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Abstract 

Modern enterprises critically depend on IT.  However, 

enterprise IT environments are complex and poorly 

documented. As a result, various IT components are 

forgotten and unused.  Recent estimates show that 30% of 

servers in datacenters are unused on average.  Elimination of 

unused servers (physical and virtual) and software instances 

decreases costs, electricity consumption, risks of problems 

causing business interruptions, and security exposures. 

IT components form complex interdependent graphs.  It 

is intuitive to declare the nodes not used by other nodes to 

be unused.  However, the reality is a lot more complex: 

servers (even if unused) are highly inter-connected. 

This paper has two main contributions. 1) We present a 

practical method to detect unused servers based on the 

dependencies graphs.  The method relies on the 

dependencies classification and propagation of usage 

information along the graph.  2) We apply and evaluate the 

topological method and utilization-based approaches for real 

enterprise datacenters. We benchmark and compare both 

methods in terms of detection error rates. 

I. INTRODUCTION 

Enterprise IT is complex and constantly and rapidly 

changing environment.  Banks, insurance, retailing, 

manufacturing, and most other companies have 

heterogeneous IT environments where each business 

application is implemented on a few servers.  This is 

dramatically different from the IT environments of some 

large IT companies where a large pool of servers performs 

the same function (e.g., [14]).  For heterogeneous IT 

environments, documentation never catches up with reality 

and can never reflect all the details and complexities. Each 

software component can have from dozens to hundreds of 

configurable parameters. A datacenter with just a few 

hundreds of servers would typically have millions of various 

inter-dependencies.  Custom application modules (e.g., 

SAP, Java, Job schedules; various scripts) can easily require 

person years to understand from scratch even for a single 

server.  At the same time, people who create and maintain 

these environments change job roles, die, leave companies, 

and forget their knowledge over years.  As a result, large 

portions of enterprise IT are terra incognito for IT staff. 

Not surprisingly, a lot of enterprise IT components are 

unused but are maintained and consume electricity because 

nobody knows what is used and what is not.  A recent study 

of the number of unused servers concluded that 30% of 

enterprise servers are comatoze on average [1].  We 

ourselves observed large datacenters with 50% of the 

servers (physical plus virtual) being unused.  Nevertheless, 

such unused servers are being maintained and paid for: 

labor, software licenses (hundreds of thousands of USD per 

server image is not uncommon), electricity, raised floor 

space, data storage are just the obvious wasted resources. 

Virtualization, containerization, cloudification, etc. [15] 

ease the pain of extra power consumption and wasted raised 

floor space.  Unfortunately, corporate datacenters still 

widely rely on old physical servers and our goal is to have a 

solution usable right away without the costly and lengthy 

transformations. Moreover, a server (physical or virtual) 

may be used but some of its software components, storage, 

etc. may be unused. Gartner estimates that 80% of IT 

budgets are spent on keeping existing IT running [3]. 

Therefore, large fraction of all IT budgets worldwide is 

wasted on unused IT components. 

Not only unused IT portions waste money to keep IT 

running but they also make IT transformation and 

optimization projects harder and pricey. Moving servers to a 

cloud or to a different datacenter; data loss prevention 

projects; defining secure perimeters; compliance with 

standards such as PCI DSS; identification of single points of 

failure; making disaster recovery plans, upgrading; 

investigating license compliance; etc.–all such initiatives are 

more expensive and lengthier because of the efforts wasted 

on handling unused IT assets. Moreover, unused IT 

increases the surface for hacker attacks. 

In this paper, we investigate a general method to identify 

unused IT resources based on IT component topological 

inter-dependencies and propagation of usage information 

along the topological graphs.  We compare our approach 

with the server resources utilization measurements-based 

approaches. 

II. DESIGN 

It is rarely possible to tell if an IT resource is being used or 

not by observing only that resource.  For example, if a 

server has active software that consumes CPU, memory, 

generates I/O that server may be doing periodic batch job 

processing that nobody needs anymore. The opposite is also 

true: an idle server that consumes no resources for months 

may be a stand-by server for high availability or disaster 

recovery, a test server or user acceptance test/quality 

assurance/staging server, or a server, which use is planned 

in the future. 



