routing information to build a
broadcast tree for all nodes.

4 ID Assignment Algorithm

To improve the network utilization in information dis-
semination we looked for a way to assign close node IDs
to nearby nodes. According to our analysis of the used
spreading algorithms this would shorten the distance the
largest packages must travel in the underlying network.

4.1 Original Algorithm
In the used DHT algorithms a node generates a random
node ID prior to joining the network. The new node re-
quires at least one node which is already part of the DHT.
In most cases such a node is not known a priori, there-
fore the joining node searches a node in the DHT. Most
networks provide a way to discover other devices in the
network. The joining node uses these techniques to find
other devices in the network. After the devices are dis-
covered the joining node determines if the device is part
of the DHT. If a peer is found the node joins the DHT.
The used DHT algorithm determines to which nodes the
joining node must connect. As soon as one peer in the
DHT is known the new node searches for nodes to con-
nect with. The number of possible IDs is by magnitudes
larger than the used node IDs. This minimises the pos-
sibility of an ID collision. In the unlikely event that a
node with the generated ID is already part of the DHT
a new ID is generated and the algorithm starts from the
beginning. This algorithm is shown in algorithm 1.

4.2 Enhanced Algorithm
We propose a new approach to generate the node ID after
the node IDs of nearby nodes are known. Nearby nodes
can be found with a proximity metric. Examples for such
a metric are bandwidth, hop count or travel time from the
joining node. Like the original algorithm our enhanced
algorithm discovers some nodes that are already part of
the DHT. In difference to the original algorithm the en-
hanced algorithm waits till a few nodes respond. The
joining node extracts the hop count or round-trip time

Algorithm 1: Joining Algorithm

1 generate node ID;
2 if no node in DHT is known then
3 search nodes;
4 end
5 find nodes to connect with;
6 if ID is already used then
7 go to line 1;
8 end
9 join network;

from the response package. With this information the
node IDs with the best connections are determined. Be-
cause all nearby nodes have close IDs the joining node
receives responses from all nearby nodes and can deter-
mine unused node IDs. The joining node than chooses an
unused node ID which is close to the ID of the nodes with
the best connection. The enhanced joining algorithm is
shown in algorithm 2.

With our enhanced joining algorithm we can generate
a network in which the node IDs of nodes with good con-
nection are numerically closer. Since all nearby nodes
have a similar node ID a joining node receives a list of
all used node IDs. This minimises the number of node ID
conflicts. We cannot eliminate the conflicts entirely since
it is possible that e.g. node 71 and 73 have a good con-
nection to the joining node but node 72 is already present
in the network with no good connection to the joining
node. In this example the joining node must choose a
different ID which places it as close as possible to the
good connected nodes.

The enhanced joining algorithm can not ensure, that
only nodes with good connections have nearby node IDs
or that all nearby node IDs have a good connection. This
is not necessary since nodes with a greater distance to
nodes with close node IDs still have a better perfor-
mance than nodes in a DHT with the original joining
algorithm. Nevertheless the new joining algorithm al-
lows nodes with a good connection to be neighbours in
the used DHT network.

The resulting DHT possesses node clusters. In nor-
mal DHT this is undesirable and can lead to performance
degradation. For information dissemination these clus-
ters do not affect the performance. When single mes-
sages are routed in a DHT a node cluster could lead to
a longer path length in some cases. For information dis-
semination a message must reach each node therefore the
maximum path is always the longest path in the DHT.
This longest path is determined by the used DHT algo-
rithm and the size of the ID space and is not influenced
by the node placement.

Algorithm 2: Enhanced Joining Algorithm

1 search nodes;
2 while wait for timeout do
3 collect response;
4 determine link quality for responding node;
5 end
6 find nodes with best link quality;
7 find unused node ID close to nearby nodes;
8 assign node ID;
9 if ID is already used then

10 go to line 7;
11 end
12 join network;

5 Evaluation

5.1 Analysis
In this section we present an analytical analysis of the
original and the enhanced joining algorithm. Both algo-
rithms send messages to find nodes in the DHT. Let a
joining node send nsearch messages to find nodes in the
DHT. The original algorithm waits for one answer and
joins the DHT. Since the responding nodes do not know
if another node has already answered all nodes receiving
a search request respond. A node must build its routing
table after joining the DHT. The number of messages re-
quired for the search varies for each algorithm. Let nrt
be the number of messages the joining node requires to
build its routing table.

