
Overlooked Foundations: Exploits as Experiments and Constructive Proofs
in the Science-of-Security

Sergey Bratus, Anna Shubina

“The most important property of a program is whether
it accomplishes the intentions of the user.” [1] With these
words, C.A.R. Hoare opened up his research programme,
which we now recognize as a key part to the science
of security—a still-nascent science, as Herley and Van
Oorschot persuasively argued in [3]. Too many parts of
that science are too well described by the Einstein quote
about Mathematics in [3], “As far as the laws of Mathe-
matics refer to reality they are not certain, and as far as
they are certain they do not refer to reality”—largely due
to the difficulties of mathematically describing the user
intentions and their deviations from reality.

Yet there is a part of security that is both precise and
certain, and answers to the best standards of experimen-
tal and evidentiary approaches of established sciences. It
is the part dealing with exploitation of computing sys-
tems.

A single successful exploit for a program is a proof-
by-construction that user intents of that program are vi-
olated, and that unintended computation is possible. If
the intended properties are defined formally and are thus
a theorem, then the exploit is the constructive counterex-
ample, proving that the theorem doesn’t hold.

A multitude of exploits—evidence of multiple vul-
nerabilities or recurrent exploitability despite fixes—
suggests more. Its existence may impugn the design of
the program, by suggesting that the original intents are
hard for maintaining programmers to read and, therefore,
to fix. It may also suggest that the programmer’s model
of the system and its actual properties dangerously di-
verge, so that the programmer has no clue when vulner-
abilities are introduced (despite the habitual exhortations
to program securely and be careful). It may suggest that
the chosen language or the rest of the development envi-
ronment is inherently error-prone, diverting programmer
attention away from specifying intents succinctly.

In any case, repeated exploitability is empirical evi-
dence of a significant gap between user intents and the
actual computational properties of a program. As usual,

statistical evidence is harder than interpreting a formal-
ized logical proposition—but it opens the door to under-
standing broader classes of phenomena.

Exploits have been the primary—and, predominantly,
the only—means of exploring the phenomenon of di-
verging intents and executable reality in computing.
And yet exploitability and exploit construction is where
we tend to find the least amount of pure research—
constructing “the most general theories, covering the
widest possible range of phenomena”1. In this note we
seek to draw attention to this imbalance in security sci-
ence and to provide perspective on the role of exploita-
tion as the experimental vehicle of empirical security.

Exploitation as exploring the universe of computa-
tion. Early programs and systems tended to be de-
signed for specific, limited purposes. Exploitation of
these systems—that is, causing them to deviate from the
intended purpose—was conceived of as ad-hoc and op-
portunistic, stemming from accidental and preventable
errors or oversights; essentially, a serendipity for the at-
tacker that had no general laws or principles governing
it. As such, exploitation phenomena were not seen as
generalizable (or worthy of generalization).

At the same time, developers of exploits (e.g., au-
thors of Phrack, Bugtraq contributors, and others) con-
verged to a very different view, as early as late 1990s–
early 2000s.2 To them, exploitation was generic pro-
gramming akin to assembly programming in an unusual
ISA, where side-effects of features or bugs served as
“weird” but eminently usable assembly instructions. Just
as with a “normal” ISA, the flexibility of programming
was unlimited—even though a root shell could usually be
obtained with just a few chained instructions, there was
no limit to what could be programmed.

1Quoting from C.A.R. Hoare’s 40-year retrospective of the original
1968 paper [2].

2For a historical sketch of this development, see, e.g., [4].

1



The implication of this world view was revolution-
ary. Exploits were not merely isolated careless accidents.
Instead, the set of system’s intended computations was
seen as immersed in a larger universe of possible (and
unintended) computation paths, which could be carried
out by supplying the system with unexpected inputs.

