
Understanding the Impact of Cache Locations on Storage Performance and
Energy Consumption of Virtualization Systems

Tao Lu§, Ping Huang§, Xubin He§, Ming Zhang‡

§ Virginia Commonwealth University, USA, ‡ EMC Corporation, USA
{lut2, phuang, xhe2}@vcu.edu, ming.zhang@emc.com

Abstract
As per-server CPU cores and DRAM capacity continu-
ously increase, application density of virtualization plat-
forms hikes. High application density imposes tremen-
dous pressure on storage systems. Layers of caches are
deployed to improve storage performance. Owing to its
manageability and transparency advantages, hypervisor-
side caching is widely employed. However, hypervisor-
side caches locate at the lower layer of VM disk filesys-
tems. Thus, the critical path of cache access involves
the virtual I/O sub-path, which is expensive in operation
latency and CPU cycles. The virtual I/O sub-path caps
the throughput (IOPS) of the hypervisor-side cache and
incurs additional energy consumption. It’s viable to di-
rectly allocate spare cache resources such as DRAM of a
host machine to a VM for building a VM-side cache so as
to obviate the I/O virtualization overheads. In this work,
we quantitatively compare the performance and energy
efficiency of VM-side and hypervisor-side caches based
on DRAM, SATA SSD, and PCIe SSD devices. Insights
of this work can direct designs of high-performance and
energy-efficient virtualization systems in the future.

1 Introduction
Virtualization techniques are the backbone of production
clouds. As CPU cores and memory capacities increase,
virtual machine density of production clouds increases,
disk storage becomes a salient performance bottleneck.
DRAM or SSD-based caches [1–4] have been deployed
in virtualization storage stacks for I/O acceleration of
guest virtual machines. Currently, caches are commonly
implemented in hypervisors due to several reasons. First,
hypervisor-side caches are transparent to VMs, thus, can
be naturally ported across many guest operating systems.
Second, a hypervisor has complete control over system
resources, therefore, can make the most informed cache
management decisions such as cache capacity allocation
and page replacement [5]. Third, comparing with VM-
side caches, hypervisor-side caches can be shared, result-

ing in increased resource utilization [2].
Despite the management flexibilities, hypervisor-side

cache access involves the costly I/O virtualization layers,
which cause intensive activities of the userspace process
such as qemu, and incur considerable interrupt deliver-
ies [6]. Study on virtio [7] with network transactions
shows that a busy virtualized web-server may consume
40% more energy, due to 5x more CPU cycles to deliver
a packet, than its non-virtualized counterparts [8]. Simi-
larly, our tests on storage transactions show that I/O vir-
tualization caps hypervisor-side cache performance and
increases per I/O energy consumption. In contrast, VM-
side caches may obviate the I/O virtualization overheads.
More specifically, for 4KB read requests at the IOPS
of 5k, hypervisor-side DRAM caches consume about
3x the power and delivers 30x the per I/O latency of
VM-side DRAM caches. For a server hosting four I/O
intensive VMs, the hypervisor-side caching consumes
48 watts while the VM-side caching consumes only 13
watts. The idle power of the server is 121 watts. In other
words, comparing with hypervisor-side caching, VM-
side caching can save about 25% of the entire server’s ac-
tive power. Unfortunately, benefits of VM-side caching
have long been ignored. To rouse awareness of its ben-
efits, as a first step, we conduct empirical comparisons
between hypervisor-side (host-side) and VM-side (guest-
side) caches. We believe answering the following ques-
tions is helpful for future cache designs:

• How much are the performance and energy efficiency
penalties for hypervisor-side caching?

• What are the root causes of the penalties of hypervisor-
side caching?

• Why do these penalties need to be mitigated?
• What are the potential approaches to reduce these

penalties?

