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Abstract

Energy demand response presents a highly cost-effective
means to improve the sustainability of data centers when-
ever there is flexibility in task scheduling. This paper
presents an empirical study in the area of data center de-
mand response, with the goal of cost savings on electric-
ity bills for small to medium size data centers drawing
1-5 MegaWatts. Using the SLURM resource manager,
we demonstrate a methodology for energy aware load
shifting by flexibly reducing compute cycles at times of
peak energy demand. Simply reducing the pool of avail-
able servers during a brief period of peak energy demand
results in tangible cost savings through reduced power
consumption of the server cluster, with minimal perfor-
mance degradation to users. We have developed a data
processing pipeline, EDEALS, to determine the poten-
tial cost savings of partial data center shutdown to en-
able demand-response load shifting. As our baseline, we
measured the power draw and job scheduling delay of
a small-scale test cluster by varying available resources.
We then model a production cluster’s performance in re-
sponse to a realistic energy constraint imposed by a util-
ity provider. For our data center, we quantify a potential
annual cost savings on electricity of 7% while only caus-
ing 16 hours of total increased wait time (0.1%) through-
out the entire year.

1 Introduction

Data centers in the US consume an estimated 91 bil-
lion kilowatt-hours yearly, equivalent to the annual out-
put of 34 large coal-fired power plants.[2] These same
estimates show that only 6-12% of the electricity is used
for powering servers while the rest is used to keep ma-
chines idling, wasting resources and money in the pro-
cess. Data center electricity is not inexpensive, costing
American businesses $13 billion annually in electricity
bills.[2] Because cost is a strong motivating factor for

Figure 1: Average core usage for a 244 node shared HPC
partition in the Midway cluster. Note that the period of
peak energy demand (gray background) coincides with a
period of reduced core usage. Insert shows usage statis-
tics histogram.

businesses and universities, we consider data center en-
ergy efficiency in the context of cost savings for data cen-
ter operations.

Demand response (DR) programs provide incentives
to induce dynamic management of customers’ electricity
load in response to power supply conditions, for exam-
ple, reducing power consumption in response to a request
from the utility.[11] Whereas the benefits of demand re-
sponse programs had previously been focused solely on
price reduction[10], the value of demand response to-
wards sustainability and carbon footprint reduction is be-
coming more apparent with the introduction of the 2015
Environmental Protection Agency (EPA) Clean Power
Plan[5]. In an estimate prepared for the Advanced En-
ergy Management Alliance, DR programs could provide
as much as a 1% reduction in greenhouse gas emissions
through direct and indirect mechanisms[8].

In one of the simplest DR scenarios, many energy
providers have Voluntary Load Response (VLR) pro-
grams, which encourage commercial consumers to re-
duce power demands during peak periods, such as partic-



ularly hot summer days, in exchange for electricity sup-
ply rebates. We are interested in exploring more active
ways for university data centers to participate in VLR
programs while minimally impacting user experience.

In many university (typically categorized as Tier 1)
data centers, a significant portion of the data center
is dedicated to high performance research computing
(HPC). While these tasks often take longer periods of
time to complete, they are less time sensitive and more
flexible than systems which support core business func-
tions such as the university’s email. We wish to use the
flexibility in scheduling of these jobs to reduce energy
consumption of university data centers during periods of
peak demand by shifting the load to off-peak periods.
While university HPC is our primary focus, more gen-
erally, any computing tasks that can be queued will be
amenable to this kind of load shifting.

As shown in the example core usage data of Figure
1, although the typical average usage during the school
year is a fairly standard 80%, the averaged workload
can fall to 65% of full capacity in the hottest summer
months from June to September. These months also
present the period of greatest electricity demand due
largely to increased need for cooling or air conditioning.
This presents a valuable opportunity to potentially curtail
electricity use in demand response scenarios by shifting
loads off the peak periods of energy price. Toward this
aim, this paper is our presentation of EDEALS, a data
processing system to estimate the economic savings, fea-
sibility, and any potential user impact from cluster shut-
down during periods of increased energy demand.

1.1 Alternative Demand Response Options
in Data Centers

Although we focus on load shifting for our study, we
wish to point out prior work on alternative strategies that
may be of relevance for demand response.

Facility changes A study by Lawrence Berkeley Na-
tional Laboratory (LBNL) found that 5% of the data cen-
ter load can typically be shed in 5 minutes and 10% of
the load can be shed in 15 minutes without changes to
how the IT workload is handled, i.e., via temperature ad-
justment and other building management approaches[4].
Most data centers have local power due to a backup gen-
erator, which could also be used to absorb some load
during peak time [6]. More recently, methods of energy
storage have been proposed[7] in which UPS batteries
are re-purposed for provisioning during periods of peak
demand in addition to their primary purpose of backup
power. However, these methods all entail manual inter-
vention, with close monitoring and control.