This view, when finally rediscovered by academia,
was expanded and made precise by proofs that certain
programs or parts thereof would deliver no less than
Turing completeness (TC) to whoever controlled their
data (e.g., ROP [7, 6], SROP [8], COOP [9], ELF load-
ing [10], DWARF exception handling [11], and even the
x86 MMU without successfully dispatching any instruc-
tions [12]). Indeed, TC being achievable via very limited
means such as control of certain data structures, a limi-
tation to just a few ISA instructions like mov [13, 14], or
even via crafted printf format strings [15] became the
focus of many academic publications. TC was shown to
be achievable even under restrictions placed on the exist-
ing code’s execution path by schemes such as CFI [15].

However, despite being a nifty theorem that may have
drawn disproportionate attention for being the one hard
thing one could prove about an exploit mechanism, TC is
secondary to the more general concept: that of intended
computation being embedded in a space of unintended
ones, just waiting to be unleashed by a crafted series of
inputs or other external influences. Moreover, the prac-
tice of exploitation empirically shows that this embed-
ding is inherently hard to avoid, and that the gap between
the intended and the actual possible operation of a pro-
gram is no accidental phenomenon but rather a funda-
mental property of computing systems.

At this point, we should note that this view of im-
mersion does not contradict the C.A.R.Hoare concept of
a verified program, and is indeed complementary to it.
Hoare’s formalism is constructed of theorems P{Q}R
asserting code post-conditions R given pre-conditions P
and a decomposition of code Q into some elementary se-
quence of operations.

However, this formalism sheds no light on the behav-
ior of Q under conditions other than P—in fact, it does
not even let us distinguish if, under different inputs, Q
would remain in the same class of automata as when sup-
plied with inputs compliant with P, or could be elevated
into an entirely different class, up to full TC.

Many areas of Mathematics analyze their artifacts with
respect to how they behave when their conditions are per-
turbed; for example, stability with respect to perturba-
tions plays a huge role in classical mechanics, as well
as in the theory of ordinary and partial differential equa-
tions, underlying the different notions of stability used in
physics.

For the C.A.R. Hoare’s formalism, however, no notion
of stability for the proven properties of code Q in the

face of perturbing the pre-conditions P exists, to the best
of our knowledge—not even with respect to the broad
classes of computation theory such as the Chomsky-
Schuetzenberger hierarchy.

We should, therefore, acknowledge that the practice of
exploitation was the first to identify and explore the phe-
nomena of such computation power escalation and lack
of stability. It is due to exploitation that we now have
experimental proof that the gap between the intended op-
eration and the actual capability can be this wide, and is
typically so.

This gap, then, cannot be accidental. What might be
the CS fundamentals that underlie it?

Forgotten fundamentals? Frederick Brooks famously
said in his “The Mythical Man-Month”,

The programmer, like the poet, works only
slightly removed from pure thought-stuff. He
builds his castles in the air, from air, creating
by exertion of the imagination. Few media of
creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand
conceptual structures... [5]

Yet castles in the air eventually start exhibiting behav-
iors not unlike those of physical materials: brittleness,
unexpected behaviors under stresses, and strains, lim-
ited strength as in limited ability to support further struc-
tures. Just as a steel beam “flows” under a load, and beam
frames lose their intended rigidity, so structural elements
of air castles lose their intended behaviors and develop
emergent ones.

Unexpected behaviors multiply and increase in rich-
ness. Deviations from programmer expectations become
complex—occasionally more complex than the intended
behaviors!

It is this difference between reality and intent and the
spectrum of these emergent behaviors that exploits em-
pirically explore.

Are these unexpected behaviors accidental or inher-
ent? DeMillo, Lipton, and Perlis discussed this question
back in 1979 when the potential of “castles in the air”
and, relatedly, of improving efficiency of most human
pursuits via mathematical (symbolic) modeling seemed
unbounded:

Since “symbols” can be written and moved
about with negligible expenditure of energy,
it is tempting to leap to the conclusion that
anything is possible in the symbolic realm.
This is the lesson of computability theory (viz.,
solvable problems vs. unsolvable problems),
and also the lesson of complexity theory (viz.,