In this paper, we present empirical studies of these
problems on a KVM [9] virtualization platform us-
ing DRAM, SATA SSD, and PCIe SSD as cache de-
vices. Our evaluation demonstrates that VM-side DRAM



Mapping Layer

App AppApp

VFSDirect
I/O

Network FS

Page Cache

Flash CacheN
et

w
or

k

Disk 
Filesystem

Generic Block Layer

I/O Scheduler Layer

Virtio-blk virtqueue

Emulated
Hard Disk

Mapping Layer
To

Device Driver

VM VMVM

VFS Direct
I/O

Network FS

Page Cache

Flash Cache N
et

w
or

k

Local Disk

QEMU

kvm.ko

Host Machine

vhost-
scsi

Image 
File

Kick
Guest 

I/O exit
io

ev
en

tf
d irqfd

2b
Block

Device File

2a1a

1b

Figure 1: System components affected by a VM block
device operation. DRAM-based page caches are built-in
modules of operating systems. Flash-based caches are
optional but widely deployed in virtualization platforms
to accelerate VM storage.

caches yield enticing performance and energy efficiency
gains over their hypervisor-side counterparts. For a
SATA SSD, either attached to a VM to build a VM-side
cache, or used to build a hypervisor-side cache, virtio
is involved in the device access path. As a result, VM-
side SATA SSD caches don’t provide benefits over their
hypervisor-side counterparts. However, PCI passthrough
enables a VM bypassing the virtual I/O path and directly
accessing a PCIe SSD in a dedicated way to achieve bet-
ter performance and energy efficiency.

2 Problem Analysis
In this section, we first present storage access for VMs,
explain the involvement of storage components when
cache hits at VM and hypervisor side. Then, we analyze
where the virtual I/O overheads lie in.

2.1 Storage Access for VMs
Block devices are commonly exposed to VMs via emu-
lation. The host-side entity of a virtualized block device
can be a file, an LVM logical volume, a device partition,
or a whole device. Since device emulation incurs over-
heads, dedicated device allocation, also known as device
passthrough, is implemented to enable a device being ex-
clusively used by a VM without the involvement of I/O
virtualization layers. However, not all devices can be al-
located in the way of passthrough. For block devices,
currently only the PCI-based devices such as PCIe SSDs
can be assigned to VMs via PCI passthrough; SATA de-
vices, however, cannot be allocated to VMs in the way
of passthrough. In this paper we assume the persistent
storage of VMs is backed by emulated block devices.
But when we discuss the implementations of SSD-based
guest-side caches, we will compare the performance and
energy efficiency of SSDs connected to VMs via PCI
passthrough and virtio, respectively.

For efficient emulation of block devices, paravirtual-

ization is the standard solution. Two of the most widely
used para-virtualized device drivers are virtio [7] and Xen
paravirtualization [10]. The former is widely used in
QEMU/KVM based virtualization platforms; the latter is
from the Xen project. Xen PV and virtio are architec-
turally similar, we discuss the virtio based storage stack
in details. As it’s shown in Figure 1, assume a guest OS
issued a read request on some disk file, the activities of
the guest OS and the host OS components are as follows:

1. The read request activates a Virtual Filesystem (VFS)
function, passing to it a file descriptor and an offset.

2. If the request doesn’t indicate direct I/O, the VFS
function determines whether the required data are
available in the page cache 1a. If 1a hits, the data are
returned from the cache and the request is completed.

3. Assuming the page cache 1a missed, the guest OS
kernel must read the data from the block device. If
the requested data reside in the flash cache, it’s a flash
cache hit at 1b. In this case, data are fetched from the
flash device and HDD access is obviated.

4. Assuming it’s a flash cache miss, the request has to go
through the traditional generic block and I/O sched-
uler layer and then be served by the virtual I/O device
driver such as virtio-blk.

5. Upon a read request, the virtio-blk frontend driver
composes a request entry and places it into the de-
scriptor table of the virtqueue. Then, the virtio-blk
frontend driver will call virtqueue kick, which causes
guest I/O exit and triggers a hardware register access
called VIRTIO PCI QUEUE NOTIFY.

6. vhost is the host-side virtio component for completing
the virtual I/O request. Once vhost is notified by KVM
for the guest kick, it fetches the virtio request from
the queue and calls QEMU, which works as a regular
userspace process, to complete the data transfer.

7. To fetch the data, QEMU issues I/O requests which
again traverse the host OS storage stack. Host-side
page cache or the optional flash cache are succes-
sively checked. Once the data hit at the caches or have
been fetched from the HDD, vhost updates the status
bit of the virtio request and issues an irqfd interrupt to
notify the guest that the request is completed.

