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Abstract

The Artificial Hormone System (AHS) is a com-
pletely decentralized operation principle for a middle-
ware which can be used to allocate tasks in a system
of heterogeneous processing elements (PEs) or cores.
Tasks are scheduled according to their suitability for
the heterogeneous PEs, the current PE load and task
relationships. The AHS also provides properties like
self-configuration, self-optimization and self-healing
by task allocation. The AHS is able to guarantee real-
time bounds for such self-X-properties.

If a large number of PEs applies for a large
number of tasks a considerable amount of hormone
communication is produced to assign these tasks to
PEs. Until now this could be only circumvented by
limiting the number of tasks a single PE applies
for. However, this reduces the self-optimization
and self-healing properties because the number of
possible PEs to execute a tasks is limited in the
same way. In this paper we present the concept of
the task window as a new approach to significantly
reduce the communication overhead without affecting
self-optimization and self-healing properties. We
additionally show that the task window can even
improve the real-time behavior of task allocation.

Keywords: Artificial Hormone System, communication
overhead, task window, real-time, self-organization

1. Introduction

Embedded systems are growing more and more
complex because of the increasing chip integration
density, larger number of chips in distributed appli-
cations and demanding application fields (e.g. in cars
and in households). Self-organization is a key feature
to handle this complexity.

The Artificial Hormone System (AHS) was devel-
oped as a powerful tool to handle the complexity of
assigning tasks to processors or processor cores (so
called processing elements, PEs) in a self-organizing
and completely decentralized way. Features like self-
configuration (initial autonomous assignment of tasks
to PEs), self-optimization (autonomously moving tasks
to more suited PEs) and self-healing (autonomously
recovering failing tasks and PEs) allow an autonomous
and robust system operation without user intervention,
while the decentralized approach avoids single-points-
of-failure. The task assignment is done by the AHS in
real-time using different kinds of artifical hormones to
build up distributed closed control loops. While so-
called eager value hormones indicate the suitability
of a PE for a given task, antagonistic suppressor and
accelerator hormones balance the task distribution.
Suppressors are spread globally in the system and
reduce the impact of eager values thus limiting the
number of tasks assigned. Accelerators increase the
impact of eager values and are spread locally in the
neighborhood of a PE in order to cluster cooperating
tasks.

For initial self-configuration, each PE sends eager
value hormones for each task it applies for. If a large
number of PEs applies for a large number of tasks, then
a large number of eager values will have to be sent
and this would lead to a considerable communication
overhead. So far, the only solution to reduce such an
overhead is to limit the number of tasks a single PE
applies for. As a disadvantage, this reduces the self-
optimization and self-healing properties because the
number of possible PEs to execute a task is limited
in the same way. In this paper we present the novel
concept of the task window to significantly reduce
the communication overhead without affecting self-
optimization and self-healing properties. We addition-
ally show that the task window can even improve
the real-time behavior of task allocation in the self-



configuration phase.
The paper is structured as follows: After the moti-

vation we present related work in section 2. Section
3 sketches the basic ideas and operation principles of
the AHS. The concept of the task window to reduce
the communication overhead is presented in section
4. Furthermore, the impact of the task window on
worst-case time bounds for task allocation and different
variants to handle the task window are discussed there.
An evaluation is conducted in section 5, while section
6 concludes this paper.

2. Related Work

Self-organization has been a research focus for
several years. Publications like [1] or [2] deal with
basic principles of self-organizing systems, like e.g.
emergent behavior, reproduction, etc. Regarding self-
organization in computer science, several projects and
initiatives can be listed.

IBM’s and DARPAS’s Autonomic Computing
project [3], [4] deals with self-organization of IT
servers in networks. Several so called self-X prop-
erties like self-optimization, self-stabilization, self-
configuration, self-protection and self-healing have
been postulated. The MAPE cycle consisting of
Monitor, Analyze, Plan and Execute was defined to
realize these properties. This MAPE cycle is executed
in the background and in parallel to normal server
activities similar to the autonomic nervous system.

The German Organic Computing Initiative was
founded in 2003. Its basic intention is to improve
the controllability of complex embedded systems by
using principles found in organic entities [5], [6]. Or-
ganization principles successful in biology are adapted
to embedded computing systems. The DFG priority
programme 1183 ”Organic Computing” [7] has been
established to deepen research on this topic.

