
Using Memory-Style Storage to Support Fault Tolerance in Data Centers

Xiao Liu Qing Yi‡ Jishen Zhao
University of California at Santa Cruz, ‡University of Colorado Colorado Springs

{xiszishu,jishen.zhao}@ucsc.edu, qyi@uccs.edu

Abstract
Next-generation nonvolatile memories combine byte-

addressability and high performance of memory with
nonvolatility of disk/flash. They promise emerging
memory-style storage (MSS) systems that are directly at-
tached to the memory bus, offering fast load/store ac-
cess and data persistence in a single level of storage.
MSS can be especially attractive in data centers, where
fault tolerance support through storage systems is critical
to performance and energy. Yet existing fault tolerance
mechanisms, such as logging and checkpointing, are de-
signed for slow block-level storage interfaces; their de-
sign choices are not wholly suitable for MSS. The goal of
this work is to explore efficient fault tolerance techniques
that exploit the fast memory interface and the nature of
single-level storage. Our priliminary exploration shows
that, by reducing data duplication and increasing appli-
cation parallelism, such techniques can substantially im-
prove system performance and energy consumption.

1 Introduction
Next-generation byte-addressable nonvolatile memo-

ries (BNVMs), such as phase-change memory, spin-
transfer torque RAM, and resistive RAM, blur the
boundary between memory and storage by offering
both close-to-DRAM latency and nonvolatility. Attach-
ing BNVMs directly to the processor-memory bus en-
ables memory-style storage (MSS), which simultane-
ously supports data persistence (storage property) and
fast load/store access (memory property). As BNVMs
are anticipated to be on market in 2016 [8], MSS can
radically change the performance landscape of computer
systems in the near future. Yet unlocking the full po-
tential of MSS requires substantial advancement in data
manipulation schemes, which has been developed based
on two-level data storage model for decades.

The need is especially acute in data centers, where
storage systems are critical to reliability, availability, and
energy consumption. Data centers rely on the fault tol-
erance capability of storage systems to ensure reliability
and availability in the face of impending hardware, soft-
ware, and network failures ranging from every several
hours to days [5, 7]. One commonly used fault tolerance
scheme combines logging and checkpointing [6, 11]. For
example, Google file system (GFS) [6] maintains a crit-

ical metadata change log and checkpoints the log to lo-
cal disks whenever the log grows beyond a certain size.
These disk accesses drastically increases storage system
energy consumption, rendering the storage system one of
major energy consumers (24% of server power) in data
centers servers [9].

This paper aims at exploring efficient fault tolerance
with MSS in data centers. Toward this end, we investi-
gate the performance and energy overhead of employing
traditional fault tolerance techniques in MSS. Our key
finding is that fault tolerance schemes, such as a com-
bination of logging and checkpointing, can become one
of the major causes of energy and performance degrada-
tion in future data center servers with MSS. We identify
three major sources of performance and energy overhead,
including frequent data duplication, write-order control
over CPU caches, and the serialization between applica-
tion operation and data persistence.

To reduce the overhead, we explore an efficient
MSS fault tolerance scheme consisting of two mecha-
nisms. The first mechanism, “interleaved persistent up-
dates”, decreases the overhead of persistent data copy-
ing through multi-versioning of the persistent updates.
Second, “decoupled operation and persistence” increases
the parallelism of MSS access by decoupling applica-
tion operation and data persistence with separate threads.
Our initial exploration shows that such mechanisms
can effectively achieves 2.3× performance improvement
and 2.4× energy reduction compared with traditional
schemes. In particular, we make three contributions:
• Examining the performance and energy of using

BNVM to support fault tolerance in data centers.
• Enhancing data center fault tolerance by exploiting the

nature of MSS as a hybrid of memory and storage.
• Performing an experimental exploration of various

fault tolerance mechanisms with MSS.

2 Background and Motivation
Supporting fault tolerance with MSS is challenging,

because the performance and energy overhead of fault
tolerance via the memory bus can overwhelm the low
latency and high bandwidth offered by BNVMs. This
section describes background on BNVM and data cen-
ter fault tolerance techniques. We also motivate our
fault tolerance design by investigating overhead sources
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from performing traditional data center fault tolerance
schemes with MSS.

