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Abstract

Several applications of Organic Computing (OC) sys-
tems as well as Autonomic Computing (AC) systems are
based on self-optimising multi-agent systems, i.e. dis-
tributed autonomous devices. One of the main chal-
lenges of these is to emerge towards a global optimal
system state based only on local information for each
agent. In order to reach a global optimal state some
agents need to avoid selfish actions and instead consider
the benefits of their actions for the whole system. Choos-
ing the action of an agent is often based on solving op-
timisation problems, which can be modelled as a dis-
tributed constraint optimisation problem (DCOP). This
paper presents a new asynchronous approach to solve
DCOP by extending only the underlying local objective
function of each agent. The main benefit of this approach
is the avoidance of an additional complex decision mak-
ing algorithm that may interfere with the original task of
an agent and reduces the scalability of the system. Ex-
emplary, a distributed constraint optimisation problem is
considered to quantify the effectiveness and computation
as well as communication cost of the discussed approach.

1 Introduction

Self-organising systems within Organic Computing (OC)
as well as Autonomic Computing (AC) often consist of
multi-agent systems, i.e. distributed computing devices,
which only interact based on local decisions among
themselves. A large class of self-organising systems are
actually based on self-optimising systems, where each
device try to solve a local optimisation problem [10].
Self-optimising systems have been applied in several
fields, such as traffic networks [12, 15], communication
networks [6] and wireless sensor networks [13]. In or-
der to find the best set of actions for a distributed self-
optimising system at least some agents need to avoid
selfish optimisation tasks where it did not consider its in-

fluence on other agents during the optimisation process.
For example, in order to reduce the overall workload of a
computer cluster, in general the most suited, e.g. power-
ful node needs to accept more work than any other node
instead of reducing its local workload by declining all
work request.

The optimisation process within self-optimising sys-
tems can be divided into reaching an optimal solution
and maintaining it during runtime. The task of reaching
an optimal solution requires to cover a large part of the
search space, if not the whole search space, and there-
fore may require a lot of computation time. Besides the
initialisation step, it may also be necessary to redeter-
mine, i.e. reach again an optimal solution after funda-
mentally changes within the optimisation problem. In
general, maintaining the solution requires a much lesser
computation time in comparison to reaching it, as it only
adjusts a yet optimal solution in occurrence of small al-
terations within the optimisation problem. However, the
acceptable computation time for determining an optimal
solution during runtime is usually also significant lower
compared to the computation time restrictions during de-
sign time. Therefore, redetermining an optimal solution
during runtime without valid assumptions based on pre-
vious optimisation steps is the most crucial part of the
optimisation process within self-optimising system. This
paper also focus on reaching an optimal solution.

Agents within OC systems influence another by local
actions which are mostly based on solving local optimi-
sation problems. In order to reach the global optimal
solution, the mutual influence between agents need to be
taken into account. Consider the synchronisation of traf-
fic lights as a self-optimising process [7]. It assumes that
the traffic flow is completely controlled by the phase plan
of intersections. The goal of this task is to reduce the
overall waiting time of the vehicles within the system.
Therefore, actions that overload an intersection need to
be avoided. Figure 1 shows a partial view of a traffic sys-
tem consisting of two intersections in which one needs
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to decide if the traffic should flow from intersection A
to B, based on the local information of intersection A.
Assume that intersection A should only allow the traffic
to flow towards B, if this intersection directs the traffic
towards B. Without including information about the in-
fluence on intersection B, it is not possible to conclude
if allowing vehicles to travel to intersection B will result
in an overload of the system, i.e. intersection B (see Fig-
ure 1a). However, increasing the horizon about the influ-
ence on neighbouring intersections as shown in Figure 1b
allows to conclude what the action has the higher bene-
fits. However, without synchronisation between agents,
an uncertainty about the correctness of the assumed in-
fluence remains.
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(b) With consideration on the influence between the intersec-
tions

Figure 1: Partial view of a traffic system

We differentiate between three classes, e.g. states of
optimisation problems, based on the given information
about the influence on neighbouring agents. An optimi-
sation problem is thereby either in a a) loosely, b) par-
tially connected or c) (fully) connected state (see Fig-
ure 2). Within the loosely state, the local informations of
an agent did not provide information about the influence
on neighbouring agents, while in the partially connected
states, subgroups of agents can conclude their mutually
interference. After reaching the (fully) connected state,
the system provides complete information of the influ-
ence between agents. Based on this information, an op-
timisation problem can be modelled as a distributed con-
straint optimisation problem (DCOP) [3]. This paper fo-
cus on such problems and therefore requires that a (fully)
connected state was reached a priori to the proposed ap-

proach.

