
Hunt for Unused Servers

Nikolai Joukov and Vladislav Shorokhov

modelizeIT Inc.

Abstract

Modern enterprises critically depend on IT. However,

enterprise IT environments are complex and poorly

documented. As a result, various IT components are

forgotten and unused. Recent estimates show that 30% of

servers in datacenters are unused on average. Elimination of

unused servers (physical and virtual) and software instances

decreases costs, electricity consumption, risks of problems

causing business interruptions, and security exposures.

IT components form complex interdependent graphs. It

is intuitive to declare the nodes not used by other nodes to

be unused. However, the reality is a lot more complex:

servers (even if unused) are highly inter-connected.

This paper has two main contributions. 1) We present a

practical method to detect unused servers based on the

dependencies graphs. The method relies on the

dependencies classification and propagation of usage

information along the graph. 2) We apply and evaluate the

topological method and utilization-based approaches for real

enterprise datacenters. We benchmark and compare both

methods in terms of detection error rates.

I. INTRODUCTION

Enterprise IT is complex and constantly and rapidly

changing environment. Banks, insurance, retailing,

manufacturing, and most other companies have

heterogeneous IT environments where each business

application is implemented on a few servers. This is

dramatically different from the IT environments of some

large IT companies where a large pool of servers performs

the same function (e.g., [14]). For heterogeneous IT

environments, documentation never catches up with reality

and can never reflect all the details and complexities. Each

software component can have from dozens to hundreds of

configurable parameters. A datacenter with just a few

hundreds of servers would typically have millions of various

inter-dependencies. Custom application modules (e.g.,

SAP, Java, Job schedules; various scripts) can easily require

person years to understand from scratch even for a single

server. At the same time, people who create and maintain

these environments change job roles, die, leave companies,

and forget their knowledge over years. As a result, large

portions of enterprise IT are terra incognito for IT staff.

Not surprisingly, a lot of enterprise IT components are

unused but are maintained and consume electricity because

nobody knows what is used and what is not. A recent study

of the number of unused servers concluded that 30% of

enterprise servers are comatoze on average [1]. We

ourselves observed large datacenters with 50% of the

servers (physical plus virtual) being unused. Nevertheless,

such unused servers are being maintained and paid for:

labor, software licenses (hundreds of thousands of USD per

server image is not uncommon), electricity, raised floor

space, data storage are just the obvious wasted resources.

Virtualization, containerization, cloudification, etc. [15]

ease the pain of extra power consumption and wasted raised

floor space. Unfortunately, corporate datacenters still

widely rely on old physical servers and our goal is to have a

solution usable right away without the costly and lengthy

transformations. Moreover, a server (physical or virtual)

may be used but some of its software components, storage,

etc. may be unused. Gartner estimates that 80% of IT

budgets are spent on keeping existing IT running [3].

Therefore, large fraction of all IT budgets worldwide is

wasted on unused IT components.

Not only unused IT portions waste money to keep IT

running but they also make IT transformation and

optimization projects harder and pricey. Moving servers to a

cloud or to a different datacenter; data loss prevention

projects; defining secure perimeters; compliance with

standards such as PCI DSS; identification of single points of

failure; making disaster recovery plans, upgrading;

investigating license compliance; etc.–all such initiatives are

more expensive and lengthier because of the efforts wasted

on handling unused IT assets. Moreover, unused IT

increases the surface for hacker attacks.

In this paper, we investigate a general method to identify

unused IT resources based on IT component topological

inter-dependencies and propagation of usage information

along the topological graphs. We compare our approach

with the server resources utilization measurements-based

approaches.

II. DESIGN

It is rarely possible to tell if an IT resource is being used or

not by observing only that resource. For example, if a

server has active software that consumes CPU, memory,

generates I/O that server may be doing periodic batch job

processing that nobody needs anymore. The opposite is also

true: an idle server that consumes no resources for months

may be a stand-by server for high availability or disaster

recovery, a test server or user acceptance test/quality

assurance/staging server, or a server, which use is planned

in the future.