By using the enhanced joining algorithm a node also
sends nsearch messages to find other nodes. The joining
node waits for more response messages. In difference
to the original algorithm the response of all nodes are
used. At this point the number of messages is identical
to the original algorithm. The joining node chooses an
unused node ID close to the node ID of nearby nodes.
This requires no additional messages. After choosing the
node ID the joining node builds its routing table. Since
the node already knows nodes with close node IDs it can
fill some entries in the routing table without sending a
message. To find routing table entries the joining node
must send messages to find nodes with a greater distance
in the ID space. This means that the number of messages
required to find neighbours n′rt is smaller than the number
of messages required by the original algorithm nrt .

5.2 Evaluation Scenario
We used a network simulator to evaluate the enhanced
joining algorithm. In our evaluation scenario the devices
are connected over a physical network. The physical net-
work forms a tree with depth 3. We choose the size of the

IDs to store 1024 nodes, 1024 being a valid network size
for all three algorithms. This leads to a Chord exponent
of 10 (210 = 1024) and a Plaxton exponent of 5 using
radix 4 (45 = 1024). In CAN we use a 2-dimensional net-
work with a size of 32 in each dimension (322 = 1024).
We build a physical network with 1024 nodes.

For the simulation we populate the DHT overlay net-
works with 50 to 1024 nodes in steps of 50. The remain-
ing nodes are not a part of the DHT but were used to cal-
culate the physical network hops. We simulate 10 runs
for each number of nodes and each algorithm to reduce
the impact of bad ID assignments. In the first simulation
we use the original algorithm (algorithm 1). This means
that the IDs are chosen randomly before the node joins
the network. The second simulation uses the enhanced
joining algorithm (algorithm 2) to choose the ID of a
joining node in respect of nearby node IDs. In the ini-
tial phase of the simulation the nodes were chosen and
the DHT network is build. After the DHT network is
complete we start the evaluation. Each node sends mes-
sages in a predefined time interval to its neighbours. The
neighbourhood relation is defined by the used DHT algo-
rithm. Messages are combined into packages according
to their receiver. Due to the determinism of the algo-
rithms each message from one node is sent to the same
nodes on its way through the network. We stop the eval-
uation when each node possesses information about each
other node. To compare the joining algorithms we mea-
sure the packages size by counting the contained mes-
sages, the hops for each package and the package count
for each physical connection. In this evaluation scenario
we are concentrating on the hop count and therefore use
the hop count as proximity metric. If the travel time or
the bandwidth needs to be minimized these parameters
should be used for the proximity metric.

5.3 Simulation Results

In this section we exemplary discuss results for networks
with 450 nodes. Our evaluation shows that there is no
significant difference between networks with different
populations. Figure 3 shows the distribution of the pack-
age size and the hop count of a package for networks
with random ID assignment (left) and the enhanced join-
ing algorithm (right).

Figures 3a and 3b graphs show the CAN based algo-
rithm. In CAN the relation between the node ID distance
and the package size was not high in our previous evalua-
tion. The two graphs confirm our research. The improve-
ment is not significant for the CAN based algorithm.