(a) Loosely (b) Partially connected (c) Connected

Figure 2: Differentiation between states of optimisation
problems based on information about the influence on
neighbouring agents. Dotted lines denote interactions
without information on their influence, in contrast to
solid lines

A DCOP can be modelled as a graph, where each
agent is represented by a node and each edge denotes a
soft constraint between agents, such that the most desir-
able joint action is favoured. These soft constraint are
equivalent to the evaluation of the benefit of an agent
based on the influence with another agent. Later in this
paper the concept of soft constraint will be formally in-
troduced.

1.1 Related Work

DCOP algorithms can be divided into complete and in-
complete algorithms. Complete DCOP algorithms are
guaranteed to find global solutions while incomplete al-
gorithms may settle with a local solution. However, in-
complete DCOP algorithms often achieve satisfying so-
lution with a much lower computation and communica-
tion cost [17].

Complete DCOP algorithms such as Optimal Asyn-
chronous Partial Overlay (OptAPO) [8] consist of at
least one central agent that collects information on a
subset of other agents and guide the optimisation pro-
cess. DCOP algorithms without central agents like
Asynchronous Distributed optimisation (ADOPT) [9],
Branch-and-Bound ADOPT (BnB-ADOPT) [17] and
No-Commitment Branch and Bound (NCBB) [1] arrange
the agents into a tree initially and make either use of
backtracking or branch and bound. The tree ordering
allows to compute sibling sub-trees independently dur-
ing the optimisation process. Recent interest on incom-
plete DCOP algorithms is focused around k-optimal al-
gorithms which guarantee to find solutions that cannot
be improved by changing only k agents at most [11].
However, DCOP algorithms are limited to optimisation
problems with finite domains in order to guarantee to
find a global or at least k-optimal solution in a reason-
able amount of time without further information on the
problem, such as derivations and convexity.
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1.2 Main idea and structure of the paper
This paper presents an approach to optimise distributed
optimisation problems by extending the local objective
function of an agent. The extended objective function
works by adding the current objective value of neigh-
bouring agents upon its own. The objective value of
neighbouring agents are thereby be shared every time
their own action changes. The main benefit of this ap-
proach is the avoidance of an additional complex deci-
sion making algorithm. This approach can be used with
continuous domains in contrast to the discussed DCOP
algorithms. However, note that this paper did not pro-
vide an optimisation algorithm itself but rather an exten-
sion on the local objective functions.

Sect. 2 briefly reviews the fundamentals of distributed
constraint optimisation problems. In sect. 3 the proposed
approach is elucidated. Sect. 4 demonstrates the capabil-
ity of the proposed optimisation procedure. Exemplary,
a distributed constraint optimisation problems is consid-
ered in order to quantify the effectiveness of the proposed
approach. After a brief description of the optimisation
problem, the results of the optimisation procedure are
presented and discussed. Sect. 5 concludes this paper
and discusses future work.

2 Optimisation Problem

An optimisation problem is the problem of finding the
best (acceptable) solution for a given objective function
within a reasonable amount of time. Formally, an op-
timisation problem is defined by an objective function
F : D→ R, the search space S ⊆ D and a goal. D is
the domain of the function F . The search space S is the
space of all acceptable elements of the domain. An ele-
ment x ∈ S of the search space is called a solution. Com-
monly, the goal is either to find the minimal or maximal
value of the objective function within the search space.
By convention, the optimisation problem is viewed as a
minimization problem.

minimize
x∈S

F(x), F : S→ R. (1)

2.1 Distributed Constraint optimisation
Problem

In a distributed constraint optimisation problem the solu-
tion x is separated in local solutions xi and the objective
function and a set of soft-constraints fi, j between these
partial solution are introduced. Formally, the domain
D and the objective function F is separated into a finite
amount of sub-domains Di ⊆D, i ∈ N, 1 < |N|< ∞, and
local objective functions fi : Di→R, i∈N, respectively.
N is the index set of the partitioning. The search space

and the solution of a sub-function fi is denoted as Si, and
xi ∈ Si, respectively. The solution x is denoted as:

x = {x0, . . . ,x|N|} (2)

A soft-constraint fi, j : Di×D j → R, i 6= j maps ev-
ery combination of partial solutions xi,x j to an objective
value. The local objective functions fi is obtained by
summation over the corresponding soft-constraint.

fi(xi) = ∑
j∈N\{i}

fi, j(xi,x j) (3)

Since DCOP is based on local information, the local
objective functions fi actually excludes global informa-
tion within the calculation. We will therefore redefine
the local objective functions fi in a more complex way,
based on local information only. Each agent i defines a so
called context Ci. A context Ci of agent i is a set of pairs
( j,x j) that contain the index j and the local solutions x j
of agent j based on the local information of the i-th agent.
Note that the context Ci does not necessarily includes the
actual solution x j of agent j. It may also include no pair
( j,x j) whether or not there is a soft-constraint between
agent i and j. This incompleteness of the context is also
the main reason why the index j is included. The local
objective functions fi is than redefined as:

fi(xi) = ∑
( j,x j)∈Ci

fi, j(xi,x j) (4)

The function that combines the sub-functions in order
to get the objective function F is denoted as Θ : RN→R.