An IT resource is useful if there is a business user or

consumer of that resource. For example, if there is a user

workstation connecting to a web front-end and that front-

end redirects requests to an SAP system that, in turn, uses a

database server, and a job scheduling software on yet

another system moves data to a backup server from the

database server we can infer that all involved systems are

used. Overall, IT resources are connected in a large

complex graph with millions of dependencies and a single

request from a user can involve chains of dozens of servers.

Even unused servers are highly connected because basic

infrastructure software such as anti-virus, backup, etc.

(typically dozens of installations) are installed as part of

building any corporate server image. Figure 1 shows a real-

life completely unused server with the servers it

communicates with (server names are replaced with the

server function names). As a result, every server in a data

center (including unused servers) is connected with many

other servers via infrastructure servers. Therefore, simply

looking for unconnected servers or groups of servers is not a

viable solution to identify unused servers.

Do not be misled by the simplicity of Figure 1. Topologies

that involve just hundreds of servers are highly

interconnected and complex. Figure 2 shows a server-to-

server level connectivity graph with the infrastructure

dependencies (most dependencies) shown with almost

invisible transparent lines.

Fig 1. One example unused server in a corporate data center

with the immediate servers it communicates with: Domain

Controllers (DC1, DC2, DC3, DC4), a file server

(UserHomes), AntiVirus and Backup servers, Licensing

server, management server (SCCM), and numerous

monitoring servers: Inventory, Change Management Data

Base (CMDB), Utilization.

Fig. 2. A server-to-server connectivity graph for 516 servers.

A. Algorithm

Our approach to discover unused servers consists of the

following main steps (illustrated in Figure 3 below):

1. Construct dependency graph including entry points from

business users (e.g., workstations). Entry points can have

attributes like “known to be used” or “may be used”.

2. Classify graph nodes and edges (e.g., connections) as

infrastructure and non-infrastructure. (This is typically

accomplished via looking up a knowledge base.)

3. Starting from entry points follow non-infrastructure graph

edges (including contains-type dependencies) as far as

possible and follow infrastructure graph edges by one hop

only (to mark infrastructure nodes too) and mark

encountered nodes (e.g., as used or maybe used).

4. IT resources not marked (and resources they contain) should

be considered likely unused and listed out for further

verification (typically with the server owners).

1.

2.

3a.

3b.

4.

Fig 3. Steps to identify unused servers. (Infrastructure

dependencies are shown dashed, nodes marked as used are

shown filled.)

Traditional approach to construct server components

dependency graphs relies on 1) network connections tracing

and 2) analysis of software configuration files and logs.

Network connections observed on the switches or on the

servers are mapped to processes. Processes, in turn, are

mapped to software instances. To increase the resolution it is

necessary to discover internal software objects (such as

databases or file shares as illustrated in Figure 4) and use

software-specific mechanisms to map connections to these

internal objects. We detect entry points from business users

into the graph by 1) identifying connections from machines

that are not known as servers and 2) analyzing connectivity

logs. Unfortunately, very few servers have software

connectivity logs in real life.

Fig. 4. Connectivity between server software components.

B. Key quality-affecting factors

Monitoring length affects 1) the graph construction quality

based on the connections monitoring and 2) identification of

entry points used by business users (e.g., an accountant may

connect to some servers only once a quarter). 100% quality

would require infinitely long monitoring. Fortunately, 95%

quality of the graph construction is typically achievable within

just a few weeks of monitoring with marginal improvements

thereafter [4]. However, one-time sampling of connections

used by most IT dependencies discovery tools is not sufficient.

Modeling of the disaster-recovery and backup systems based

on their configurations is critical for the graph construction

because they do not establish connections most of the time.

Resolution of internal software objects discovery critically

influences the unused servers discovery. Many database and

web servers are used by multiple business applications. For

example, if two servers A and B connect to two different

databases on the same database server C and only A is being

used by a business user either all 3 are declared used (if

dependencies resolution is per-server) or only A and C but not

B (if dependencies resolution is per-database).

Classification of infrastructure dependencies is not as easy as

it may look. A naïve classification based on the ports covers

only the easiest cases (e.g., DNS). However, even recognizing

which software is communicating is not enough. For example,

an infrastructure component may be implemented as a web

server module or be hidden (e.g., [22]). Thus, classification

based on the internal middleware details is necessary.