Power capping is a strategy by which to run data cen-

ter equipment within a set of constraints which assume
the electricity draw for the data center as a whole can-
not grow any larger. Some examples of this include and
turning off or constraining CPU/GPU power consump-
tion to values below the CPU Thermal Design Power
(TDP) value, which requires less voltage. Many equip-
ment manufacturers - including IBM, Intel, and AMD
- have implemented power capping technology that can
be monitored at the processor level and applied at the
rack level. One approach to power capping is Dynamic
Voltage/Frequency Scaling (DVFS). However, as noted
by Roundtree[9], no machine in the Top 500 list of su-
percomputers makes use of DVFS to save power or en-
ergy since the performance impact and the amount of
power and energy saved was highly application depen-
dent. Power capping doesn’t necessarily equate to energy
efficiency nor cost savings.

Schedulers Zhou et al[13] present a method for
power-aware scheduling by using a combination of a
scheduling window and 0-1 knapsack model, which
shows promise. However, since SLURM is the work-
load manager installed on our HPC cluster and test ma-
chine, this paper focuses solely on SLURM. Bodas et
al[1] demonstrate an integration of power capping into a
power-aware scheduler, with the overall goal of main-
taining average system power within a budget. Their
work demonstrates that SLURM’s auto mode can be used
to maximize available power.

Server overprovisioning By overprovisioning the
amount of servers, one can reduce the load and temper-
ature on each server by utilizing only a subset of active
servers, with the rest in standby mode, in order to re-
duce the idle power. Ahmad et al.[3] proposed to reduce
the sum of the cooling power and idle power by trading
off idle power and cooling power for each other. Simi-
larly, Liu et al.[12] propose geographical load balancing
for massive, distributed, Internet-scale systems, in which
route to areas where green energy is available. If one
can redesign a data center such that the active servers are
geographically distributed throughout it, this is a sound
approach. However, high end compute clusters are often
in a concentrated physical location within the data cen-
ter. Since HPC compute clusters are not distributed, the
latter approach is not feasible.

2 Problem Statement

Can load shifting of high performance computing tasks
save universities money in energy demand response sce-
narios? To explore the relative costs of implementing
load shifting in response to surges in energy demand,
we have expressed the problem by modeling total dollar
cost. We wish to use this framework to explore the op-
timization of cost in the presence of various data center
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Figure 2: Energy measurement systems in EDEALS.

usage statistics and price fluctuation schemes.

2.1 Modeling Energy Costs
We generate a model total cost function composed of a
fixed cost for purchasing and maintaining nodes plus a
variable cost dependent on data center power usage and
energy prices. We wish to minimize the cost function

C = pnT nmax +
∫ T

0
dt · p(t)

(
n(t)u(t)+uw

∆n(t)
∆t

)
where p(t) is the price of power at time t, 0 < n(t) <

nmax is the number of running nodes, u(t) is the average
node power usage, uw is the wasted power from turning
on a node, pn is the amortized lifetime cost of purchas-
ing a node, and nmax is the total number of nodes in the
cluster.

Based on our cluster usage statistics, we approximate
that compute cycles are roughly interchangeable and that
the main determiner of power usage is simply the CPU
utilization of the node. In this case, node power usage
takes the form

u(t) = u0 +uv · r(t)

where 0 < r(t)< 1 is the fraction of CPU usage, u0 is
the cost of an idling node and uv is the variable cost for
doing r work on a machine.

We wish to minimize the cost function C subject to the
constraint that the sum of the submitted CPU cycles, S,
are all completed after a period T.∫ T

0
dt ·n(t)r(t) = S

2.2 Response to a Temporary Price Spike
In particular, we wish to use this framework to determine
how to run our data center in the situation where every T
days, we see a ”price spike” from p0 to ps, lasting time
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Figure 3: Diagram of job scheduling during a four node
temporary shutdown experiment. Each colored rectan-
gle displays the execution of a single LAMPPS test job
running for approximately 5 minutes.

period ts. This condition is highly similar to those facil-
ity managers face when Utilities provide impose usage
tariffs during peak energy demand periods.

In this situation, the number of running machines will
change stepwise between a high number of running ma-
chines, nH = nmax, and a low number of running ma-
chines, nL, and a high and low CPU utilization rH = 1, rL,
with a corresponding uH and uL as defined above. The
high usage will occur during the normal energy costs,
and the low usage will occur during the price spike.
Therefore we can rewrite our cost function as

C = pnnHT + p0(u0 +uv)nH(T − ts)
+ ps(u0 +uvrL)nLts + p0uw(nH −nL)

(1)

with the constraint

nH(T − ts)+nLrLts = S (2)

Inserting the constraint into our cost function to re-
place rL yields

C = psuvS+nL · (psu0ts − p0uwtw)
+nH · (pnT + p0uwtw − (∆puv − p0u0)(T − ts))

(3)

where we have introduced the price difference, ∆p =
ps − p0.