An IT resource is useful if there is a business user or 

consumer of that resource.  For example, if there is a user 

workstation connecting to a web front-end and that front-

end redirects requests to an SAP system that, in turn, uses a 

database server, and a job scheduling software on yet 

another system moves data to a backup server from the 

database server we can infer that all involved systems are 

used.  Overall, IT resources are connected in a large 

complex graph with millions of dependencies and a single 

request from a user can involve chains of dozens of servers. 

Even unused servers are highly connected because basic 

infrastructure software such as anti-virus, backup, etc. 

(typically dozens of installations) are installed as part of 

building any corporate server image.  Figure 1 shows a real-

life completely unused server with the servers it 

communicates with (server names are replaced with the 

server function names).  As a result, every server in a data 

center (including unused servers) is connected with many 

other servers via infrastructure servers.  Therefore, simply 

looking for unconnected servers or groups of servers is not a 

viable solution to identify unused servers. 

Do not be misled by the simplicity of Figure 1.  Topologies 

that involve just hundreds of servers are highly 

interconnected and complex.  Figure 2 shows a server-to-

server level connectivity graph with the infrastructure 

dependencies (most dependencies) shown with almost 

invisible transparent lines. 

 

 

Fig 1. One example unused server in a corporate data center 

with the immediate servers it communicates with: Domain 

Controllers (DC1, DC2, DC3, DC4), a file server 

(UserHomes), AntiVirus and Backup servers, Licensing 

server, management server (SCCM), and numerous 

monitoring servers: Inventory, Change Management Data 

Base (CMDB), Utilization. 

 

Fig. 2. A server-to-server connectivity graph for 516 servers. 



A. Algorithm 

Our approach to discover unused servers consists of the 

following main steps (illustrated in Figure 3 below): 

1. Construct dependency graph including entry points from 

business users (e.g., workstations).  Entry points can have 

attributes like “known to be used” or “may be used”. 

2. Classify graph nodes and edges (e.g., connections) as 

infrastructure and non-infrastructure. (This is typically 

accomplished via looking up a knowledge base.) 

3. Starting from entry points follow non-infrastructure graph 

edges (including contains-type dependencies) as far as 

possible and follow infrastructure graph edges by one hop 

only (to mark infrastructure nodes too) and mark 

encountered nodes (e.g., as used or maybe used). 

4. IT resources not marked (and resources they contain) should 

be considered likely unused and listed out for further 

verification (typically with the server owners). 

1.  

2.  

3a.  

3b.  

4.  

Fig 3. Steps to identify unused servers. (Infrastructure 

dependencies are shown dashed, nodes marked as used are 

shown filled.) 

Traditional approach to construct server components 

dependency graphs relies on 1) network connections tracing 

and 2) analysis of software configuration files and logs. 

Network connections observed on the switches or on the 

servers are mapped to processes.  Processes, in turn, are 

mapped to software instances. To increase the resolution it is 

necessary to discover internal software objects (such as 

databases or file shares as illustrated in Figure 4) and use 

software-specific mechanisms to map connections to these 

internal objects. We detect entry points from business users 

into the graph by 1) identifying connections from machines 

that are not known as servers and 2) analyzing connectivity 

logs.  Unfortunately, very few servers have software 

connectivity logs in real life. 

 
Fig. 4. Connectivity between server software components. 

B. Key quality-affecting factors 

Monitoring length affects 1) the graph construction quality 

based on the connections monitoring and 2) identification of 

entry points used by business users (e.g., an accountant may 

connect to some servers only once a quarter).  100% quality 

would require infinitely long monitoring. Fortunately, 95% 

quality of the graph construction is typically achievable within 

just a few weeks of monitoring with marginal improvements 

thereafter [4]. However, one-time sampling of connections 

used by most IT dependencies discovery tools is not sufficient. 

Modeling of the disaster-recovery and backup systems based 

on their configurations is critical for the graph construction 

because they do not establish connections most of the time. 