III. IMPLEMENTATION

Our implementation is layered and consists of 1) the data

collection, 2) classification, 3) graph-analytics, and 4)

visualization layers. The servers-based data collection

requires access to the clients’ servers. Therefore, we support

the most common data collection tools and CMDBs as the

data collection layer in case these tools are deployed with the

client. Unfortunately, existing data collection tools rarely

correspond to the requirements outlined in Section II.B.

Therefore, we also had to implement our own data collection

layer. It monitors connections for any period of time, supports

easy customization mechanisms that we use to reach 100%

process and software recognition rates, and collects

information with high-resolution from all common

middleware systems (clusters, databases, application servers,

messaging middleware, web servers, file systems and file

servers, etc.) on all common operating systems. Classification

of infrastructure software, objects, and dependencies is

performed on top of the collected data without any interaction

with the client systems. We constantly add new signatures

and data collection capabilities as we use the tools.

IV. EVALUATION

We start from comparing our business-use-driven approach

with the resource-utilization-based approach. We measured

CPU, network and disk I/O characteristics on 516 corporate

servers running Windows OS. (Servers in a datacenter of a

Fortune-500 company.) Figure 5 shows Cumulative

Distribution Functions of the average and maximal CPU,

network and disk I/O characteristics. It is easy to see that

resource utilization on most servers is low on average: 90% of

the servers have below 10% CPU utilization and 30% of the

servers transmitted below 1 packet/second. Low utilization

complicates differentiation of used and unused servers.

Fig. 5. Cumulative Distribution Functions (CDFs) of CPU,

network and disk I/O utilizations on 516 corporate servers.

We analyzed said 516 servers using utilization and topology-

based methods and discussed every server with the IT staff

(application owners, server admins, etc.) to confirm every

server’s function. As a result, we identified 75 servers (15%

of 516) that were truly unused and should be decommissioned.

Figure 6 illustrates how varying threshold of CPU utilization

and network packets per second to decide what servers to

classify as used or not influences the amount of false positives

and negatives. At any reasonably low false negatives rate

(when most unused servers are detected, which is our goal) the

rate of false positives gets so high that most servers are

declared unused. Other I/O-related metrics produce similar

results with high error rates. This may be explained by the

utilization noise of infrastructure software and OS itself even

on the unused servers (e.g., periodic anti-virus scans).

Therefore, let us look at Figure 7 that depicts false positives

and negatives rates depending on the threshold of per-software

instance CPU utilization. CPU utilization of infrastructure

software and OS processes was excluded from the analysis.

This time even at the threshold value of zero the false

negatives rate is low because a large number of servers had no

useful software installed (except infrastructure). Note that the

false positives rate is not zero because even on unused servers

software instances perform background jobs.

Nevertheless, the rate of false positives is still high. This is

because many corporate servers behave like unused servers:

test, quality assurance, staging, stand-by, disaster recovery, or

simply used but not utilized servers, etc.

Fig. 6. False Negatives (FN) and False Positives (FP) during

the detection of unused servers based on CPU (top) and

network packets/second (bottom).

Fig 7. False Negatives (FN) and False Positives (FP) during

the detection of unused servers on non-infrastructure CPU.