2.1 Next-generation BNVMs
BNVMs close the gap between memory and storage:

they are expected to have the low access latency and
high bandwidth that are close to DRAM, while offer high
capacity and nonvolatility in the way as flash/disk [4,
16, 13]. Attaching BNVMs to the processor-memory
bus provides a storage medium that is orders of magni-
tude faster than commodity hard drives and SSDs. The
new paradigm inspired a large body of recent research
effort on OS management, system libraries, program-
ming models, and computer architecture. Yet most of
these studies focus on how to leverage BNVMs in stand-
alone computers that adopt a single type of fault toler-
ance techniques, e.g., logging [16], shadow paging [4],
or checkpointing [14]. Substantial research is needed
to explore how to best utilize BNVMs as memory-style
storage (MSS) in data center environment.

2.2 Fault Tolerance in Data Centers
Most data center storage systems adopt a combination

of various fault tolerance techniques, such as logging,
checkpointing, and replication, to protect data from be-
ing corrupted by impending system failures [6, 11, 17].
For example, GFS [6] maintains a historical record of
critical metadata changes in an operation log. When-
ever the log grows beyond a certain limit, replaying them
takes a considerable amount of time. To address this is-
sue, the system checkpoints the current state using the
log and dumps the checkpoint to the local disk. In case
of recovery, the system loads the checkpoint into mem-
ory and replays the operation logs that are updated af-
ter the checkpoint. This work focuses on examining the
problems of performing logging and checkpointing with
MSS, so that we can design efficient fault tolerance tech-
niques for data centers installed with BNVMs.

2.3 Fault Tolerance Overhead with MSS
Traditional data center fault tolerance schemes rest on

two basic assumptions: 1) memory and storage are sepa-
rate components so access to them are also managed sep-
arately; 2) storage is slow so the cost of the required data
copying and software protocol is acceptable. However,
MSS invalidates both assumptions due to its low access
latency and its nature as a hybrid of memory and storage.

In the following, we investigate the performance and
energy of employing traditional logging and checkpoint-
ing in this new scenario. We use a microbenchmark that
repetitively swaps pairs of randomly selected elements
inside a large array of strings. This benchmark maintains
an in-memory log of swapping operations with a fixed
number of entries; whenever the log exceeds that size,
it makes a checkpoint of the array in the memory by re-
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Figure 1: Normalized execution time, memory access energy
consumption, and memory reads and writes of three cases: no
fault tolerance support, redo logging only, and a combination
of redo logging and checkpointing.
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Figure 2: Overhead of write-order control. (a) Example code
of a single data update, consisting of original data reads/writes,
logging, cache flush, and memory fence. (b) Execution time,
memory dynamic energy, cache misses, and memory access
with cache flush and memory fence after issuing log updates.

playing the log. During checkpointing, we accommodate
subsequent swapping operations with a new log buffer.
Section 4 describes our experimental setup. With our ex-
periments, we identified three major sources of overhead.

1) Fine-grained Data Value Duplication. In principle,
both logging and checkpointing make data copies in stor-
age. As such, each data update yields three writes, to
original data, log, and checkpoint. The load/store inter-
face of BNVMs can accommodate logging at much finer
granularity than the block I/O interface of disks/flash.
For example, prior MSS design Mnemosyne [16] logs
word-size data values; PMFS [1] logs 64-byte data.
While the low write latency can significantly improve
the efficiency of logging, the frequency of checkpoint-
ing needs to be carefully controlled to avoid high energy
overhead. As shown in Figure 1, the combined logging
and checkpointing scheme (Logging+Ckpt) introduces
3× energy overhead due to significantly increased mem-
ory traffic; execution time remains similar, because we
hide the checkpointing latency by accommodating sub-
sequent logging with a new log buffer.

2) Write Order Control Over CPU Caches. To ensure
the integrity of in-memory data structures, MSS needs to
enforce that log updates are written into BNVM before
updating the original data. Otherwise, system failures
that occur when both log and original data are partially
updated in BNVM lead to corrupted states in both. Such
write-order control is performed by employing a combi-
nation of memory fence and CPU cache flush [16, 4] or
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Figure 3: The interleaved persistent updates mechanism. (a) Example code of one transaction. (b) Interleaved persistent updates
with two versions. (c) Optimizing interleaved persistent updates with three versions.

uncacheable writes to the log [2]1.