F(x) = Θ( f1(x1), . . . , f|N|(x|N|)) (5)

We assume that the local objective functions fi and
the (global) objective function F share a common goal.
Thus, the optimisation of a local objective function fi
should also optimise the objective function F . There-
fore, we assume that the local objective functions can be
optimised independent of Θ.

F

argmin
x∈S

 fi(xi)
...

fi(x|N|)


= min

x∈S
F(x) (6)

Note that this did not implies that the local objective
function can be optimised independently from another.
In most recently discussed cases, Θ is assumed to be the
sum over all local objective values [16]. For simplifi-
cation, Θ is also assumed to be the sum over all local
objective values within this paper for all given examples.

Figure 3 shows an example of a DCOP represented by
a (soft-)constraint graph and a local objective function
that shall be equal for all agent i. Each agent is repre-
sented by a circle and chooses only one partial solution
xi ∈ {0,1}. The global optimal solution of this example
would be x = (1,1,1,1) with F(x) = 0.
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(a) Soft-constraint graph

xi x j fi, j(xi,x j)
0 0 1
0 1 2
1 0 2
1 1 0

(b) Local objective function

Figure 3: Example of a DCOP, based on the work of
Modi et al. [9]

3 Details of the Approach

The key idea behind this approach is to extend the exist-
ing local objective function, such that its optimal solu-
tion represents the most beneficial local action for the
whole system. Therefore, each agent includes within
the calculation of its local objective function fi, how a
solution xi affects the sub-function f j of other agents
j∈N \{i}. Instead of considering all other agents of the
whole system, we only include the influence on neigh-
bouring agents. An agent j is considered to be an neigh-
bour of agent i if they share a soft-constraint. The set of
all neighbours of agent i is denoted as Ωi.

Ωi := { j ∈ N \{i} : ∃ fi, j} (7)

∃ fi, j⇔∃(xi,x j) ∈ Si×S j : fi, j(xi,x j) 6= 0 (8)

The affect of a solution towards neighbouring agents is
measured by the soft-constraints of a given DCOP. After
choosing an action x, the current objective value fi(x) is
transferred to all local objective functions of neighbour-
ing agents j ∈ Ωi (see Figure 4). Note that whenever
an agent chooses another solution xi, all neighbouring
agents j ∈Ωi need to be informed in order to update their
context C j.

Agent B

Optimisation
algorithm

Objective
function

Agent A

Optimisation
algorithm

Objective
function

ExtendedExtended

Figure 4: Concept of the proposed approach

After receiving an objective value f r
j (xi) = f j(x j), it

is saved together with the last action xi that was send to
the agent j. The extended local objective function f e

i
of an agent i is then calculated by the summation of the
original objective function fi and all received objective
values of f r

j from neighbouring agents.

f e
i (xi) = fi(xi)+ ∑

j∈N\{i}
f r

j (xi) (9)

The following pseudo-code provides information
about the implementation of the presented approach. All

Algorithm 1: Basic implementation

// Initialisation
xi = Random
foreach j ∈Ωi do

Send xi to agent j
Receive x j from agent j

end
Update fi
// Barrier
foreach j ∈Ωi do

Send fi(xi) to agent j
Receive f j(x j) from agent j

end
Update fi
// Start
repeat

if (xnext
j , f j(xnext

j )) received from agent j then
Update f e

i
end
// Optimisation algorithm
xnext

i = argminx̃i∈Si
f e
i (x̃i)

if xi 6= xnext
i or f e

i (xi) 6= f e
i (x

next
i ) then

foreach j ∈Ωi do
Send (xnext

i , fi(xnext
i )) to agent j

end
end
xi = xnext

i
until termination

agents choose an initial solution randomly and send these
to all neighbouring agents in order to populate the con-
text Ci of each agent. After receiving all solutions x j
from neighbours j ∈Ωi, each agents calculates their ob-
jective value and sends these towards all neighbouring
agents. After this step is completed, each agent updates
the local objective value in case new information about
other agents is received. Based on the updated objective
function and a suited optimisation algorithm, the next so-
lution is obtained. Should neither the objective value nor
the solution have changed, the solution is assumed to be
static and no information is send to neighbouring agents,
reducing the communication cost. If either the objec-
tive value or the solution have changed, all neighbouring
agents are informed.