Topological discovery can distinguish stand-by servers in a

cluster and disaster recovery servers as being used even at

zero utilization. Moreover, usage logs in the middleware

systems and business users’ connectivity is a very reliable

indicator of servers’ usage. Figure 8 shows the number of

false positives and negatives for topological business-use-

based discovery of unused servers. Left bars show the

numbers for the topological analysis per-server: If another

server (not necessarily used by a business user) uses a server it

is considered used. Right bars show the numbers for the

topological analysis based on the business-use propagation

algorithm described in Section II. Our investigation showed

that 7 servers (9% of all unused servers) not detected by any

topological algorithm are the false negatives due to the

dependencies from servers in other datacenters. We defined

business users as any node connecting from outside of the

datacenter’s server networks. It is possible to define any

nodes in other datacenters (e.g., by subnetwork) as nodes with

unknown business use and propagate this information along

the graph. This way, the 7 servers would be marked as

unknown to be used or unused. This deeper analysis depends

on the amount of time one is ready to spend to define business

users’ details. 28 servers (37% of truly unused) not detected

by the naïve topological one-hop algorithm are due to the

groups of servers that are connected but are not used. False

positives are mostly due to the test, quality assurance, pre-

production, and staging servers, that were not used during the

weeks when we collected the data. Multiple months of

monitoring can decrease the false positives rates. However,

the numbers measured are already sufficiently low for the

targeted interviews with the IT staff.

Fig. 8 False Negatives (FN) and False Positives (FP) during

the topology-based detection of unused servers (per-server and

per group of servers).

V. BACKGROUND

A number of off-the-shelf (e.g., [10-13]) and research

(e.g., [16]) tools map network connections to software to

generate IT dependency graphs and exist on the market for

more than a decade. These tools and their CMDBs can be used

for step 1 of our algorithm.

Most research projects focus on uncovering transaction paths

by statistical correlation or instrumentation (e.g., [5-9]), which

is opposite to our approach.

Business applications modeling and statistical analysis is

critical for server migrations (e.g., [17, 18]).

VI. CONCLUSIONS

Datacenters consume 1-2% of all electricity in the US [2].

Delivering that electricity to the servers and other equipment

reliably and removing generated heat is expensive. Moreover,

modern enterprises critically depend on their IT for operation.

However, 80% of corporate IT budgets is spent on

maintenance of the existing IT assets [3]. At the same time,

significant portion of existing servers is unused [1].

Unfortunately, enterprise IT is very complex and its objects

are highly interdependent. Easy approaches that ignore

interdependencies are easy but have high error rates. Graph-

based approaches are intuitively better but too complex in

reality. Modeling any IT portion as a graph involves

modeling thousands or millions of interdependent nodes. Not

surprisingly, historically the main solution path was to try to

discover relevant dependencies only and analyze the graphs

based on them. This is hard because the enterprise IT is too

diverse and identifying and modeling sufficient number of

use-defining dependencies is too hard. Our main

contributions are:

1. Our algorithm is based on the detection of all types of

dependencies and classification (recognition) of only the

infrastructure dependencies. This is a practical and easily

per-client customizable solution that is much easier to

implement compared with the approach of identification of

only (but all) use-related dependencies;

2. We compared the usage graph-based algorithm with the

naïve utilization-based approaches. We demonstrated that

utilization-based approach either does not detect too many

unused servers or classifies too many used servers as

unused. Therefore, without proper verification any portion

of the servers can be declared unused. At the same time,

our approach was shown to successfully detect more than

90% of unused servers with less than 10% of total servers

misidentified as unused.

Server decommissioning is a constant and ongoing (and

typically manual) process in most corporate IT environments.

The proposed topology-based analysis due to its low error

rates has the opportunity to reduce the process to running a

tool and a straightforward interview to verify the findings.

Lastly, the method proposed in the paper can be used in

almost any other IT domain on top of the existing topological

graphs constructing tools (e.g., for networking devices,

security zones [19], storage [20], and program code [21]).

REFERENCES

[1] J. Koomey and J. Taylor, New data supports finding that

30 percent of servers are Comatose, indicating that nearly

a third of capital in enterprise data centers is wasted, June

2015, http://anthesisgroup.com/wp-

content/uploads/2015/06/Case-

Study_DataSupports30PercentComatoseEstimate-

FINAL_06032015.pdf

[2] J. Koomey, My new study of data center electricity use in

2010, July 2011,

http://www.koomey.com/post/8323374335

[3] C. Pettey, Gartner Says Eight of Ten Dollars Enterprises

Spend on IT is "Dead Money", October 9, 2006,

http://www.gartner.com/newsroom/id/497088

[4] N. Joukov, V. Shorokhov, and D. Tantsuyev, Security

Audit of Data Flows across Enterprise Systems and

Networks, The 9th Intl. Conf. for Internet Technology and

Secured Transactions (ICITST’14), London, UK,

December 2014.