We can analyze the change in costs as a function of nL
and nH to determine the optimal cluster setup for known
variables, ts, ps, pn, p0, u0, uv, and uw.

From this analysis, whenever psu0ts < p0uwtw, the cost
of powering off nodes exceeds the cost of running those
nodes idle so nL = nH and rL = S/nHts−(T −ts)/ts. Oth-
erwise powering off nodes saves money so the nodes that
remain on run at full capacity rL = 1, and nL is minimized
subject to constraints giving nL = S/ts −nH(T − ts)/ts.

If we can freely choose nH to optimize
cost, then whenever (∆puv − p0u0)(T − ts) >
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Figure 4: Power data for test cluster (top) and production
cluster (bottom) nodes in presence of variable usage. The
slope and intercept of the line are used to determine uv
and u0 respectively.

pnT + min(p0uwtw, psu0ts), we would increase nH
(i.e. buy more machines) until all the work is done dur-
ing the normal energy period. Therefore nH = S/(T − ts)
and either nL or rL is 0. Otherwise, the cost of new
machines is more than any cost savings achieved from
exploiting the price difference, and we would simply
ignore the price spike (i.e. set nH = nL = S/T and
rL = 1).

3 EDEALS: Electricity Demand-response
Easy Adjusted Load Shifting

For a data center manager to use the above model to de-
termine their cost savings, they must collect and analyze
usage and power data on their system. We have built
a cluster data processing pipeline, EDEALS, to assess
the magnitude of potential savings available when vary-
ing available computer resources. We combine SLURM
job scheduling, node level IMM power and usage met-
rics, and cabinet level CDU measurements to determine
the optimum magnitude of demand response cluster shut-
downs.

Here we describe our data center instrumentation, so
that we ensure accurate measurements of performance
of the workload management system and HPC cluster
alone without the influence of extraneous components.
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Figure 5: Comparison between node level IPMI mea-
surements and rack level CDU measurements. Best fit
shows the model relationship used to convert IPMI data
to estimated total power draw.

Since our focus is the HPC cluster and SLURM work-
load manager, we need to ensure those components alone
affect the reduced data center utility bill. As depicted in
Figure 2, we take measurements at the core, node, rack,
and cabinet level. These data points are combined to de-
tect power losses at each step and to determine the corre-
lation between the power measurements at the machine
level and the true power draw at the facility level.

Combining this data with electricity pricing statistics
from utility managers allows system administrators to
determine when and by how much to reduce their power
usage to save money. We have built a set of scripts par-
ticular to our system to implement machine level power
down in response to predicted energy peaks. At the end
of the peak energy period the machines automatically re-
boot and are added back to SLURM’s available server
pool. Currently, these power cycling scripts are manually
executed by system administrators after evaluation of the
likelihood of near-term energy demand peaks. However,
as more data centers begin to implement smart metering,
it will become possible to automate load shifting in re-
sponse to real-time energy pricing indicators. We look
forward to continuing this as future work.

4 Small-Scale Evaluation of EDEALS

To test our load shifting scheme, we launched a series
of small-scale experiments on a 6 node test cluster us-
ing SLURM batch management system to schedule jobs.
We wished to compare the energy savings and job wait
times during both a full and partial cluster shutdown in
response to an energy price spike.
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Figure 6: Total power consumed during experiments
where variable numbers of machines were shut down
during simulated peak pricing.

4.1 Experimental Setup
We measured the total energy use over a 3.5 hour win-
dow, of which the first 30 minutes comprised a partial
cluster shutdown, followed by a 15 minute power-up rou-
tine. We explored the impact of shutting down between
one and all six nodes during the 30 minute window. The
shutdown was carried out by fully powering off nodes.
We compared this to the energy usage without the partial
shutdown.

Identical sample jobs were submitted to the cluster via
the SLURM scheduler at a constant rate to set the av-
erage cluster usage inn the range from 55% to 75% ca-
pacity. We used custom state control commands to set
the power states of individual machines in the test clus-
ter. The SLURM scheduler automatically shifted queued
jobs to run on the available machines, as illustrated in the
example job schedule of Figure 3 for a four node shut-
down experiment. We used our EDEALS data analysis
pipeline to measure the changes in energy usage and job
wait time in the queue.

4.2 Evaluation of Model Parameters
Importantly, EDEALS allowed us to determine appropri-
ate power parameters, u0, uv, and uw for both our test rack
as well as a larger partition of the University of Chicago’s
Midway production cluster. Figure 4 shows the mea-
sured relationship between CPU utilization and energy
usage as determined from the machine level IPMI metric
data.