Self-organizing and organic computing is also fol-
lowed on an international level by a task force of the
IEEE Computational Intelligence Society (IEEE CIS
ETTC OCTF) [8]. Several other international research
programs have also addressed self-organization aspects
for computing systems, e.g. [9], [10].

So far, there are several approaches for clustered task
allocation in middleware.

The authors of [11] present a scheduling algorithm
for distributing tasks onto a grid. It is implemented in
the Xavantes Grid Middleware and arranges the tasks
in groups. Their approch is completely different from
ours because it uses central elements for the grouping:
the Group Manager (GM), the Process Manager (PM)
and the Activity Managers (AM). The GM is a single

point of failure. If it fails, there will be no possibility of
obtaining group information from this group anymore.
In our approach we do not use a central task distribu-
tion instance and therefore single point of failures are
avoided.

Another approach is presented in [12]. The authors
propose two algorithms for task scheduling. The first
algorithm, Fast Critical Path (FCP), ensures that time
constrains are kept. The second one, Fast Load Bal-
ancing (FLB), schedules the tasks equally on proces-
sors according to current loads. Different from our
approach, task relationships are not regarded to allocate
cooperating tasks closely together. Furthermore, these
algorithms do not consider failing processing elements.

[13] presents a load balancing scheme for task
allocation based on local workpiles (of processors)
storing the tasks to be executed. The authors propose
a load balancing algorithm which is applied to two
processors to balance their workload. The algorithm
is executed with a probability inversely proportional
to the length of the workpile of a PE. Although this
approach is distributed it does not consider aspects like
self-healing or real-time constraints.

Other approaches of load balancing are presented in
[14], [15], [16], [17], [18]. None of them cover the
whole spectrum of self-X properties, task clustering,
and real-time conditions like our approach.

A research project regarding self-organizing task
allocation with respect to real-time properties is the
CAR-SoC project [19], [20]. This project uses agent
based principles and an auction mechanism to achieve
self-X features. This approach is not completely de-
centralized like the AHS, since an auction manager is
responsible for a certain set of tasks.

The DoDOrg project [21] researches the use of
bio-inspired principles to build a new, self-organizing
robust processor architecture. Within this project, we
invented a first version of the AHS to assign software
tasks to distributed processing cells. In [22] we im-
proved this first approach to distribute time dependent
tasks in a distributed system.

The contribution of the paper now presented here
is a further improvement of the AHS. Indroducing the
new approach of a task window significantly reduces
the communication overhead without affecting the self-
healing and self-optimization properties. It even can
improve the real-time bounds for self-configuration.

3. The Artificial Hormone System

In the following, we will briefly present the opera-
tion principle of the AHS. A detailed description can
be found in [23] and [24]. The aim of the AHS is to
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Figure 1. Hormone based control loop

assign tasks to processing elements (PEs) in a self-
organizing way. In order to achieve this, three main
types of hormones are used:

∙ Eager value: This hormone type determines the
suitability of a PE to execute a task. The higher
the hormonal value the better is the ability of the
PE for executing the task.

∙ Suppressor: This hormone type lowers the suit-
ability for task execution on a PE. Suppressors are
subtracted from eager values. There exist several
subtypes of suppressors e.g., the task suppressor
to prevent duplicate task allocation, the monitor-
ing suppressor to indicate a deteriorating PE state
and the load suppressor to indicate the current
load of a PE caused by the executed tasks. While
the task suppressor is broadcasted to all PEs in the
system, the monitoring and load suppressors are
only used locally to limit the number of executed
tasks on a PE.

∙ Accelerator: This hormone type favors the exe-
cution of a task on a PE. Accelerators are added
to eager values. Like for suppressors there exist
several subtypes of accelerators. The most impor-
tant one is the organ accelerator which is used
to cluster related tasks in the neighborhood. This
accelerator is multicasted to neighboring nodes
to form so called ’virtual organs’ of cooperating
related tasks. Another subtype is the monitoring
accelerator, which is used locally to indicate
improved PE capabilities. Accelerators and sup-
pressors are antagonistic hormones.

We have to distinguish between received hormones
and hormones to be sent and also between tasks and
PEs. Therefore, we use Latin letters such as i as task
indices and Greek letters such as 
 as PE indices.

A hormone of any type denoted by Hi
 with super-
scripted indices signifies that this hormone is dedicated
to and will be received by PE 
 and task Ti. A hormone
of any type denoted by Hi
 signifies that this hormone
is sent by PE 
 and task Ti to other PEs.