We add a set of clflush instructions, each of which
flushes and invalidates one cache line out of all levels
of CPU caches (Figure 2(a)). These clflush instruc-
tions are followed by a memory fence instruction – ei-
ther mfence (ordering both loads and stores) or sfence
(only ordering stores). Note that multiple clflush in-
structions implicitly order among themselves without the
need of inserting memory fence in between. As ex-
pected, Figure 2(b) shows that cache flush and memory
fence significantly increase memory access and energy
consumption.

3) Serialization between Application Operation and
Data Persistence. The write order control also reduces
the parallelism that can be exploited in accessing MSS.
Due to the memory fence, subsequent application opera-
tion is blocked by BNVM writes (including CPU cache
flush) to log. These writes are referred as data persis-
tence. Furthermore, with fast memory bus and fine-
grained logs, MSS can perform logging at a much higher
frequency than traditional disk-based storage systems.
As such, frequent, serialized data persistence and appli-
cation operation are one of the major reasons of perfor-
mance and energy degradation shown in Figure 1 and 2.

3 MSS Fault Tolerance Mechanisms
In this section, we explore fault tolerance techniques

to address the aforementioned overhead. Our design
principle is two fold: 1) reducing data duplication; 2) in-
creasing the parallelism of application operation and data
persistence. To this end, we explore two MSS fault toler-
ance mechanisms, interleaved persistent updates and de-
coupled operation and persistence. The former method
allows applications to directly update data without ex-
plicit logging/checkpointing or extra copying overhead.
The latter exploits multithreading to enable concurrency
among normal application operations and data persis-
tence operations.

1Another method is write-through caching, but is less desirable due to inflex-
ibility and performance issues [2, 16, 4].

3.1 Interleaved Persistent Updates
With logging and checkpointing, log buffer and check-

pointing area are needed in addition to original data. The
same data values are copied among these memory re-
gions. Instead, we explore ways to support fault toler-
ance by directly making each write persistent without
copying.

Key Idea. Figure 3(a) and (b) illustrate our key idea
of this mechanism2. Each transaction (a group of in-
structions that atomically perform MSS updates [16, 3])
consists of reads and writes of the original data, cache
flushes, and a memory fence, however, no logging or
checkpointing. Fault tolerance is supported by multiver-
sioning. As demonstrated in Figure 3(b), we allocate two
versions of data in memory. Each application operation
directly overwrites one version, referred as an operating
version; the other version, the persistent version, remains
intact and can be used to recover MSS. After all writes
to the operating version reach BNVM, we commit these
updates and turn them to a checkpoint. We assign a bit in
each version to indicate such committing. When a future
transaction needs to update the same data, we switch the
operating and persistent versions. As such, we interleave
data updates between the two versions without writing
the same data value multiple times.

Performance Optimization. With only two versions,
consecutive transactions that update the same data can
be serialized (Figure 3(b)). To optimize performance,
we develop a three-version design as illustrated in Fig-
ure 3(c). As long as one version stays in persistent state
(e.g., Version2 in the figure), we can simultaneously per-
form application operation and data persistence in two
other versions (e.g., data persistence in Version1 and ap-
plication operation in Version3). Increasing the number
of versions can further improve parallelism. But doing so
will increase storage overhead and implementation com-
plexity. Therefore, we do not evaluate designs with more
versions.

2while servers may employ hybrid DRAM/BNVM memory, our work fo-
cuses on supporting fault tolerance using BNVM.
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Algorithm 1: Pseudo-code of the operation thread.
1 Initialization and version setup;
2 for each data update do
3 Issue updatei;
4 for store j ∈ updatei do
5 store j;
6 end
7 if (Persistence==done) and (Other conditions) then
8 Persistence=doing;
9 Reset intermediate value;

10 end
11 end

3.2 Decoupled Operation and Persistence
Most previous work performs original data updates,

cache flushes, memory fence, and commits in a single
thread. We exploit parallelism within each transaction by
decoupling application operation and data persistence.
To achieve this, we employ two threads, an operation
thread to issue data update requests and a persistence
thread to perform cache flush, memory fence, and com-
mits (Algorithm 1 and 2). The decoupling allows us
to avoid enforcing data to be persistent immediately af-
ter each memory operation by the application. Instead,
when the persistence thread is idle, it starts to persist the
recently updated data. The two threads are synchronized
to avoid flushing data that is still being updated. The
underline rationale is that the fast memory interface of
MSS can accommodate much more frequent persistent
data updates than needed.