To account for losses not measured at the IPMI level,
we compare the sum IPMI power usage to the rack level
power monitoring, as displayed in Figure 5. This com-
parison revealed a correction factor of 1.16 between the
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Figure 7: Energy usage of test cluster during partial shut-
down experiments. Solid lines indicate power usage dur-
ing the shutdown, while dashed lines indicate power us-
age during full operation.

IPMI measurement and the total rack level energy draw
as well as a phantom power draw of 30 W even when ma-
chines were in the off state. Although these effects may
seem small we find it very important to add these cor-
rections factors when evaluating true cost savings. Us-
ing this corrected model, we were able to predict power
consumption at the CDU level via CPU utilization under
variable scheduler loads.

4.3 Relative Energy Savings and Max Wait
Times

Our test cluster provided us with an important baseline
in determining the effectiveness of a partial shutdown in
reducing energy usage. As shown in Figure 6, the total
power draw from the test cluster was reduced dramati-
cally during the shutdown period, and then returned to
its baseline level.

These experiments were repeated with different job
submission rates such that the average CPU usage var-
ied from 55% to 75%. As shown in Figure 7, the partial
shutdowns reduced the total energy usage as measured at
the CDU level. Not surprisingly, the power usage dur-
ing cluster shutdown for all usage levels converged to
roughly the same value at the point where all remain-
ing operational machines reached full capacity. Interest-
ingly, the energy savings did not appear to be perfectly
directly proportional to the fraction shut down. In par-
ticular, there was residual energy use associated with our
machine’s low power state even when the cluster was en-
tirely shut down.

We also measured the difference between job submis-
sion and start time, as depicted in Figure 8. As one
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Figure 8: Maximum (solid) and mean (dashed) job wait
times during partial shutdown experiments.

would expect, both mean and max wait times increased
as the shutdown fraction grew and the effect was more
pronounced when the cluster usage was higher. How-
ever, we were pleasantly surprised to find that max wait
times topped out at 45 minutes, which was the duration
of the entire cluster down period. In addition, the job
runtime was only increased by a maximum of 2%. These
indicate that SLURM does not add much additional over-
head, and therefore, the worst-case user wait times would
not exceed the total period the cluster was shut down.

5 Conclusion: Implication for An Opera-
tional HPC Datacenter

In many data centers, the variable cost to supply electric-
ity to a facility can be decomposed into both a nominal
cost per kilowatt-hour and a procurement cost from the
supplier. Some suppliers impose a substantial procure-
ment tariff based on electricity usage during the five, two
hour long periods of highest demand in a year. In this
scenario, the savings of load shedding can be orders of
magnitude higher than the nominal price per kilowatt-
hour. Using historic data of electricity supply costs, we
estimate that curtailing 1MW, 8 times per year, will lead
to an annual electricity savings of approximately $100K.
For our facility, this corresponds to a total cost savings
of roughly 7% annually. Approximating that the 8 cur-
tailment periods are spread out over the 4 month period
from June to September, we arrive at the system param-
eters listed in Table 1.

Combining this pricing data and the power usage mea-
surements from our test cluster, we can extrapolate the
yearly savings we expect from demand-response load
shifting for our production HPC cluster. Assuming that
we can reduce our energy use by a similar fraction across
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Figure 9: Estimated savings from partial cluster shut-
downs.

T ts p0 ps
360 hr 2 hr $0.03/kWh $6.5/kWh

Table 1: Model pricing parameters estimated for medium
scale HPC data center.

our 1000 node production cluster, we expect our price
savings to be proportional to the energy reduction during
the shutdown period. Here, we have corrected for differ-
ences in average power draw (i.e u0 and uv) between our
test cluster hardware and our production cluster hardware
to improve our estimate. We display this information in
Figure 9, as a function of the fraction of the cluster that
we would be willing to shut down. If we apply the same
shutdown procedure to our 1000 node cluster for a total
of 16 hours, we would generate a cost savings of approx-
imately $18K. More significantly, once this methodology
is extended to more HPC clusters in the data center we
could save $100K annually, or 7% of our data center’s
energy consumption. In terms of the job scheduling im-
pact, the wait time statistics from our test cluster shows
that the worst-case impact on user wait-times will not be
significantly larger than the curtailment period itself.

Based on our analysis, we believe that many univer-
sity data centers could enact this type of load shifting
curtailment strategy. Moreover, it’s highly probable that
any mixed use data center with a significant HPC or HTC
workload can potentially reduce its annual electricity op-
erating budget by several percent while having only mi-
nuscule impact on user experience. We hope that the
use of our EDEALS system can help other medium scale
data centers evaluate whether load shifting can be an eco-
nomically viable avenue to increasing their overall sus-
tainability.
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