Resolution of internal software objects discovery critically 

influences the unused servers discovery.  Many database and 

web servers are used by multiple business applications.  For 

example, if two servers A and B connect to two different 

databases on the same database server C and only A is being 

used by a business user either all 3 are declared used (if 

dependencies resolution is per-server) or only A and C but not 

B (if dependencies resolution is per-database). 

Classification of infrastructure dependencies is not as easy as 

it may look.  A naïve classification based on the ports covers 

only the easiest cases (e.g., DNS).  However, even recognizing 

which software is communicating is not enough. For example, 

an infrastructure component may be implemented as a web 

server module or be hidden (e.g., [22]). Thus, classification 

based on the internal middleware details is necessary. 

III. IMPLEMENTATION 

Our implementation is layered and consists of 1) the data 

collection, 2) classification, 3) graph-analytics, and 4) 

visualization layers.  The servers-based data collection 

requires access to the clients’ servers.  Therefore, we support 

the most common data collection tools and CMDBs as the 

data collection layer in case these tools are deployed with the 

client.  Unfortunately, existing data collection tools rarely 

correspond to the requirements outlined in Section II.B. 

Therefore, we also had to implement our own data collection 

layer. It monitors connections for any period of time, supports 

easy customization mechanisms that we use to reach 100% 

process and software recognition rates, and collects 

information with high-resolution from all common 

middleware systems (clusters, databases, application servers, 

messaging middleware, web servers, file systems and file 

servers, etc.) on all common operating systems.  Classification 

of infrastructure software, objects, and dependencies is 

performed on top of the collected data without any interaction 

with the client systems.  We constantly add new signatures 

and data collection capabilities as we use the tools. 



IV. EVALUATION 

We start from comparing our business-use-driven approach 

with the resource-utilization-based approach.  We measured 

CPU, network and disk I/O characteristics on 516 corporate 

servers running Windows OS. (Servers in a datacenter of a 

Fortune-500 company.)  Figure 5 shows Cumulative 

Distribution Functions of the average and maximal CPU, 

network and disk I/O characteristics. It is easy to see that 

resource utilization on most servers is low on average: 90% of 

the servers have below 10% CPU utilization and 30% of the 

servers transmitted below 1 packet/second. Low utilization 

complicates differentiation of used and unused servers. 

 

Fig. 5. Cumulative Distribution Functions (CDFs) of CPU, 

network and disk I/O utilizations on 516 corporate servers. 

We analyzed said 516 servers using utilization and topology-

based methods and discussed every server with the IT staff 

(application owners, server admins, etc.) to confirm every 

server’s function.  As a result, we identified 75 servers (15% 

of 516) that were truly unused and should be decommissioned. 

Figure 6 illustrates how varying threshold of CPU utilization 

and network packets per second to decide what servers to 

classify as used or not influences the amount of false positives 

and negatives. At any reasonably low false negatives rate 

(when most unused servers are detected, which is our goal) the 

rate of false positives gets so high that most servers are 

declared unused.  Other I/O-related metrics produce similar 

results with high error rates.  This may be explained by the 

utilization noise of infrastructure software and OS itself even 

on the unused servers (e.g., periodic anti-virus scans). 

Therefore, let us look at Figure 7 that depicts false positives 

and negatives rates depending on the threshold of per-software 

instance CPU utilization. CPU utilization of infrastructure 

software and OS processes was excluded from the analysis.  

This time even at the threshold value of zero the false 

negatives rate is low because a large number of servers had no 

useful software installed (except infrastructure).  Note that the 

false positives rate is not zero because even on unused servers 

software instances perform background jobs. 

Nevertheless, the rate of false positives is still high. This is 

because many corporate servers behave like unused servers: 

test, quality assurance, staging, stand-by, disaster recovery, or 

simply used but not utilized servers, etc. 

 

 

Fig. 6. False Negatives (FN) and False Positives (FP) during 

the detection of unused servers based on CPU (top) and 

network packets/second (bottom). 

 

 



 

Fig 7. False Negatives (FN) and False Positives (FP) during 

the detection of unused servers on non-infrastructure CPU. 