We also allow users to manually tune the data persis-
tence frequency by adding “other conditions” in Algo-
rithm 1. Section 4 shows the sensitivity of performance
and energy with respect to such frequency.

4 Initial Exploration
We measure the performance and memory access

statistics of our workload on a machine configured with
eight Intel Corei7-4790 cores running at 3.6 GHz. Each
core has 32KB L1 data cache and share 8MB last-level
cache. The machine has two 8GB DDR3-1600 DRAMs.
We use perf, a Linux profiling tool to collect cache and
memory access statistics. The access latency of BNVM
is typically longer than DRAM. Therefore, we can use
statistical emulation methods similar to previous stud-
ies [15] to emulate BNVM. We use McPAT [10] to cal-
culate processor power. We model the dynamic energy
consumption of spin-transfer torque memory based on
the number of memory accesses: each row buffer hit con-
sumes 0.93 (1.02) pJ/bit, each memory array read (write)
consumes 1.00 (2.89) pJ/bit [18]. We use Pin [12] to pro-
file the row buffer hit rate of the workload.

Our experiments are performed on the SPS bench-
mark [3], which randomly swaps two elements in a large

Algorithm 2: Pseudo-code of the persistence thread.
1 while loads and stores are not completed do wait;
2 for every updated element in the persistent data structure

do
3 clwb(element.memaddr);
4 Version control operations;
5 end
6 sfence;
7 Mark the version as persistent;
8 Set Persistence=done;

array of strings. We randomly generate 100,000 of 256-
byte strings in the array and report results with 100K and
1M swaps. Intel’s next generation cache flush instruction
clwb, which flushes a cache line without invalidating it,
offers better performance than clflush. However, we
employ clflush instead because clwb is not publicly
available. We evaluate the following eight implementa-
tions of the SPS benchmark:
• DiskLogging(DL): Performs redo logging (write new

data values in the log) at the end of each transaction
and periodically writes the log as a disk file.

• Logging(L): Performs redo logging in BNVM without
CPU cache flush or memory fence, i.e., without data
persistence.

• Logging+clflush+mfence(LCM): Enforces data per-
sistence using a set of clflush instructions and a
mfence.

• Interleaved+clflush+mfence(ICM): Performs inter-
leaved persistent updates instead of logging, with
clflush and mfence to enforce data persistence.

• Threading+clflush+mfence(TCM): Performs inter-
leaved persistent updates and decoupled operation and
persistence, with clflush and mfence to enforce data
persistence.

• Threading+clflush+sfence(TCS): Uses sfence in-
stead of mfence in the previous implementation.

• Logging+clflush+sfence(LCS), Interleaved + clflush
+ sfence(ICS), and Threading+clflush+sfence(TCS):
Uses sfence instead of mfence in corresponding
mechanisms.
We run each instance of the benchmark for 200 times

and calculate the average performance, energy consump-
tion, and memory access. The variations over different
runs are low (<0.1%) so they are not shown in our re-
sults. Our evaluation does not add checkpointing on top
of logging, although doing so can demonstrate more ben-
efits of our methods.

4.1 Performance
Our results show that Logging leads to dramatic

performance and energy improvements compared to
DiskLogging: 23.7× operation throughput improvement
and 16.1× energy reduction. Consequently, we use Log-
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Figure 4: Operation throughput, L1 data cache miss rate, and memory access of various SPS implementations.

ging as the baseline in the rest of this section.
Figure 4(a) shows the swap operation throughput

across various implementations, measured as the number
of swaps completed per second. We make three major
observations. First, cache flush and memory fence de-
grade system performance by more than 1.6× compared
with logging without enforcing data persistence. Using
sfence does not improve performance, because the CPU
cache flushes, which are implicitly ordered by memory
fences, dominate the performance overhead. Second,
our two MSS fault tolerance mechanisms substantially
improve system performance compared to logging with
data persistence enforced, due to reduced memory traffic.
Third, performance of TCS scales much better than oth-
ers, when we increase the number of swaps. It achieves
2.3× throughput of logging mechanisms. This is because
the larger number of swap operations offers better oppor-
tunity for our mechanisms to exploit parallelism between
operation and data persistence.