2.2 I/O Virtualization Overheads
In the virtual I/O path, there are two operations expen-
sive in CPU cycles or request latency. The first is virtual
I/O emulation, which requires intensive interactions be-
tween the virtio frontend and backend. Emulation causes
frequent I/O interrupts and guest I/O exits, which are ex-
pensive in CPU cycles, as well as increase I/O latency.
The second is the relatively slow HDD-based storage ac-
cess, which costs milliseconds and has long been the bot-
tleneck of cloud applications.

Both VM-side and hypervisor-side cache hits avoid

2



4 8 16 32 64 128 256 512 1024

0
50
100
150
200
250
300
350
400
450

I/O size (KB)

IO
P

S
 (K

)
Native
VM_side
Hypervisor_side

(a) Maximum randread throughputs with vari-
ous I/O sizes.

1 5 10 50 90 95 99 99.9 99.99

0

50

100

150

200

250

300

350

Latency distribution (percentile)

La
te

nc
y 

(u
s)

Native
VM_side
Hypervisor_side

(b) Latency distributions of 4KB randread at
the IOPS of 5000.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

Throughput: IOPS (K)

P
ow

er
 c

on
su

m
pt

io
n 

(w
at

ts
) Native

VM_side
Hypervisor_side

(c) Power consumption of 4KB randread at
various IOPS.

Figure 2: fio benchmark on DRAM-based Caches. Native denotes fio directly runs on the host machine and hits the
host OS page cache; VM side denotes fio runs on the VM and hits the guest OS page cache; Hypervisor side denotes
fio runs on the VM, misses the guest OS page cache but hits the host OS page cache.

the HDD access, thus, obviate the HDD latency. For
hypervisor-side caching, virtio and qemu are always in
the I/O critical path, thus, I/O virtualization overheads
are inevitable. In contrast, for VM-side caching, if it’s
DRAM-based cache, virtio and qemu are not involved in
the I/O path, because the DRAM of a VM is managed by
KVM instead of qemu. KVM is much more efficient than
qemu userspace emulation, especially with the support
of hardware-assisted virtualization. If the cache is PCIe
SSD-based, and the cache device is allocated to the VM
via PCI passthrough, the I/O virtualization layers are
also obviated. PCI passthrough is supported by IOMMU,
which enables direct remapping of the guest physical ad-
dress to host physical address, thus avoids I/O virtualiza-
tion layers to apply the translations and obviates the I/O
operation delay. However, if it’s SATA SSD-based, even
if the cache is logically VM-side, since the access to the
cache device needs the involvement of virtio and qemu,
I/O virtualization overheads still exist. As a result, VM-
side caching is not superior to hypervisor-side caching
for SATA SSD devices. To understand the I/O virtual-
ization penalties as well as the performance and energy
efficiency characteristics of various cache deployments,
we quantitatively compare different cache schemes. In-
sights from the evaluation can direct future cache designs
and optimizations of virtualization systems.

3 Evaluation of Cache Schemes

3.1 Evaluation Setup
Cache Devices. We use 4x2GB DDR2-800Mhz devices
as the DRAM cache, one Samsung 850 Pro SATA SSD,
and one 240GB OCZ RevoDrive 3 PCIe SSD as flash
caches.
Measurement and Characterization Tools. We use
fio [11] as the I/O benchmark. fio enables various I/O
workloads with optional parameters including read/write
type, sequential/random access, I/O size, IOPS, and
O DIRECT etc.. We run fio on VMs. Setting the di-
rect parameter enables I/O requests bypassing VM-side
caches and hitting hypervisor-side caches. fio reports

benchmark performance such as IOPS and latency dis-
tribution. We measure the power of the whole machine,
because the cache access in virtualization platform in-
volves intensive activities of multiple resources, includ-
ing cache devices and CPUs. A Watts Up? Pro ES meter
is used to measure the wall power of the machine.
Experimental System. Our system is equipped with an
AMD Phenom II X4 B95 Quad-core 3.0 GHz processor
with AMD-V virtualization support. The host OS is a
64-bit Ubuntu 15.04 with Linux kernel version 3.19.0-
30-generic. QEMU emulator version 2.4.1 and KVM are
used as the hypervisor. An official Ubuntu 15.04 64-bit
Server Cloud Image is run on the VM as the guest oper-
ating system with 2 VCPUs and 2GB memory.