Figure 3c shows the packages size and the hop count
for Chord networks with the original joining algorithm.
Most large packages require over 4 hops to reach their
destination. In figure 3d the distribution for the enhanced

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250

H
op

 C
ou

nt

Package Size

(a) Hop Count and Package Sizes in CAN with Random ID
Assignment

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250

H
op

 C
ou

nt

Package Size

(b) Hop Count and Package Sizes in CAN with Enhanced ID
Assignment

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250 300 350 400 450

H
op

 C
ou

nt

Package Size

(c) Hop Count and Package Sizes in CHORD with Random ID
Assignment

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250 300 350 400 450

H
op

 C
ou

nt

Package Size

(d) Hop Count and Package Sizes in CHORD with Enhanced
ID Assignment

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250 300 350 400 450

H
op

 C
ou

nt

Package Size

(e) Hop Count and Package Sizes in Plaxton with Random ID
Assignment

 0
 1
 2
 3
 4
 5
 6
 7

 50 100 150 200 250 300 350 400 450

H
op

 C
ou

nt

Package Size

(f) Hop Count and Package Sizes in Plaxton with Enhanced ID
Assignment

Figure 3: Hop Count and Package Sizes in different networks with random ID assignment (left) and the enhanced
algorithm (right)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 100 200 300 400 500 600 700 800 900 1000 1100

H
o
p

 C
o
u
n
t

Network Population

original Plaxton
enhanced Plaxton

original Chord
enhanced Chord

original CAN
enhanced CAN

Figure 4: Hops per Network Population

Figure 5: Trees of a Chord network with 8 nodes

joining algorithm are shown. In contrast to the original
algorithm the enhanced algorithm reduces the hop count
for large packages. Only a few packages with more than
200 messages require more than 4 hops.

Figure 3e shows that the hop count for large messages
is high for Plaxton networks with the original algorithm.
The enhanced algorithm reduces the hop count for large
messages as shown in figure 3f.

Figure 4 shows the sum of required hops over all pack-
ages for all three information dissemination algorithm
with different network populations. The figure shows
that the enhanced joining algorithm significantly reduces
the hop count of the packages for all three DHT broad-
cast algorithms and over all network populations. This
behaviour can be explained by looking at the DHT broad-
cast algorithms.

Figure 5 shows all broadcast trees in the a Chord net-
work with 8 nodes. The nodes sending information are
placed at the roots. The originating nodes send the in-
formation to all nodes in the local routing table. The
receiving nodes forward the message only to other nodes
within the spreading interval. In the figure all messages
send from node 0 are highlighted. 4 messages are sent to
node 1, 2 messages to node 2 and only 1 message is sent
to node 4. This means that only half the messages are
sent when the distance between the node IDs doubles.
All other nodes have the same behaviour.

To spread status information a Plaxton node sends
messages to all nodes stored in the routing table. With
each hop the number of used columns decreases. This
means that the nodes in the first column of the routing
table are only used by the initiating node. All nodes that
forward a message send the information to the neigh-
bours stored in the last column. The node IDs in the
last column are closer to the local node ID because of the
common prefix.

In CAN each node sends messages to its neighbours
independently of the distance between the node IDs. By
placing neighbours in the same network segment we are
able to reduce the hops of the packages.

6 Conclusion

We showed that the placement of the node IDs is an im-
portant factor for information spreading algorithms. The
enhanced joining algorithm for our DHT broadcast algo-
rithm can reduce the hop count of large packages. Since
each node must receive status updates it would decrease
the speed of the information dissemination if we send
messages only to nearby nodes. Therefore the enhanced
joining algorithm can not eliminate all packages with
high hop count but ensures that only small packages are
send over the entire network.

The enhanced joining algorithm can also be used to
optimise more than one parameter in DHT broadcast al-
gorithms. By changing the proximity metric to two or
more parameters can be considered. A weighted metric
can be used to set the importance by more parameters.
The influence of such a metric should be further investi-
gated.

References

[1] Kephart, J., Chess, D.: The Vision of Autonomic
Computing. IEEE Computer (Jan 2003) 41–50

[2] Müller-Schloer, C.: Organic Computing - On the
Feasibility of Controlled Emergence. In: Interna-
tional Conference on Hardware/Software Codesign
and System Synthesis, 2004, IEEE (2004) 2–5

[3] Ramirez, A.J., Knoester, D.B., Cheng, B.H.,
McKinley, P.K.: Applying Genetic Algorithms to
Decision Making in Autonomic Computing Sys-
tems. In: Proceedings of the 6th international con-
ference on Autonomic computing. ICAC ’09, New
York, NY, USA, ACM (2009) 97–106