The task assignment is carried out in the following
way: Each PE periodically executes the hormone based
control loop presented in Figure 1. In the receive stage
of the loop, PE 
 receives the modified eager values
Emi
 , suppressors Si
 and accelerators Ai
 for each
task Ti from each PE in the network. In the compute
and decision stage, PE 
 computes its own modified
eager values Emi
 for all of its tasks in the following
way: The local static eager value Ei
 indicates how
suited PE 
 is to execute task Ti. From this value,
all suppressors Si
 received for task Ti are subtracted,
and all accelerators Ai
 received for task Ti are added:

Emi
 = Ei
 −
∑

Si
 +
∑

Ai
 (1)

The modified eager value Emi
 of each task Ti is then
distributed to the other PEs in the send stage.

To decide on the allocation of a task Ti, a PE
compares its own modified eager value Emi
 with
the received modified eager values Emi
 from all
other PEs. If Emi
 > Emi
 is true for all received
modified eager values, PE 
 will decide to take the
task1. Otherwise another PE has a higher modified
eager value for task Ti, so PE 
 will decide not to
take it.

If a task Ti is taken on PE 
, it also will distribute
suppressors Si
 dedicated to the same task on all
other PEs. This limits the number of allocations of the
tasks. Depending on the strength of this suppressor,
the task is either taken only once or several times.
Furthermore, the PE distributes an accelerator Ai
 to
its neighboring PEs to attract tasks cooperating with
task Ti to neighboring PEs thus forming clusters of
related tasks. Additionally, a local load suppressor
Sli
 indicates the load task Ti produces on PE

and limits the number of tasks taken by the PE.
This is a completely decentralized approach providing
self-configuration in terms of finding an initial task
allocation by exchanging hormones, self-optimization
by task reallocation when hormone levels change, and
self-healing by automatic task reassignment due to
missing hormones in case of failures. It allows task
allocation with respect to real-time bounds. As shown
in [25], an individual PE takes at most one task per
hormone cycle while in the entire system at least one
task per hormone cycle is taken. This results in a

1. In case of equality, a second criterion e.g., the smallest position
identifier of the PEs, is used to get an unambiguous decision.



 

 
 
Task window, 
cardinality mw 

Offset 

 

Set of all tasks having an eager value > 0, cardinality mp 

 

Figure 2. Task window

guaranteed upper time bound of m hormone cycles
for the assignment of m tasks.

To validate this approach a hormone simulator [23]
and a hormone based middleware [24] have been
created.

4. Task window

If PEs apply for a large number of tasks, they will
have to emit and evaluate eager values for all these
tasks during self-configuration. Let us look at an ex-
ample: If 100 PEs apply for m = 1000 tasks and each
PE is able to execute each task, 100 ⋅ 1000 = 100000
eager values have to be emitted and evaluated. In worst
case, self-configuration lasts for m = 1000 hormone
cycles as stated in the previous section.

In its current form the AHS can reduce this self-
configuration complexity only by limiting the number
of tasks a PE applies for. Unfortunatly, this limitation
also restricts self-optimization and self-healing. This
means in case of PE failures not all PEs can stand for
all tasks.

To reduce the self-configuration complexity without
affecting self-healing and self-optimization, we now
propose to introduce a task window. Let a PE have mp

eager values Emi
 > 0 meaning this PE can execute
mp tasks. A task window defines a subset of mw <
mp tasks. This subset consists of the first mw tasks
having an eager value Emi
 > 0 starting from an
arbitrary constant offset, as shown in figure 2. The PE
now applies only for tasks within this task window.

4.1. Effects on self-configuration

For each task assigned in the task window the
corresponding eager value Emi
 eventually drops to
0. Therefore, this task vanishes from the set of tasks
having an eager value Emi
 > 0 and consequently
this task also vanishs from the task window. Since
the size of the task window is kept to constant value
of mw tasks (as long as at least mw tasks are left
to assign), a new task enters the window from the
right side. In the representation of figure 2 this means
the overall set of unassigned tasks (mp) is shrinking

Number of tasks executable on the PE: mp = 5, Size of the task window: mw = 2, Offset = 2 
 
    The PE applies for tasks T3 and T4 
 
T3 is assigned somewhere => eager value of T3 drops to 0 
 
    The PE applies for tasks T4 and T5 
 
T1 is assigned somewhere => eager value of T1 drops to 0 
 
    The PE applies for tasks T4 and T5 
    (offset starts shrinking) 
T5 is assigned somewhere => eager value of T5 drops to 0 
 