3.2 Evaluation Results

We choose random read as the I/O pattern of the fio
benchmark to minimize the interference caused by
potential data prefetching of operating systems. For
each cache setting, we report the maximum throughput,
latency distributions, and energy consumption of the
benchmark. For latency distribution, we focus on the
I/O size of 4KB, which is the default page management
unit of most Linux operating systems.

Observation 1 (on DRAM cache):
The performance of VM-side caches is very close to
the native caches in throughput and per I/O response
time; while the hypervisor-side caches have an up to
97% performance penalty.

Observation 2 (on DRAM cache):
For 4KB small I/O requests, the maximum throughput
of hypervisor-side caches is only about 3% of the VM-
side caches; for 1MB large I/O requests, the maximum
throughput of hypervisor-side caches is nearly the same
as the VM-side caches.

Observation 3 (on DRAM cache):
For same I/O throughput, hypervisor-side caches con-
sume about 3x the power of VM-side caches.

As it’s shown in Figure 2(a), with various I/O sizes,
the VM-side cache consistently achieves near-native

3



4 8 16 32 64 128 256 512 1024

0

1

2

3

4

5

6

7

8

I/O size (KB)

IO
P

S
 (K

)
Native_SSD
Native_flashcache
VM_side
Hypervisor_side

(a) Maximum randread throughputs with vari-
ous I/O sizes.

1 5 10 50 90 95 99 99.9 99.99

0

100

200

300

400

500

Latency distribution (percentile)

La
te

nc
y 

(u
s)

Native_SSD
Native_flashcache
VM_side
Hypervisor_side

(b) Latency distributions of 4KB randread at
the IOPS of 3000.

1 2 3 4

0

5

10

15

Throughput: IOPS (K)

P
ow

er
 c

on
su

m
pt

io
n 

(w
at

ts
) Native_SSD

Native_flashcache
VM_side
Hypervisor_side

(c) Power consumption of 4KB randread at
various IOPS.

Figure 3: fio benchmark on SATA SSD-based Caches. Native SSD denotes fio directly runs on the raw SSD of the host
machine; Native flashcache denotes fio directly runs on the host machine and hits the host OS flashcache; VM side
denotes fio runs on the VM and hits the guest OS flashcache; Hypervisor side denotes fio runs on the VM, misses the
guest OS flashcache but hits the host OS flashcache.

Table 1: perf system-event statistics during a 30-second
cache access period with an IOPS of 5k. We ensure the
cache hit at VM-side and hypervisor-side, respectively.
fio is running on the VM; perf is running on the host
OS to probe the system events caused by the VM pro-
cess. For a direct comparison, the percentages of system
events are normalized to the total number of hypervisor-
side events. The units of Count and Percent are million
and %, respectively.

Event Source
Cache hit location

Hypervisor VM
Count Percent Count Percent

kernel 17545 60.90 1569 5.45
qemu 3295 11.44 0 0.00
kvm 2714 9.42 1478 5.13

kvm amd 1811 6.29 1176 4.08
libglib 1220 4.23 0 0.00

libpthread 936 3.25 0 0.00
vdso 675 2.35 0 0.00
libc 609 2.12 0 0.00

Total 28809 100 4225 14.66

performance with a gap of less than 15%. In contrast, the
hypervisor-side cache has a performance penalty of up
to 97%. In Figure 2(b), the VM-side cache consistently
achieves a near-native per I/O response time. In contrast,
the hypervisor-side cache has a response time penalty of
nearly 65 µs for a single 4KB read request. In Figure
2(c), for a same I/O throughput, the hypervisor-side
cache consumes up to 3x the power of VM-side cache.