2



solvable problems vs. feasibly solvable prob-
lems): physics does not suddenly break down
at this level of human activity. It is no more
possible to construct symbolic structures with-
out using energy than it is possible to construct
material structures for free. But if symbols and
material objects are to be identified in this way,
then we should perhaps pay special attention to
the way material artifacts are engineered, since
we might expect that, in principle, the same
limitations apply. [16]

In other words, programmers should pay as much at-
tention to natural limitations of their craft as material en-
gineers pay to the natural impossibilities of theirs, such
as conservation laws. Engineering in a physical world is
arguably defined by its impossibilities, which engineers
would readily name, perhaps starting with perpetual mo-
tion; in the realm of programming outside of cryptog-
raphy, programmers may be hard pressed to enumerate
theirs.

Indeed, many problems of Internet protocol insecurity
are due to designs that would require the ability to solve
undecidable problems [17, 18]. Persistent insecurity may
be the result of the impossibility to automate testing for
the desired properties to any meaningful extent, the state
space being too large and devoid of a convenient asymp-
totic approximation (unlike, say, NP-complete problems
that admit asymptotic solutions provably only n times
worse than the actual optimum). As it is, we lack a sim-
ple means of assuredly generating the right amount of
tests to convince us of any given degree of coverage for
our programs’ intents.

Whatever the mechanisms behind recurrent ex-
ploitability, exploits are currently the only available form
of mapping out the underlying phenomena. With time,
we may discover more general ways of predicting the
topology of the unintended computation space in which
our programs are embedded.

Exploits and program verification. Program verifica-
tion has made great strides, owing, in part, to Moore’s
law and in part to an orders of magnitude increase in
the efficiency of algorithms generating proofs and coun-
terexamples [2]. Indeed, generation of exploits itself has
been conceptualized as a verification problem [19], and
the DARPA Cyber Grand Challenge demonstrated the
fruitfulness of this approach, despite the numerous spe-
cial challenges that it presents [20].

Will then verification eventually edge out exploits or
render their study irrelevant? Not likely.

The relationship between formal program specifica-
tion (when undertaken) and exploits is subtle. As Hoare

noted, the primary contribution of the axiomatic ap-
proach was

“· · · a simple and flexible technique for leaving
certain aspects of a language undefined [· · ·].
This is absolutely essential for standardization
purposes, since otherwise the language will be
impossible to implement efficiently on differ-
ing hardware designs.”

Exploitation, on the other hand, often exists in the
space where behavior is undefined, either by design (as a
necessity of standardization) or unwittingly. As a result,
emergent execution models can co-exist even with sys-
tems designed with verification in mind, such as proof-
carrying code [21]. As with other systems, exploits
demonstrate the very existence of these models, as proofs
by construction.

Quoting further from Hoare’s retrospective [2],

“Verification technology can only work against
errors that have been accurately specified, with
as much accuracy and attention to detail as all
other aspects of the programming task. There
will always be a limit at which the engineer
judges that the cost of such specification is
greater than the benefit that could be obtained
from it; and that testing will be adequate for
the purpose, and cheaper. Finally, verification
cannot protect against errors in the specifica-
tion itself. All these limits can be freely ac-
knowledged by the scientist, with no reduction
in enthusiasm for pushing back the limits as far
as they will go.”

Thus, for the foreseeable future, exploitation re-
mains our primary and fundamental ways of experimen-
tally exploring the space of unintended and emergent
computation—unless and until we find principled ways
of shrinking it. To finish with the quote from the origi-
nal C.A.R. Hoare paper [1], “As in other areas, reliability
can be purchased only at the price of simplicity.”

References
[1] “An Axiomatic Basis for Computer Programming”, C.A.R.

Hoare, Communications of the ACM, Volume 12 Issue 10,
Oct. 1969, Pages 576-580.

[2] “Retrospective: An Axiomatic Basis for Computer Program-
ming”, C.A.R. Hoare, Communications of the ACM, Vol. 52
No. 10, Pages 30–32.

[3] “SoK: Science, Security and the Elusive Goal of Security as
a Scientific Pursuit”, Cormac Herley and P. C. van Oorschot,
2017 IEEE Symposium on Security and Privacy.

