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Abstract
It has been a common myth that x86-64 processors

suffer in terms of energy efficiency because of their com-
plex instruction set. In this paper, we aim to investigate
whether this myth holds true, and determine the power
consumption of the instruction decoders of an x86-64
processor. To that end, we design a set of microbench-
marks that specifically trigger the instruction decoders by
exceeding the capacity of the decoded instruction cache.
We measure the power consumption of the processor
package using a hardware-level energy metering model
called the Running Average Power Limit (RAPL), which
is supported in the latest Intel architectures. We leverage
linear regression modeling to break down the power con-
sumption of each processor component, including the in-
struction decoders. Through a comprehensive set of ex-
periments, we demonstrate that the instruction decoders
can consume between 3% and 10% of the package power
when the capacity of the decoded instruction cache is ex-
ceeded. Overall, this is a somewhat limited amount of
power compared with the other components in the pro-
cessor core, e.g., the L2 cache. We hope our finding can
shed light on the future optimization of processor archi-
tectures.

1 Introduction
Making data centers more energy efficient requires

finding and eliminating new sources of inefficiency.
With the recent introduction of ARM-based servers, we
will soon have more CPU architectures to choose from.
These servers are based on the new ARMv8 architecture
that adds support for 64-bit computing. The first proto-
types started shipping in 2014 [1]. Energy efficiency of
the first models has been somewhat poor but efficiency is
expected to improve in later models [2].

The most commonly cited difference between ARM
and Intel processors is the instruction set [5]. Intel
processors use the x86-64 instruction set, which is a
Complex Instruction Set Computer (CISC) architecture;
while ARM designs are based on the Reduced Instruction
Set Computer (RISC) architecture. CISC instructions

are more complex: a single instruction can load a value
from memory and add it to a register. Today these CISC
instructions are decoded into smaller micro-operations,
i.e. one instruction is translated into one or more micro-
operations. A common myth is that decoding the x86-64
instructions is somehow expensive.

In this paper, we aim to investigate the myth that de-
coding x86-64 instructions is expensive. We leverage
the new features that are present in Intel processor ar-
chitectures from Sandy Bridge onwards. The two fea-
tures are the Running Average Power Limit (RAPL) and
a micro-op (short for micro-operation) cache. RAPL
[6, 8] allows measuring the processor energy consump-
tion at high accuracy. The micro-op cache allows the
instruction decoders to be shut down while decoded in-
structions are served from the cache, thus improving en-
ergy efficiency. Our core idea is to design microbench-
marks that exhaust the micro-op cache, thus trigger-
ing the instruction decoders. This allows us to specifi-
cally measure the power consumed by the instruction de-
coders. The code for our microbenchmarks is available
at https://github.com/mhirki/idq-bench2.

Our paper makes the following major contributions:

• We develop a set of microbenchmarks to accurately
measure the power consumption of the instruction
decoders in an x86-64 processor.

• We show that the percentage of power consumed by
the instruction decoders is between 3% and 10% of
the total package power.

• We conclude that the x86-64 instruction set is not
a major hindrance in producing an energy-efficient
processor architecture.

The rest of the paper is structured as follows. Section
2 gives a more detailed explanation of processor archi-
tecture and the Intel RAPL feature. Section 5 reviews
the related work. Section 3 presents the hardware and
software configuration as well as the implementation of
our microbenchmarks. Section 4 presents the results ob-
tained using our microbenchmarks. Finally, Section 6
concludes our paper and presents an idea for future work.
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2 Background
2.1 Processor Architecture
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Figure 1: Simplified version of the Intel Haswell
pipeline.

Figure 1 depicts a simplified version of the Intel
Haswell pipeline. This simplified version highlights the
micro-op cache, a new feature first introduced in the
Sandy Bridge architecture. Before the new cache, the
Intel architecture relied on a very small decoded instruc-
tion buffer and four instruction decoders. Three of the
decoders are simple decoders that can only decode a sin-
gle instruction into a single micro-op. The fourth de-
coder can receive any instruction and produce up to four
micro-ops per cycle. Thus, instructions that are trans-
lated into more than one micro-op can only be decoded
by the complex decoder. This creates a potential bottle-
neck if the frequency of complex instructions is high.