For DRAM, VM-side caches perform better and
consumes less power than hypervisor-side caches. We
believe the main reason is that the VM-side cache hit
bypasses the I/O virtualization layer. Memory virtu-
alization is implemented in the KVM kernel module,
which is efficient with the support of hardware-assisted
virtualization techniques such as Intel VT-x and AMD-V.
In contrast, the I/O virtualization, including virtual I/O
operations and disk emulation, is mainly managed by
QEMU, which is a userspace process. The execution of
virtual I/O requires frequent CPU mode switches, such
as switches between user and kernel as well as kernel
to guest mode, which are expensive in CPU cycles. As

it’s shown in Figure 1, when cache hits at 1a (VM-side
DRAM cache), virtual I/O and disk emulation are
bypassed, the disk I/O operation is actually transformed
to virtual memory access which is managed by KVM.
When cache hits at 2a (hypervisor-side DRAM cache), it
implies a cache miss at 1a, although the disk access can
be avoided, the virtual I/O and disk emulation operations
are still involved, thus, longer response time is observed
by applications running on the VM, as well as a higher
system power consumption.

To further verify our explanation, we conduct system
event statistics during cache access under different
caching schemes. fio benchmark is running inside a VM,
and perf utility is employed to monitor the system events
caused by the VM process. The perf statistic results
are shown in Table 1. Generally, for a same amount
of I/O requests, in hypervisor-side cache scheme, the
total number of VM caused system events is 6x of the
VM-side cache scheme. Specifically, in VM-side cache
scheme, there are few userspace events caused, while,
in hypervisor-side cache scheme, there are considerable
user space system events such as events caused by qemu
process and GLib library, etc.. This statistical analysis
explains why hypervisor-side cache access is more
costly than VM-side cache access.

From Figure 2(a) we can observe that as the I/O
size increases, the throughput gap between VM side
and hypervisor side cache schemes narrows down. We
believe the reason is that for virtual I/O requests, the
communication time between the front-end (VM) and
the back-end (Hypervisor) is almost constant, thus for
small requests the response time is dominated by the
virtual I/O round trip time (RTT) between the VM and
the hypervisor. When the request size increases, the
real data transfer time dominates and the RTT becomes
ignorable, thus, the throughput gap between VM side
and hypervisor side cache narrows down.

Differing from Figure 2(a) and Figure 2(b) in which
the VM side and Native lines are almost overlapping, in
Figure 2(c) there is an obvious gap between the VM side

4



and Native lines. The reason is that although VM-side
memory access has a close-to-native performance,
memory virtualization involves intensive activities of
KVM module, which consumes extra power compared
with native memory access.

Observation 4 (on SATA SSD cache):
The VM-side cache and hypervisor-side cache have
similar performance in throughput and per I/O response
time; both VM-side and hypervisor-side cache have an
up to 60% performance penalty compared with the na-
tive SSD device or flashcache.

Observation 5 (on SATA SSD cache):
For 4KB small I/O requests, the maximum throughput
of both VM-side and hypervisor-side caches is about
60% of the native SSD device or flashcache; for 1MB
large I/O requests, the maximum throughput of VM-
side and hypervisor-side caches is nearly the same as
the native SSD device or flashcache.

Observation 6 (on SATA SSD cache):
For same I/O throughput, VM-side cache or hypervisor-
side cache consumes up to 4x the power of the native
SSD device or flashcache access.

Specifically, as it’s shown in Figure 3(a) and Figure
3(b), in a wide range of I/O sizes, the hypervisor-side
cache consistently delivers almost the same performance
as the VM-side cache in throughput and per I/O response
time. This observation differs from the observation made
in the DRAM-based cache that VM-side caching has a
much higher performance than hypervisor-side caching.
We believe the main reason is that when the cache device
is a SATA SSD, either the device is allocated to a VM
to build a VM direct cache, or used by the hypervisor
to build a hypervisor-side cache, a cache hit needs the
involvement of virtio and qemu, thus, the applications
on the VM observe similar response time. As it’s shown
in Figure 1, VM-side flash cache is denoted as 1b, and
hypervisor-side flash cache is denoted as 2b. Although
logically a cache hit at 1b has a shorter access path,
since the SATA SSD device cannot be accessed by VMs
in the hypervisor passthrough way, the real data transfer
still requires the involvement of the virtio driver. Thus,
a cache hit at 1b has similar overheads as a cache hit
at 2b. Since virtio is involved in either case, in Figure
3(a) we observe that either the hypervisor-side cache
or the VM-side cache can only achieve about 60% of
the native SSD I/O throughput for small requests. In
Figure 3(c), we observe that for the same throughput
both the hypervisor-side cache and the VM-side cache
consume about 4x the power of native SSD access. To
our surprise, the VM-side cache even consumes a little
bit higher power than the hypervisor-side cache. We use
flashcache, which is built on top of the Linux kernel’s
device mapper, as our cache implementation. Since
we observe in Figure 3(c) that Native flashcache has a

4 8 16 32 64

0

1

2

3

4

5

I/O size (KB)

IO
P

S
 (K

)

Native_PCIe
PCI_passthr
Virtio

(a) Maximum randread through-
puts with various I/O sizes.