Consider the example given in Figure 3. Figure 5
demonstrates the process of the approach. Note that
this is an asynchronous approach and especially non-
deterministic.
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x1 = 0

x2 = 0x3 = 0

x4 = 0

(a) Soft-constraint graph

xi = 0 xi = 1
f1(x1) 3 + 5 6
f2(x2) 1 + 3 2
f3(x3) 2 + 5 4
f4(x4) 2 + 5 4

(b) Local objective function

x1 = 1

x2 = 0x3 = 0

x4 = 1

(c) Soft-constraint graph

xi = 0 xi = 1
f1(x1) 4 + 5 4
f2(x2) 2 + 3 0
f3(x3) 4 + 5 0
f4(x4) 3 + 5 2

(d) Local objective function

x1 = 1

x2 = 1x3 = 1

x4 = 1

(e) Soft-constraint graph

xi = 0 xi = 1
f1(x1) 6 + 5 0 + 0
f2(x2) 2 + 3 0
f3(x3) 4 + 5 0
f4(x4) 4 + 5 0 + 0

(f) Local objective function

Figure 5: Example of a the approach based on Figure 3

4 Example and Evaluation

In order to quantify the effectiveness of the discussed
procedure, an grid based constraint graph with an binary
domains Di = Si is considered (see Figure 6).

Di = Si := {0,1}, ∀i ∈ N (10)

1 2

3 4

(a) 2x2 grid

1 2 1

3 4 3

1 2 1

(b) 3x3 grid

Figure 6: Possible interactions between each agent for
the given example. The number in the middle describe
the type of the agent

The grid contains four types of agents. Each type of an
agent defines a different local objective function, which

are used to avoid a global optimal solutions that can be
obtained by ignoring the influence between agents. The
type t of each agent is given within the circle in Figure 6.
Based on this, the soft-constraints f t

i, j between the agents
are defines as:

f t
i, j(0,0) = (0+ t) mod 4

f t
i, j(0,1) = (1+ t) mod 4

f t
i, j(1,0) = (2+ t) mod 4

f t
i, j(1,1) = (3+ t) mod 4

(11)

The proposed approach is evaluated in comparison to
the complete DCOP algorithm ADOPT. The variable-
ordering a priori to ADOPT was done by the max-degree
depth first search approach [5]. We implemented both
ADOPT and the proposed approach based on Armadillo
C++ [14] and OpenMPI-1 [4] in order to run each process
asynchronously. The experiment was repeated 20 times
for each grid. Since the proposed approach did not ter-
minate, the optimisation was interrupted after 50ms and
the state of the agents within this moment are presented
in the following as the obtained solution.

Figure 7 compares the reached objective value of the
proposed approach against ADOPT. Note that ADOPT is
a complete DCOP algorithm as stated before and there-
fore always finds the global optimal solution. We use this
as an lower bound for the objective value. By calculating
the average solution in case of random optimisation, we
also get an upper bound for any useful approach [2].

The results demonstrate that the achieved solutions are
nearly optimal in case of both an 2x2 and 3x3 grid. Es-
pecially the obtained results for the 3x3 grid are very
promising. The optimal solution for the 2x2 grid is
x = (0,0,1,0) with an objective value F(x) = 6. The
upper bound of the objective value based on random op-
timisation is 12. In this case the presented approach
reached an average objective value of 8,1. In case of
the 3x3 grid the lowest objective value is 16 and the up-
per bound based on random optimisation 35. In this sce-
nario, the presented approach reached an average objec-
tive value of 19,1.

Besides these very promising results, the proposed ap-
proach reaches the worst objective value of 18 in the 2x2
grid case. This outlier can be explained by the sudden
termination after 50ms. Further analyses of this case
have shown that the local information of each agent di-
rected the solution soon after this instant below an objec-
tive value of 10.

5 Conclusion and Challenges

In this paper, a new asynchronous approach to solve
distributed constraint optimisation problems in self-
optimising multi-agent systems was presented. After a
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Figure 7: Results of the evaluation

short description of the main idea including a definition
of the given optimisation problems, the proposed pro-
cedure was explained in detail. Basically, it integrates
the influence on neighbouring agents into the the sub-
problem of an agent. Exemplary, a DCOP was consid-
ered to quantify the effectiveness of the procedure. The
results demonstrate that the proposed approach is able
reach a near optimal solution without the implementa-
tion of an additional complex decision making problem.
Considering this paper as a first step towards a new asyn-
chronous approach to solve distributed constraint optimi-
sation problems in self-optimising multi-agent systems,
the results are very promising.

While the results are very promising, we are currently
missing a formal proof about reaching local optimal of
our approach. Since this depends on the implementation
of a termination process, we will focus on stabilising the
local objective functions in order to reach a meaningful
termination criterion. Future work will also deal with
analysing the potential of combining classical optimisa-
tion algorithms for DCOPs with extending the objective
function.
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