4.2 Memory Traffic
Our memory traffic results align with the performance

results. We make two observations from the L1 cache
miss rates of various mechanisms (normalized to Log-
ging, Figure 4(b)). First, the interleaved persistent up-
dates mechanism increases L1 cache miss rate by 10%
compared with LCS. This is because clflush forces
original data updates, which can be re-accessed later on
during application operation, out of the cache. Yet, TCM
and TCS reduce L1 cache miss rate by 53% compared
with LCS because cache is less frequently flushed by de-
coupling the swap operations and data persistence.

Figure 4(c) demonstrates the number of BNVM access
normalized to Logging. LCM and LCS result in more
than doubled memory access compared with the base-
line, due to the cache flush of the duplicated data values
written in the log. Our mechanisms further increase the
number of memory access. This is because clflush in-
validates the flushed cache lines and leads to additional
cache misses from subsequent accesses to these cache
lines. We investigate the overhead of the invalidation by
removing the clflush instructions in the benchmark.
As a result, IM and TS lead to dramatically reduced
memory access. Note that without cache flushes, we still
preserves data persistence by using memory fence with
an increase of latency.
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Figure 5: Energy consumption breakdown of various SPS im-
plementations.

4.3 Energy Consumption
Figure 5 shows the dynamic energy breakdown of var-

ious mechanisms normalized to Logging. First of all,
BNVM access consumes a large portion of system en-
ergy, due to large number of memory access performed
during data persistence. Cache flush and memory fence
further increase the memory dynamic energy consump-
tion due to increased number of memory access. It ap-
pears surprising that ICM and ICS consume much lower
memory dynamic energy than LCS with similar numbers
of memory access. But taking a closer look at the mem-
ory access, we observe that most of the increased mem-
ory access are reads that consume much less energy than
BNVM writes in the interleaved mechanisms. Overall,
our MSS fault tolerance mechanisms lead to 2.4× energy
reduction compared with LCS. While not quantitatively
demonstrated, our mechanisms can save even more en-
ergy compared with traditional fault tolerance schemes
that perform both logging and checkpointing.

4.4 Sensitivity to Persistence Frequency
Persistence frequency can determine the performance

and energy of TCM and TCS. We investigate such rela-
tionship by sweeping across various persistence thresh-
olds, which is defined as the ratio of data persistence
operations to application operations. Figure 6 and 7
shows system dynamic energy consumption normalized
to those with a persistent threshold of 0.2. It shows that
we can achieve minimum energy consumption and high
swap operation throughput at the threshold of 0.6. Fur-
ther increasing the threshold, i.e., higher data persistence
rates, can increase the total number of memory access
due to the frequent cache flushes. Lower data persistence
frequency leads to lower fault tolerance. Therefore, we
employed threshold 0.6 across our performance, mem-
ory access, and energy evaluations. Different applica-
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Figure 6: Sensitivity of performance and energy to the
persistence frequency of the persistence thread under
100k swaps.
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Figure 7: The same metric as Figure 6 under 1M swaps.

tions may favor different thresholds. We allow users to
set the threshold or determine it by application profiling.

5 Discussion
This paper performs a priliminary exploration to-

ward unleashing the full potential of MSS in data cen-
ters. We foresee several open research questions that
arise when supporting efficient fault tolerance with MSS.
First, while we evaluated our scheme with an array data
structure, the key ideas are also applicable to various
other data structures (e.g., linked list, hash table, B+tree,
and graph) used in storage systems. To fully achieve the
potential energy and performance benefits of MSS, we
would like to tailor and evaluate the scheme for vari-
ous data structures. Second, in addition to logging and
checkpointing, data centers also employ replication [17]
to support fault tolerance. We would like to investi-
gate how our scheme interact with replication mecha-
nism. Third, whereas our design does not require log-
ging to ensure fault tolerance, logs can offer the portabil-
ity of data being used across incompatible system con-
figurations. Therefore, we would like to explore efficient
mechanisms for logging that serves such functions.

6 Conclusions
We have explored an efficient scheme that uses

memory-style storage to support fault tolerance in data
centers. Our scheme consists of two mechanisms, to
reduce memory traffic in logging/checkpointing and in-
crease the parallelism between application operation and
data persistence. Our results demonstrate the support of
fault tolerance with low cost by leveraging the nature of

MSS as a hybrid of memory and storage, rather than sim-
ply manipulating it as either. As such, our exploration
paves the way for unlocking the full potential of BNVMs
in data center storage systems.
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