500 1000 1500

0

5

10

15

20

25

30

35

40

45

Throughput: IOPS

P
ow

er
 c

on
su

m
pt

io
n 

(w
at

ts
)

Native_PCIe
PCI_passthr
Virtio

(b) Power consumption of con-
ducting 4KB randread at various
IOPS.

Figure 4: PCI passthrough vs. virtio.

similar power consumption as Native SSD access, we
believe the extra power consumed in VM-side caching is
not caused by the flashcache implementation, but virtu-
alization components. In the case of VM-side caching,
flashcache is built in the guest OS, and frequent guest
OS activities cause considerable KVM module events.
In contrast, in the case of hypervisor-side caching,
flashcache is built in the host OS, cache activities will
not stress the KVM module, causing less system events
and consuming lower power.

Observation 7 (on PCIe SSD cache):1

The SSD allocated to the VM via PCI passthrough de-
livers near-native performance and energy efficiency.

A PCIe SSD is attached to a VM via virtio and PCI
passthrough, respectively. We compare the performance
and energy consumption of the SSD access in these
two cases. As it’s shown in Figure 4(a) and 4(b), PCI
passthrough delivers near-native performance and en-
ergy efficiency. In contrast, virtio has obvious penalties
in either throughput or system energy efficiency. This
is coincident with our previous observations. To our
surprise, PCI passthrough performs slightly better and
consumes less power than native PCIe access. Since
we currently employ a black-box method to analyze
our test results, a further explanation to this surprising
observation is our future work.

4 Potential Optimizations
Based on our tests, we believe the following considera-
tions are practical for the design and implementation of
virtualization systems in terms of cache performance and
energy efficiency.

Allocating DRAM resources directly to VMs. Dy-
namic live VM memory allocation has been supported
by Xen and KVM. Since VM-side caching delivers higher
performance and energy efficiency than hypervisor-side
caching, instead of using spare memory resource to build
hypervisor-side caches [1, 2], memory resources can be
allocated directly to VMs with high storage pressure. But

1This group of tests is conducted on another HP ProLiant DL370
G6 server for its IOMMU support.

5



for public clouds, dynamic live memory allocation re-
quires the changes of pricing policies which need fur-
ther investigations. Although hypervisor-side caches can
build a distributed global cache pools to support VM with
large working sets, we believe reclaiming the memory
resource of idle VMs and VM migration are practical to
meet the big-cache requirement.

VM-side Block Device Read-ahead. Even in the case
that caches are built at the hypervisor side (virtio back-
end), the virtio frontend bulk prefetching can mitigate
the communication overheads between the frontend and
backend. Our tests show that for large requests, instead
of the communication overheads, data transfer will dom-
inate the response time. Thus, for workloads with inten-
sive small requests, front-end bulk prefetching enables
the communication overheads to be amortized. For in-
stance, block device read-ahead of the guest OS can be
set to prefetch data upon each virtual I/O request. The re-
sult is that even the I/O request size is 4KB, a larger bulk
of data such as 128KB can be read ahead into the VM-
side cache. This will benefit subsequent read requests
targeting prefetched pages. A similar method has been
employed by network file systems such as NFS, in which
the default block size is 1MB, instead of 4KB, so as to
reduce the network communication frequency between
clients and servers.

PCI Passthrough. PCI passthrough is a practical
way to allocate PCIe SSDs directly to VMs, so as to
avoid the overheads of virtual I/O and disk emulation.
However, PCI passthrough is limited to devices with
PCI interfaces. SATA SSDs currently cannot be allo-
cated in this way. This limits the deployment scope of
PCI passthrough. Moreover, the exclusiveness of PCI
passthrough limits each device being solely used by a
single VM. A single PCIe SSD consumes a relatively
high power of up to 20 watts. All these factors cripple the
benefits of employing PCI passthrough for cache perfor-
mance and energy efficiency purposes.