[4] “Exploit Programming: from Buffer Overflows to Weird Ma-
chines and Theory of Computation”, Sergey Bratus, Michael
E. Locasto, Meredith L. Patterson, Len Sassaman, Anna
Shubina, USENIX ;login: 2011, http://langsec.org/

papers/Bratus.pdf

3



[5] “The Mythical Man-Month: Essays on Software Engineer-
ing”, Frederick Brooks, (1975, 1995), p. 7

[6] “Return-Oriented Programming: Systems, Languages, and
Applications”, Ryan Roemer, Erik Buchanan, Hovav
Shacham, and Stefan Savage, ACM Transactions on Informa-
tion and System Security (TISSEC), Volume 15 Issue 1, March
2012.

[7] “A gentle introduction to return-oriented programming”, Tim
Kornau, https://blog.zynamics.com/2010/03/12/

a-gentle-introduction-to-return-oriented-programming/,
March 2013.

[8] “Framing Signals—A Return to Portable Shellcode”, Erik
Bosman and Herbert Bos, 2014 IEEE Symposium on Security
and Privacy, Pages 243–258.

[9] “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications”, Felix
Schuster, Thomas Tendyck, Christopher Liebchen Lucas Davi,
Ahmad-Reza Sadeghi, Thorsten Holz, 2015 IEEE Symposium
on Security and Privacy, Pages 745–762.

[10] “Weird Machines in ELF: A Spotlight on the Underappre-
ciated Metadata”, Rebecca Shapiro et al., USENIX WOOT
2013.

[11] “Exploiting the Hard-Working DWARF: Trojan and Exploit
Techniques with No Native Executable Code”, James Oakley
et al., USENIX WOOT 2011.

[12] “The Page-Fault Weird Machine: Lessons in Instruction-less
Computation”, Bangert et al., USENIX WOOT 2013.

[13] “mov is Turing-complete”, Stephen Dolan, http://www.cl.
cam.ac.uk/~sd601/papers/mov.pdf, 2013.

[14] “MOVfuscator”, Christopher Domas, Recon 2015, https://
github.com/xoreaxeaxeax/movfuscator/

[15] “Control-Flow Bending: On the Effectiveness of Control-
Flow Integrity”, Nicholas Carlini, Antonio Barresi, Mathias
Payer, David Wagner, and Thomas R. Gross, 24th Usenix Se-
curity Symposium, 2015.

[16] “Social Processes and Proofs of Theorems and Programs”,
Richard A. DeMillo, Richard J. Lipton, and Alan J.
Perlis, Yale TR-82, 1979, p. 7, http://www.cs.yale.edu/
publications/techreports/tr82.pdf,

[17] “Security Applications of Formal Language Theory”, Len Sas-
saman, Meredith L. Patterson, Sergey Bratus, Michael E. Lo-
casto, IEEE Systems Journal, Volume 7, Issue 3, Sept. 2013.

[18] “The Halting Problems of Network Stack Insecurity”, Len
Sassaman, Meredith L. Patterson, Sergey Bratus, Anna
Shubina, USENIX ;login:, 2011, http://langsec.org/

papers/Sassaman.pdf.

[19] “Automatic exploit generation”, Thanassis Avgerinos, Sang
Kil Cha, Alexandre Rebert, Edward J. Schwartz, Maverick
Woo, David Brumley, Communications of the ACM, Volume
57 Issue 2, February 2014, Pages 74–84.

[20] “The Automated Exploitation Grand Challenge”, Julien
Vanegue, H2HC conference, Sao Paulo, Brazil, October
2013, http://openwall.info/wiki/_media/people/

jvanegue/files/aegc_vanegue.pdf

[21] “Weird Machines in Proof-Carrying Code”, Julien Vanegue,
1st IEEE Language-theoretic Security & Provacy Work-
shop, 2014, http://spw14.langsec.org/papers/

jvanegue-pcc-wms.pdf

4