[4] Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Un-
gerer, T.: Realizing self-x properties by an auto-
mated planner. In: Proceedings of the 8th ACM

international conference on Autonomic computing,
ACM (2011) 185–186

[5] Prothmann, H., Rochner, F., Tomforde, S., Branke,
J., Müller-Schloer, C., Schmeck, H.: Organic Con-
trol of Traffic Lights. In: Autonomic and Trusted
Computing. Springer (2008) 219–233

[6] Roth, M., Schmitt, J., Kiefhaber, R., Kluge, F.,
Ungerer, T.: Organic Computing Middleware for
Ubiquitous Environments. In Müller-Schloer, C.,
Schmeck, H., Ungerer, T., eds.: Organic Comput-
ing A Paradigm Shift for Complex Systems. Auto-
nomic Systems. Springer Basel (2011) 339–351

[7] Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Un-
gerer, T.: Using an Automated Planner to Con-
trol an Organic Middleware. In: Self-Adaptive and
Self-Organizing Systems (SASO), 2011 Fifth IEEE
International Conference on, IEEE (2011) 71–78

[8] Roth, M., Schmitt, J., Kluge, Florian und Ungerer,
T.: Information Dissemination in Distributed Or-
ganic Computing Systems with Distributed Hash
Tables. In: The 10th IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing,
EUC 2012, IEEE (2012)

[9] Stoica, I., Morris, R., Karger, D., Kaashoek, M.,
Balakrishnan, H.: Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications.
ACM SIGCOMM Computer Communication Re-
view 31(4) (2001) 149–160

[10] Zhao, B.Y., Kubiatowicz, J., Joseph, A.D., Zhao,
B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry:
An Infrastructure for Fault-tolerant Wide-area Lo-
cation and Routing. Technical report, University of
California at Berkeley (2001)

[11] Rowstron, A., Druschel, P.: Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-scale Peer-to-Peer Systems. In: Middleware
2001, Springer (2001) 329–350

[12] Plaxton, C., Rajaraman, R., Richa, A.: Access-
ing Nearby Copies of Replicated Objects in a Dis-
tributed Environment. Theory of Computing Sys-
tems (1999) 241–280

[13] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
Shenker, S.: A scalable Content-Addressable Net-
work. ACM SIGCOMM Computer Communica-
tion Review (2001) 161–172

[14] Ratnasamy, S., Handley, M., Karp, R., Shenker,
S.: Topologically-aware overlay construction and

server selection. In: INFOCOM 2002. Twenty-
First Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings.
IEEE, IEEE (2002) 1190–1199

[15] Xu, Z., Tang, C., Zhang, Z.: Building Topology-
Aware Overlays using Global Soft-State. In: Dis-
tributed Computing Systems, 2003. Proceedings.
23rd International Conference on, IEEE (2003)
500–508

[16] Xiong, J., Zhang, Y., Hong, P., Li, J.: Chord6:
IPv6 based topology-aware Chord. In: Auto-
nomic and Autonomous Systems and International
Conference on Networking and Services, 2005.
ICAS-ICNS 2005. Joint International Conference
on, IEEE (2005)

[17] Feng, H., Minglu, L., Minyou, W., Jiadi, Y.:
PChord: improvement on Chord to achieve better
routing efficiency by exploiting proximity. IEICE
transactions on information and systems (2006)
546–554

[18] Kyasanur, P., Choudhury, R., Gupta, I.: Smart Gos-
sip: An Adaptive Gossip-based Broadcasting Ser-
vice for Sensor Networks. In: IEEE International
Conference on Mobile Adhoc and Sensor Systems
(MASS), IEEE (2006) 91–100

[19] Ucan, E., Thompson, N., Gupta, I.: A Piggyback-
ing Approach to Reduce Overhead in Sensor Net-
work Gossiping. In: Proceedings of the 2nd inter-
national workshop on Middleware for sensor net-
works. MidSens ’07, New York, NY, USA, ACM
(2007) 19–24