Reducing Virtual I/O Overheads. Linux kernel
community continuously optimizes the virtio drivers.
Virtio-blk [12], Virtio-blk-data-plane [13], and Virtio-blk
Multi-queue [14] have been successively implemented
to improve the virtio performance. DID [6] was pro-
posed to reduce the I/O virtualization caused interrupt
delivery overheads. Future congeneric optimizations on
I/O virtualization will similarly benefit the performance
and energy efficiency of hypervisor-side caches. Finally,
container-based operating system level virtualization so-
lutions such as docker can eliminate the overheads of
hypervisor-based virtualization, thus, can be considered
as an alternative in some cases.

5 Conclusion
This paper evaluates the impact of cache locations
on storage performance and energy consumption of

QEMU/KVM based virtualization systems. We present
the performance and energy consumption results of VM-
side and hypervisor-side caching using DRAM and SSD
devices. Tests show that for DRAM-based caches with
4KB read requests, comparing with VM-side caching,
hypervisor-side caching consumes 3x power while only
achieves 3% of its throughput. We also demonstrate
that I/O virtualization overheads are the culprit of
hypervisor-side caching penalties. For SATA SSD-based
caches, VM-side caching doesn’t have any performance
or energy efficiency superiority, because VM-side SSD
caching also requires the involvement of virtio. Our tests
show that PCI passthrough can bypass virtio, thus, elim-
inate the I/O virtualization overheads. Finally, we pro-
pose possible choices which will be useful for build-
ing high-performance and energy-efficient virtualization
systems. Using the insights of this paper to optimize
practical systems is our future work.

References
[1] Infinio. (2014) Choosing a server-side cache:

Why architecture matters. [Online]. Avail-
able: http://www.infinio.com/sites/default/files/resources/Infinio-
technical-brief-architecture-matters.pdf

[2] J. Hwang, A. Uppal, T. Wood, and H. H. Huang, “Mortar: Filling
the gaps in data center memory,” in VEE’14, Salt Lake City, USA,
March 2014.

[3] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash
caching for the data center,” in MSST’12, Pacific Grove, USA,
April 2012.

[4] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-cave:
Effective ssd caching to improve virtual machine storage perfor-
mance,” in PACT’13, London, England, Septemebr 2013.

[5] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Geiger: Monitoring the buffer cache in a virtual machine envi-
ronment,” in ASPLOS’06, San Jose, USA, October 2006.

[6] C.-C. Tu, M. Ferdman, C. tung Lee, and T. cker Chiueh, “A com-
prehensive implementation and evaluation of direct interrupt de-
livery,” in VEE’15, Istanbul, Turkey, March 2015.

[7] R. Russell, “virtio: towards a de-facto standard for virtual i/o de-
vices,” SIGOPS Oper. Syst. Rev., vol. 42, 2008.

[8] R. Shea, H. Wang, and J. Liu, “Power consumption of virtual
machines with network transactions: Measurement and improve-
ments,” in INFOCOM’14, Toronto, Canada, April 2014.

[9] A. Kivity, Y. Kamay, F. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in OLS’07, Ottawa, Canada,
June 2007.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, , A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP’03, New York, USA, October 2003.

[11] fio(1) - linux man page. Jens Axboe and Aaron Carroll. [Online].
Available: http://linux.die.net/man/1/fio

[12] A. He. (2012) Virtio-blk performance improvement. [Online].
Available: http://www.linux-kvm.org/images/f/f9/2012-forum-
virtio-blk-performance-improvement.pdf

[13] K. Huynh and A. Theurer. (2013) Kvm virtualized i/o
performance. [Online]. Available: http://www.novell.com/
docrep/2013/05/kvm virtualized io performance.pdf

[14] M. Lei. (2014) Virtio-blk multi-queue conversion and
qemu optimization. [Online]. Available: http://www.linux-
kvm.org/images/6/63/02x06a-VirtioBlk.pdf

6