The micro-op cache solves performance problems in
some cases. In addition, it allows shutting down the
instruction decoders when they are not used, thus sav-
ing power. The capacity of the micro-op cache is 1536
micro-ops, which is equivalent to eight kilobytes of x86
code at maximum.

2.2 Running Average Power Limit (RAPL)
Intel introduced the RAPL feature in their Sandy

Bridge architecture. It produces an estimate of the en-
ergy consumed by the processor using a model based on
microarchitectural counters. RAPL is always enabled in
supported models and the energy estimates are updated
every millisecond. RAPL supports up to four different
power domains depending on the processor model. The

Package domain estimates the energy consumed by the
entire processor chip. Power plane 0 is a subdomain
which estimates the energy consumed by the processor
cores. Power plane 1 is another subdomain which esti-
mates the energy consumed by the integrated graphics in
desktop models. The DRAM domain is a separate do-
main which estimates the energy used by the dual in-line
memory modules (DIMMs) installed in the system. In
this paper, we present measurements of the RAPL Pack-
age domain exclusively.

3 Methodology
3.1 Hardware and Software

Table 1: Hardware used in the experiments.
Processor: Intel Core i7-4770 @ 3.40 GHz
Architecture: Haswell
Cores: 4
L3 cache: 8 MB
Turbo Boost: Supported but disabled
Hyperthreading: Supported but disabled
RAM: 2x 8 GB Kingston DDR3,

1600 MHz (dual-channel)
Motherboard: Intel DH87RL
Power supply: Corsair TX750

The hardware used in the experiments is listed in Ta-
ble 1. An Intel Haswell desktop processor, released in
2013, is used for the experiments. The Turbo Boost fea-
ture is disabled to make the experiments repeatable with-
out relying on thermal conditions. Meanwhile, disabling
Turbo Boost ensures that the processor does not exceed
its base frequency of 3.4 GHz. In addition, the hyper-
threading feature is disabled in the BIOS of the machine
on purpose. This gives access to eight programmable
performance counters, compared with only four when
hyperthreading is enabled.

Table 2: Software and kernel parameters used in the ex-
periments.

Operating system: Scientific Linux 6.6
Kernel: Linux 4.1.6
Cpufreq governor: Performance
NMI watchdog: Disabled
Transparent hugepages: Disabled
Compiler: GCC 4.4.7
Performance measurement: PAPI library 5.4.1

and Perf 4.1.6

Table 2 states the software components used in the
experiments. Certain kernel settings are adjusted to en-
sure that the experiments are repeatable. The Cpufreq
governor is set to performance that runs the processor
at the highest available frequency when it is not idle.
This prevents the processor from running at frequencies
lower than 3.4 GHz. The Non-maskable interrupt (NMI)
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watchdog is disabled, which frees up one programmable
performance counter. In addition, support for transparent
hugepages is disabled since it can change performance
characteristics while programs are running. The perfor-
mance counters are read using both the PAPI (Perfor-
mance Application Programming Interface) library [14]
and the Perf tool. Perf is a low-level performance analy-
sis tool that is shipped with the Linux kernel. The RAPL
counters are read using the MSR driver interface.

GCC 4.4.7 is used as the compiler in the experiments
since it is the default for the Linux distribution. The
same compiler is likely still used by many applications
running on Scientific Linux 6. The compiler flag -O2 is
used to produce optimized binaries. Model-specific opti-
mizations, such as Advanced Vector eXtensions (AVX),
are not used.

3.2 Microbenchmark Design
We design a series of microbenchmarks to measure

the power consumption of the instruction decoders of the
x86-64 processor. The benchmarks execute a single line
of code in a loop. We manually unroll the loop up to
2048 times. This allows us to easily increase the size of
the code to exceed the capacity of Intel’s micro-op cache.
In turn, it forces the processor to use the instruction de-
coders at least periodically. We can then compare the
power consumption against a loop with a smaller unroll
count. If the loop is still executed in the same amount of
time, the observed difference in power consumption can
be attributed to the instruction decoding pipeline.