    The PE applies for tasks T2 and T4 
 
T2 is assigned somewhere => eager value of T2 drops to 0 
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Figure 3. Example for a task window

while the task window moves to the right due to its
constant offset. As soon as the task window reaches
the right border, the offset is reduced. Therefore, the
task window constantly contains mw tasks as long as
enough tasks are left to assign. Figure 3 gives a simple
example, where a PE is able to execute 5 tasks (mp = 5
tasks with eager value Emi
 > 0) and the size of the
task window is mw = 2 with an offset of 2.

By introducing the task window the communication
overhead and computational complexity regarding the
transmission of eager values is reduced by the factor

mp/mw (2)

because eager values are emitted and have to be
evaluated for only mw tasks instead of mp tasks. In
the example from figure 3 this would be a reduction
of factor 5/2 = 2.5. Taking the example given at
the beginning of section 4 with m = mp = 1000
tasks and using a task window of size mw = 10, the
resulting reduction would be 1000/10 = 100. So the
task window can significantly reduce the overhead and
complexity of self-configuration. The real-time bounds
for self-configuration are not deteriorated but can even
be improved by the task window as we will see in
section 4.2. One drawback of the task window concept
is that the best possible PE for a task may initially not
be found. The task might be assigned to a suboptimal
PE. This will happen if a task is not in the initial task
window of the best suited PE. However, during the
process of self-optimization this will be corrected as
explained in section 4.3 and shown in the evaluation.

4.2. Influence on worst-case task allocation
time

As stated in section 3 and derived in [25], the
following two conditions hold true for task assignment:
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Figure 4. Minimum number of tasks taken per
hormone cycle

∙ For each task with eager value Emi
 > 0 in
each hormone cycle there exists a PE having the
highest eager value (the winner) and therefore
taking the task. So at least one task having an
eager value Emi
 > 0 is taken per hormone
cycle.

∙ A PE takes at most one task per hormone cycle.
So if a PE applying for mw tasks takes a task
in the current hormone cycle, it can remove up to
mw tasks from the decision process in this cycle2.

First of all it follows that in each hormone cycle
there will be at least one PE being the winner for a task
in its task window. Therefore at least one task is taken
per hormone cycle. Let m be the overall number of
tasks in the system. These tasks will be assigned after
m hormone cycles at the latest. So the task window
does not deteriorate the worst case timing behavior
of self-configuration. In fact, it can even improve the
worst case timing:

Let mw be the size of the task window for all PEs
in the system. Furthermore, let mi be the number of
tasks covered by the initial task windows of all PEs in
the system3. From the two conditions above it directly
follows that at least ⌈mi/mw⌉ tasks will be taken per
hormone cycle. Figure 4 illustrates this.

Task assignment using the task window can be
divided into three phases. Let mr be the number of
tasks not assigned yet (eager value Emi
 > 0).

Phase 1: mr > mi → all task windows are
filled and overall cover mi tasks (figure 4).

Therefore, at least ⌈mi/mw⌉ tasks will be taken
per hormone cycle. Let ℎ1 be the number of hormone
cycles encountered since the start of phase 1. Then it

2. If the PE is the winner for all mw tasks, it will take exactly
one of them in the hormone cycle. The remaining mf −1 tasks can
not be taken by other PEs in the same cycle. So overall mf tasks
are removed from the decision process in the current cycle.

3. mi ≥ mw due to different offsets on each PE.

follows:

mr(ℎ1) ≤ m− ℎ ⌈mi/mw⌉

Phase 1 is finished when mr(ℎ1) ≤ mi. This is true
if mr(ℎ1) ≤ m − ℎ1 ⌈mi/mw⌉ ≤ mi or ℎ1 ≥ (m −
mi)/ ⌈mi/mw⌉. So the maximum number of hormone
cycles for phase 1 can be calculated to:

ℎ1 = ⌈(m−mi)/ ⌈mi/mw⌉⌉ (3)

Phase 2: mi ≥ mr > mw → all task windows
are filled and overall cover mr < mi tasks (figure 5a,
the task windows are contracting).