Topological discovery can distinguish stand-by servers in a 

cluster and disaster recovery servers as being used even at 

zero utilization.  Moreover, usage logs in the middleware 

systems and business users’ connectivity is a very reliable 

indicator of servers’ usage.  Figure 8 shows the number of 

false positives and negatives for topological business-use-

based discovery of unused servers.  Left bars show the 

numbers for the topological analysis per-server: If another 

server (not necessarily used by a business user) uses a server it 

is considered used.  Right bars show the numbers for the 

topological analysis based on the business-use propagation 

algorithm described in Section II.  Our investigation showed 

that 7 servers (9% of all unused servers) not detected by any 

topological algorithm are the false negatives due to the 

dependencies from servers in other datacenters.  We defined 

business users as any node connecting from outside of the 

datacenter’s server networks.  It is possible to define any 

nodes in other datacenters (e.g., by subnetwork) as nodes with 

unknown business use and propagate this information along 

the graph.  This way, the 7 servers would be marked as 

unknown to be used or unused.  This deeper analysis depends 

on the amount of time one is ready to spend to define business 

users’ details.  28 servers (37% of truly unused) not detected 

by the naïve topological one-hop algorithm are due to the 

groups of servers that are connected but are not used.  False 

positives are mostly due to the test, quality assurance, pre-

production, and staging servers, that were not used during the 

weeks when we collected the data.  Multiple months of 

monitoring can decrease the false positives rates.  However, 

the numbers measured are already sufficiently low for the 

targeted interviews with the IT staff. 

 

Fig. 8 False Negatives (FN) and False Positives (FP) during 

the topology-based detection of unused servers (per-server and 

per group of servers). 

V. BACKGROUND 

A number of off-the-shelf (e.g., [10-13]) and research 

(e.g., [16]) tools map network connections to software to 

generate IT dependency graphs and exist on the market for 

more than a decade. These tools and their CMDBs can be used 

for step 1 of our algorithm. 

Most research projects focus on uncovering transaction paths 

by statistical correlation or instrumentation (e.g., [5-9]), which 

is opposite to our approach. 

Business applications modeling and statistical analysis is 

critical for server migrations (e.g., [17, 18]). 

VI. CONCLUSIONS 

Datacenters consume 1-2% of all electricity in the US [2]. 

Delivering that electricity to the servers and other equipment 

reliably and removing generated heat is expensive.  Moreover, 

modern enterprises critically depend on their IT for operation.  

However, 80% of corporate IT budgets is spent on 

maintenance of the existing IT assets [3].  At the same time, 

significant portion of existing servers is unused [1]. 

Unfortunately, enterprise IT is very complex and its objects 

are highly interdependent. Easy approaches that ignore 

interdependencies are easy but have high error rates.  Graph-

based approaches are intuitively better but too complex in 

reality.  Modeling any IT portion as a graph involves 

modeling thousands or millions of interdependent nodes.  Not 

surprisingly, historically the main solution path was to try to 

discover relevant dependencies only and analyze the graphs 

based on them.  This is hard because the enterprise IT is too 

diverse and identifying and modeling sufficient number of 

use-defining dependencies is too hard.  Our main 

contributions are: 

1. Our algorithm is based on the detection of all types of 

dependencies and classification (recognition) of only the 

infrastructure dependencies.  This is a practical and easily 

per-client customizable solution that is much easier to 

implement compared with the approach of identification of 

only (but all) use-related dependencies; 

2. We compared the usage graph-based algorithm with the 

naïve utilization-based approaches.  We demonstrated that 

utilization-based approach either does not detect too many 

unused servers or classifies too many used servers as 

unused.  Therefore, without proper verification any portion 

of the servers can be declared unused.  At the same time, 

our approach was shown to successfully detect more than 

90% of unused servers with less than 10% of total servers 

misidentified as unused. 

Server decommissioning is a constant and ongoing (and 

typically manual) process in most corporate IT environments.  

The proposed topology-based analysis due to its low error 

rates has the opportunity to reduce the process to running a 

tool and a straightforward interview to verify the findings. 

Lastly, the method proposed in the paper can be used in 

almost any other IT domain on top of the existing topological 

graphs constructing tools (e.g., for networking devices, 

security zones [19], storage [20], and program code [21]). 
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