Loop unrolling is a well-known optimization tech-
nique used by compilers. In simple cases, where the
number of iterations n is divisible by some integer k,
the loop body can simply be repeated k times. The
number of iterations for the unrolled loop is n/k. Un-
rolling increases performance by minimizing the number
of branch instructions that need to be executed. Branch
instructions are used for jumping from the end of the loop
to its beginning. A correctly-predicted branch instruc-
tion consumes only one clock cycle in a pipelined pro-
cessor. Thus, loop unrolling is most beneficial for very
small loops.

The microbenchmarks use simple arithmetic opera-
tions such as addition and multiplication. Different
benchmarks use either floating-point (double- or single-
precision) or integer (32-bit or 64-bit) data types. They
operate either on large arrays or simply on values stored
in registers. The following code listing written in the C
language shows the operations used in microbenchmark
#1:

D += A[ j ] + B[ j ] ∗ C[ j ] ;

Here A, B and C are floating-point arrays stored in
memory. The variable D contains a floating point value

stored in a register. The benchmarks do not write to
memory because that would require an additional param-
eter in the power model. The following C code shows
microbenchmark #2:

D += (A[ j ] << 3) ∗ (A[ j ] << 4) ∗
( ( B[ j ] << 2) ∗ 5 + 1 ) ;

In this case, A and B are integer arrays. Since instruc-
tions that access memory generate at least two micro-ops
and hence are forced through the complex decoder, we
need to add several filler operations that generate only
one micro-op. Here we use bitwise shifts, multiplica-
tions and additions as filler operations. This approach
eliminates the complex decoder as a performance bottle-
neck, allowing us to stress all four decoders.

We write many variations of each benchmark. In ad-
dition to the previous two benchmarks, we have dozens
of different variations of them. We vary the type of op-
erations (addition, multiplication, bitwise shift) used in
the benchmarks. Furthermore, we change the size of the
arrays so that they fit different caches such as L1 or L2
caches. We also vary the data types (double- or single-
precision). The filler operations introduce additional op-
portunities for instruction-level parallelism, thus putting
additional load on the instruction decoders.

4 Experimental Evaluation
4.1 Power Consumption versus Code Size

Our first step is to try a large number of different un-
roll counts using only a single benchmark. This gives us
a better understanding of how energy consumption devel-
ops as the code size increases due to higher unroll count.
We can then identify which components are responsible
for the changes in energy consumption.
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Figure 2: Package energy consumption of microbench-
mark #1 with different loop unroll counts.

Figure 2 shows the processor energy consumption for
different unroll counts. The energy is measured in joules
as reported by the Intel RAPL feature. From the figure,
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we can see that energy consumption initially decreases
until it reaches its minimum at unroll factor of 64. We do
not observe any performance gains in the running time of
the loop. Therefore, the reduction in energy consumption
can be attributed to the reduced branch prediction activ-
ity. At unroll factor of 128, we can see an increase in
energy consumption that is caused by the instruction de-
coders. After this, the energy consumptions grows as the
hit ratio for the micro-op cache drops. Between unroll
factors 1024 and 2048, we see a big jump in energy con-
sumption that is due to the L1 instruction cache capac-
ity being exceeded. We see that the energy consumption
continues growing as the L2 cache activity increases.

Based on Figure 2, we can extrapolate that energy con-
sumption will keep growing for an even larger loop as
the L2 cache will be exhausted. Eventually, the trans-
lation lookaside buffer (TLB) will also be exhausted, at
which point there will be a big performance penalty and
correspondingly, big increase in energy consumption.