Therefore, at least ⌈mr/mw⌉ tasks will be taken
per hormone cycle. Let ℎ2 be the number of hormone
cycles encountered since the start of phase 2. Then the
number of tasks in phase 2 can be recursively defined:

mr(0) ≤ mi

mr(ℎ2) ≤ mr(ℎ2 − 1)− ⌈mr(ℎ2 − 1)/mw⌉

Estimating the upper bound of remaining tasks by
mr(ℎ2 − 1) − (mr(ℎ2 − 1)/mw) ≥ mr(ℎ2 − 1) −
⌈mr(ℎ2 − 1)/mw⌉ and resolving the recursion leads
to:

mr(ℎ2) ≤ mi(1− 1/mw)
ℎ2

Phase 2 is finished when mr(ℎ2) ≤ mw. This
is true if mr(ℎ2) ≤ mi(1 − 1/mw)

ℎ2 ≤ mw or
ℎ2 ≥ log1−1/mw

(mw/mi). So the maximum number
of hormone cycles for phase 2 can be calculated to:

ℎ2 =
⌈
log1−1/mw

(mw/mi)
⌉

(4)

Phase 3: mr ≤ mw → all task windows start
to run dry and overall cover mr ≤ mw tasks (figure
5b, the task windows are shrinking).

Therefore, at least ⌈mw/mw⌉ = 1 tasks will be
taken per hormone cycle. Let ℎ3 be the number of
hormone cycles encountered since the start of phase
3. Then the maximum number of hormone cycles for
phase 3 calculates to:

ℎ3 = mw (5)

Combining the phases 1, 2 and 3, we get the
maximum number of hormone cycles ℎ to assign all
tasks:
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Figure 5. Contracting task windows

ℎ = ℎ1 + ℎ2 + ℎ3 =

⌈(m−mi)/ ⌈mi/mw⌉⌉+
⌈
log1−1/mw

(mw/mi)
⌉
+mw

(6)

Let us have a look at some border cases:
∙ mi = mw = m: no task window → ℎ = m
∙ mi = m: initial task windows cover all tasks (no

phase 1) → ℎ =
⌈
log1−1/mw

(mw/mi)
⌉
+mw

∙ mi = mw: no offset (no phase 2) → ℎ = m
∙ mw = 1: task window size 1 (phase 2 and 3

together condense to one hormone cycle4)→ ℎ =
⌈(m−mi)/ ⌈mi/mw⌉⌉+ 1

∙ mw = 1,mi = m: task window size 1, initial task
windows cover all tasks → ℎ = 1

These bordercases show that by chosing appropriate
values for mw and mi the real-time behavior of
task allocation can be scaled in a wide range. The
possible results of formula (6) are in the range of
1..m. The smaller the task window and the larger the
number of tasks covered by the initial task windows
the faster the task allocation becomes. The price to
pay for speed is allocation quality. In the border case
of mw = 1,mi = m each PE applies for a single task
and takes it instantly. There is no more competition.
In the other direction, the larger the task window and
the smaller the number of tasks covered by the initial
task windows the slower gets task allocation. In worst
case, we retrieve the original real-time behavior of m
hormone cycles.

4.3. Effects on self-healing and self-
optimization

Due to the constant size and the resulting shift of
the task window, each PE can cover each task. If all

4. All remaining tasks will be taken within a single hormone cycle
at the beginning of phase 2, since ⌈mr/mw⌉ calculates to mr .

tasks are assigned (the task windows on all PEs are
empty) and a PE fails, the eager values Emi
 of
the mf tasks running on the failing PE rise above
0 due to the failing suppressors from this PE. Now
these are the only tasks in the system with an eager
value Emi
 > 0. Therefore, the task windows of
all PEs automatically start to cover these tasks. If
mw < mf , the first mw failing tasks will be covered
first. By assigning these tasks the task window will
automatically shift to cover the remaining tasks. Since
each hormone cycle at least one task is assigned, all
failing tasks will be reassigned after mf hormone
cycles at the latest. So the task window does not
deteriorate the real-time bounds of self-healing. In case
of self-optimization, tasks are periodically offered for
reassignment. Like for self-healing, the task windows
of all PEs will automatically start to cover these offered
tasks due to their eager value above 0. So the same
time bounds as for self-healing hold true. During this
process, a potential suboptimal task assignment in the
self-configuration phase due to the task window will be
corrected. Self-optimization periods are afflicted with
an offset so not all tasks are offered for reassignment
at the same time. Therefore, if a task is offered the
task window of the best suited PE will very probably
cover this task. This leads in a task reassignment to
the best suited PE. The results given in the evaluation
section confirm this mechanism.