[5] M. Schmid, M. Thoss, T. Terrain, and R. Kroeger, A

generic application-oriented performance instrumentation

for multi-tier environments, in Internaltional Symposium

on Integrated Network Management, 2007.

[6] B. C. Tak, C. Tang, C. Zhang, S. Govindan,

B. Urhaonkar, and R. N. Chang, vPath: precise discovery

of request processing paths from black-box observations

of thread and network activities," In Proc..USENIX

Annual Conference, June 2009.

[7] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharon, "Performance debugging for

distributed systems of black boxes," in Proc. ACM

Symposium on Operating Systems Principles, 2003.

[8] B. Sengupta, N. Banerjee, A. Anandkumar, and

C. Bisdikian, "Non-intrusive transaction monitoring using

system logs," in IEEE Network Operations and

Management Symposium, April 2008.

[9] X. Chen, M. Zhang, Z. M. Mao, P. Bahl, Automating

Network Application Dependency Discovery:

Experiences, Limitations, and New Solutions, in Proc. Of

USENIX Symposium on Operating System Design and

Implementation (OSDI’08), San Diego, 2008.

[10] IBM, Tivoli Application Dependency Discovery

Manager, http://www-

03.ibm.com/software/products/en/tivoliapplicationdepend

encydiscoverymanager/

[11] HP, Universal CMDB,

http://www8.hp.com/us/en/software-

solutions/software.html?compURI=1172882

[12] BMC Software, Atrium Discovery and Dependency

Mapping, http://www.bmc.com/products/application-

mapping/discovery-dependency-mapping.html

[13] VMware, vCenter Application Discovery Manager,

http://www.vmware.com/products/application-discovery-

manager

[14] Q. Wu, Making Facebook’s software infrastructure more

energy efficient with Autoscale, August 2014,

https://code.facebook.com/posts/816473015039157/maki

ng-facebook-s-software-infrastructure-more-energy-

efficient-with-autoscale/

[15] K. Rajamani, W. Felter, A. Ferreira, and J. Rubio, Spyre:

A Resource Management Framework for Container-

Based Clouds, USENIX Container Management Summit,

November 2015.

[16] N. Joukov, M.V. Devarakonda, K. Magoutis, and

N. Vogl, Built-to-Order Service Engineering for

Enterprise IT Discovery, IEEE International Conference

on Services Computing (SCC'08), Honolulu, Hawaii, July

2008.

[17] B. Pfitzmann, and N. Joukov, Migration to Multi-Image

Cloud Templates, IEEE Intl. Conference on Services

Computing (SCC 2011), Washington, DC, July 2011.

[18] M. Nidd, K. Bai, J. Hwang, M. Vukovic, and M. Tacci,

Automated Business Application Discovery, IFIP/IEEE

International Symposium on Integrated Network

Management (IM), Ottawa, ON, May 2015.

[19] H. Ramasamy, C. Tsao, B. Pfitzmann, N. Joukov, and

J.W. Murray, Towards Automated Identification of

Security Zone Classification in Enterprise Networks,

USENIX Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE '11), Boston, MA, March 2011.

[20] N. Joukov, B. Pfitzmann, H.V. Ramasamy, and

M.V. Devarakonda, Application-Storage Discovery, The

3rd Annual Haifa Experimental Systems Conference

(Systor'10), Haifa, Israel, May 2010.

[21] N. Joukov, V. Tarasov, J. Ossher, S. Chicherin,

M. Pistoia, T. Tateishi, Static Discovery and Remediation

of Code-Embedded Resource Dependencies, IFIP/IEEE

International Symposium on Integrated Network

Management (IM'11), Dublin, Ireland, May 2011.

[22] A. Traeger, N. Joukov, J. Sipek, and E. Zadok, Using

Free Web Storage for Data Backup, In Proc. of the

second ACM International Workshop on Storage Security

and Survivability (StorageSS 2006), in conjunction with

ACM Conference on Computer and Communications

Security (CCS 2006), pp. 73-77, Alexandria, VA, October

2006.