4.2 Regression Modeling
We employ linear regression modeling to further iso-

late the power consumption of the instruction decoders.
We implement two cases with different unroll counts in
each of our microbenchmarks. The extreme case is the
point when the capacity of the micro-op cache is ex-
ceeded. From Figure 2, we can see that this point is at
an unroll count of 128 for benchmark #1. This is our ex-
treme case. We also define a normal case for comparison
that is the extreme case’s unroll count divided by two. In
this example, the normal case is at an unroll count of 64,
which is the energy minimum in Figure 2. Having dozens
of benchmarks that implement these two cases allows us
to produce enough data to accurately model the power
consumption of different processor components such as
the execution units, the instruction decoders and the dif-
ferent caches.

Ppackage = 6.05+
cycles
second

×1.63×10−9

+
µops issued

second
×2.15×10−10

+
µops decoded

second
×1.40×10−10

+
L1 hits
second

×4.35×10−10

+
L2 references

second
×4.05×10−9

(1)

Table 3 lists the performance events selected. They re-
flect the components stressed by our benchmarks. The
total number of benchmarks we use is 49. This number
includes the different variants of each benchmark. In ad-
dition, each benchmark has two cases: the normal one
and the extreme one. We run each case for 11 seconds
on our test machine. During the execution, we measure

power consumption at a rate of 50 samples per second
using RAPL. We also use the Perf tool to record perfor-
mance events at the same rate. We need to adjust the
Perf timestamps to match with our power consumption
data because the Linux kernel does not use real time for
performance events. In addition, we have to filter out
anomalous values in the performance data. We use the
ordinary least squares method to construct a linear model
for the package power consumption.

Equation 1 shows the resulting power model obtained
using linear regression. The result is the predicted pack-
age power consumption as measured in watts. The in-
put parameters are measured as the number of events per
second. For example, the value of cycles/second would
be 3.4 billion (or 3.4× 109) for a single core of our test
machine. The coefficient of determination (R2) for our
model is 0.989. Therefore, we believe the model ac-
curately represents the different CPU components when
running our benchmarks.

4.3 Power Breakdowns
In Table 4, we select two microbenchmarks for more

detailed examination. We select benchmark #1 because
of its high L2 & L3 cache power consumption. The
L2 and L3 caches are major components and they allow
putting the instruction decoders into perspective. Bench-
mark #2 is selected because of the high power consump-
tion in the instruction decoders. At the same time, #2
does not use the L2 cache. Therefore, #2 demonstrates
the maximum power consumption of the instruction de-
coders.

We discovered that our benchmarks appear to trig-
ger the L2 prefetchers even though the data fits into the
L2 cache. This problem appears to be limited to syn-
thetic benchmarks running on the Haswell platform. The
prefetchers appear to be fetching data from the L3 cache,
which causes additional power consumption. Therefore,
we have labeled the component as “L2 & L3 cache” in
our power breakdowns.

Uncore static 12%

Cores static 44% Micro-op
Execution 10%

Instruction decoders 3%

L1 cache dynamic 9%

L2 & L3 cache dynamic 22%

Figure 3: Package power consumption breakdown of
microbenchmark #1, which stresses the L2 cache using
floating-point operations.

Figure 3 shows the power consumption breakdown for
our microbenchmark #1. It demonstrates the power con-
sumption of different CPU components as predicted by
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Table 3: Performance events used in the linear regression model.
Event name: Description:
CPU CLK UNHALTED.THREAD P The number of clock cycles for each core.
UOPS ISSUED.ANY The number of micro-ops issued to the execution units.
IDQ.MITE UOPS The number of micro-ops produced by the instruction decoders.
MEM LOAD UOPS RETIRED.L1 HIT The number of hits in the L1 data cache.
L2 RQSTS.REFERENCES The number requests to the L2 cache (including L2 prefetchers).

Table 4: Power consumption breakdown by processor
components for two different microbenchmarks as pre-
dicted by our model.

Microbenchmark: #1 #2
Type: Floating-point Integer
Instructions per cycle: 1.67 3.86
Uncore (W): 6.0 6.0
Cores (W): 22.1 22.1
Execution units (W): 4.9 10.4
Instruction decoders (W): 1.8 4.8
L1 cache (W): 4.8 3.8
L2 & L3 cache (W): 11.2 0.1
Micro-op cache hit ratio: 44.8% 29.6%

our power model. This figure corresponds to the bench-
mark #1 in Table 4. We have labeled the constant term as
uncore static in this figure since it roughly corresponds
to the static power consumption of the uncore compo-
nent in the processor. This term includes the static power
consumption of components such as the L3 cache and the
memory controller.