4.4. Variants of the task window

4.4.1. Variant 1: variable task window offset. In
the approach described above the offset of the task
window refers to tasks the PE applies for (Emi
 > 0).
This guarantees a constant offset as long as enough
tasks are left for assignment (phase1). Figure 6a gives
an example. So the first task in the window has to
be dynamically determined in each hormone cycle.
A more simple version would be to refer the offset
to tasks the PE is able to execute (Ei
 > 0). Since
this doesn’t change during runtime, the offset can be
statically calculated before the first hormone cycle. As
a drawback, the offset is no longer constant, as shown
in 6b. It can shrink starting with the first hormone
cycle. In the worst case, all offsets vanish before a
single task beyond mi is assigned (see figure 7). This
means phase 1 will be ommitted completely. Task
assignment immediately starts with phase 2, which can
last up to ℎ2 =

⌈
log1−1/mw

(mw/mi)
⌉

hormone cycles
according to formula (4). Then, phase 3 starts to assign
the remaining mw+m−mi tasks with a rate of at least
one task per hormone cycle. Therefore, the maximum
number of hormone cycles to assign all tasks using
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Figure 6. Constant and variable offset
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Figure 7. Contracting task windows in variant 1

variant 1 calculates to:

ℎ =
⌈
log1−1/mw

(mw/mi)
⌉
+mw +m−mi (7)

This value is always less equal to m, so task window
variant 1 delivers a better or at least the same time
bound as without using a task window. Here are some
border cases:

∙ mi = m → ℎ =
⌈
log1−1/mw

(mw/mi)
⌉
+ mw,

no difference to above
∙ mi = mw → ℎ = m, no difference to above

4.4.2. Variant 2: drying-out task window. Instead of
immediately replenishing the task window after each
hormone cycle to keep it always at a constant size,
we could also replenish it only after it has run empty.
So the task window will only be replenished after
drying-out. This significantly simplifies the calculation
of the upper time bound for task allocation. If the task
windows are not replenished before drying-out, they
all will have run empty after mw hormone cycles at
the latest. Then they will be replenished. If mi tasks
are covered by the initial task windows and if we
use a constant offset (as in the original task window
approach), this sequence will happen m/mi times.
Therefore, the maximum number of hormone cycles
to assign all tasks using variant 2 calculates to:

ℎ = ⌈mwm/mi⌉ (8)

This value is always less equal to m, so task window
variant 2 delivers a better or at least the same time
bound than without using a task window.

4.4.3. Variant 3: drying-out task window with vari-
able offset. Finally we can combine the drying-out
task window with the variable offset. Consequently,
the offsets might shrink from the beginning. In the
worst case, all offsets have vanished after the task
windows have run empty for the first time. This takes
mw hormone cycles at most while mi tasks have been
assigned (since all task windows are empty now). The
remaining m−mi tasks are assigned at least at a rate of
one task per hormone cycle. Therefore, the maximum
number of hormone cycles to assign all tasks using
variant 3 calculates to:

ℎ = mw +m−mi (9)

This value is always less equal to m, so task window
variant 3 delivers a better or at least the same time
bound than without using a task window.

5. Evaluation

To evaluate the task window, its different variants
have been implemented in the hormone simulator (see
section 3). A grid of 64 PEs with a set of 64 tasks have
been used as basic evaluation scenario. The evaluation
compares task assignment without the task window to
task assignment with the different variants of the task
window using different values for the task window
size mw and the number of initially covered tasks mi

(different offsets). Additionally, a comparison to task
assignment without task window is done, where each
PE applies only on a subset of 8 tasks instead of all
tasks. This also reduces communication overhead and
speeds up task assignment at the expense of flexibility
in self-optimization and self-healing.

Figure 8 shows the development of eager values sent
per hormone cycle for some sample scenarios. Without
using the task window (blue curve) 4096 hormones (64
PEs x 64 tasks) are sent in the first hormone cycle. A
task window size of mw = 8 (pink, green and light
blue curves) limits the number to 512 hormones (64
PEs x 8 tasks), a size of mw = 2 (violet curve) to
128 hormones (64 PEs x 2 tasks). This is according
to the theoretical predictions in the previous sections.
It can also be seen that increasing the number of
initially covered tasks mi to 32 (green curve) or 64
(light blue curve) speeds up the task assignment. The
effect of the drying-out task window can be seen at the
oszillating green curve. Overall, task assignment using
task windows produces a smaller amount of hormones
sent for the most hormone cycles. The smallest task
window results in the longest time for task assignment.

In the following, the aspects of communication over-
head, assignment time, assignment quality, influence of
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Figure 8. Eager values sent during self-
configuration for sample scenarios

self-optimization and robustness are examined using
the scenarios listed in table 1. Figure 9 shows the
maximum amount of eager values sent per hormone
cycle for all scenarios. The results confirm the theo-
retically derived reduction according to formula (2).
Furthermore, the maximum communication overhead
for task window size mw = 8 in scenarios B .. K is
identical to scenario M, where each PE applies for 8
tasks only. Figure 10 shows the overall number of ea-
ger values sent to allocate all tasks. This also confirms
the effectivity of the task window. Larger values of
mi lead to less overall overhead since task allocation
is finished earlier. The duration of task assignment is
examined in figure 11. Measured values are compared
to the theoretical upper bounds derived in section 4. It
can be seen that all bounds hold. Furthermore it shows
that the task window can speed up task allocation
significantly. Figure 12 shows the influence of the task
window on assignment quality. The quality measure
published in [26] taking into account PE suitability,
PE load and communication distance is used. For the
given PE and task environment, an optimal quality
of 0.9 (marked by the orange line in the diagram)
can be reached. The measured values show only small
variations in quality (0.74 to 0.83) close to the optimal
value. It can be seen that the task window only reduces
the quality slightly. In this context the influence of
self-optimization is interesting, since the quality re-
duction is mainly caused by tasks not being in the
task window of the best suited PE as stated in section
4.1. This can be corrected by self-optimization. Figure
13 examines self-optimization for scenario H, which
has the worst quality (0.74) after self-configuration.
Self-optimization is done every 64 hormone cycles
(indicated by the eager values sent, pink line). It can be
seen that the assignment quality (blue line) rises after

Table 1. Evaluation scenarios

A no task window
B mw = mi = 8 tasks, no offset
C mw = mi = 8 tasks, no offset drying-out
D mw = 8 tasks, mi = 32 tasks, variable offset
E mw = 8 tasks, mi = 32 tasks, constant offset
F mw = 8 tasks, mi = 32 tasks, drying out with variable offset
G mw = 8 tasks, mi = 32 tasks, drying out with constant offset
H mw = 8 tasks, mi = 64 tasks, variable offset
I mw = 8 tasks, mi = 64 tasks, constant offset
J mw = 8 tasks, mi = 64 tasks, drying out with variable offset
K mw = 8 tasks, mi = 64 tasks, drying out with constant offset
L mw = mi = 2 tasks, no offset
M no task window, each PE applies for a fixed set of 8 tasks
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Figure 9. Maximum eager values sent per hor-
mone cycle

each self-optimization cycle and finally reaches a value
of 0.84. This is even better then the best value without
a task window after self-configuration (0.83). Finally,
figure 14 examines the system robustness without and
with the task window. Here, more and more PEs were
destroyed while self-healing tries to keep the system
up by assigning the failing tasks to other PEs as long as
possible. As maximum load, each PE is able to execute
5 tasks. The blue bars show the number of destroyed
PEs that have been completely compensated by self-
healing thus leading to no task failures. The red bars
show the number of destroyed PEs which cause 50%
of the tasks to fail. It can be seen that the task window
(scenarios B .. L) does not harm the robustness of the
system compared to having no task window5 (scenario
A). Also, the expected degradation of robustness can be
observed, when PEs only apply for a limited number of
tasks to reduce communication overhead without using
the task window technique (scenario M).

5. The slight variations in the blue bars result from random PE
destruction and different task locations for each scenario.
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Figure 10. Overall eager values sent to allocate all
tasks
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Figure 11. Duration of self-configuration, mea-
sured values compared to theoretical worst case
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Figure 12. Quality of task assignment
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Figure 13. Self-optimization improving assignment
quality
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Figure 14. Robustness against PE failures

6. Conclusion

The paper presents and evaluates the concept of a
task window to reduce the communication overhead of
hormone based task allocation. Several variants have
been proposed and examined on a theretical level.
The practical evaluation confirms these theoretical
results. It shows that the task window technique is
an effective way to reduce communication overhead
while maintaining assignment quality and robustness.
Furthermore, self-configuration times are reduced.
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