Based on Figure 3, the power consumption of the in-
struction decoders is very small compared with the other
components. Only 3% of the total package power is con-
sumed by the instruction decoding pipeline in this case.
It should be noted that the hit ratio for the micro-op cache
is 45%, which means that only 55% of micro-ops come
from the decoders. Therefore, the instruction decoders
can in theory consume twice as much power. This can
happen with older generation architectures like Nehalem,
which is the predecessor of Sandy Bridge. The Nehalem
architecture lacks the micro-op cache, so it has to decode
every single instruction in our benchmark.

Uncore static 13%

Cores static 47%

Micro-op
Execution 22%

Instruction decoders 10%

L1 cache dynamic 8%

Figure 4: Power consumption breakdown of mi-
crobenchmark #2, which stresses the L1 cache using in-
teger operations.

Figure 4 illustrates a power breakdown for our bench-
mark #2, which uses integer operations (as opposed to

floating-point operations used in benchmark #1). Be-
cause of this, benchmark #2 reaches a much higher in-
structions per cycle (IPC) count. The higher IPC count
causes the execution units and instruction decoders to
consume more power. The micro-op cache hit ratio for
#2 is also lower, which causes even more work for the in-
struction decoders. As a result, the instruction decoders
end up consuming 10% of the total package power in
benchmark #2. Nevertheless, we would like to point out
that this benchmark is completely synthetic. Real appli-
cations typically do not reach IPC counts as high as this.
Thus, the power consumption of the instruction decoders
is likely less than 10% for real applications.

5 Related Work
Many power models have been proposed for model-

ing the power consumption of entire computer systems
and individual components [4, 7, 13, 15]. McCullough et
al. [13] evaluated earlier approaches to modeling power
consumption. Their conclusion is that quadratic and
other non-linear models are often required for accurate
power modeling. This is due to the fact that many uti-
lization metrics or performance counters do not scale
linearly with low-level hardware activity. In this pa-
per, we use a linear model because we choose compo-
nents that can be modeled linearly using the parameters
available. In addition, we use the Haswell architecture,
which is significantly more energy efficient than older
architectures. Our selection of performance events is
also different from existing work. For example, we use
the IDQ.MITE UOPS performance event introduced in
Sandy Bridge. To our best knowledge, Oboril et al. [15]
are the only ones who have used this performance event
besides us. They present power consumption break-
downs similar to ours. However, they do not use mi-
crobenchmarks specifically targeting the instruction de-
coders like we do.

The energy efficiency of different Intel and ARM plat-
forms has been compared using numerous workloads
[2, 3, 11, 16]. The results suggest that ARM gives good
energy efficiency in specific workloads using specific pa-
rameters while Intel has more stable performance across
a wider range of parameters. In addition, a few studies
have attempted to investigate the significance of the in-
struction set [5, 10]. Blem et al. [5] concluded that the in-
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struction set by itself is a fairly insignificant part of whole
microprocessor design. A limitation of their work is that
they did not measure the instruction decoders directly.
Our paper addresses this limitation. Isen et al. [10] stated
that Intel benefits from advanced microarchitectural fea-
tures such as micro-op fusion that has helped close the
gap between CISC and RISC instruction sets.

Microbenchmarks have been used for deriving power
models before. Isci and Martonosi [9] use microbench-
marks to derive the power consumption of 22 differ-
ent components of the Pentium 4 processor. Similar
to our work, they use performance counters to estimate
the activity of different components. However, our mi-
crobenchmarks are more focused on the instruction de-
coders. Leng et al. [12] model the power consumption
General Purpose GPUs (GPGPUs). Their work shows
that a microbenchmark-based approach works even for a
different class of hardware.

6 Conclusion and Future Work
We designed a series of microbenchmarks to deter-

mine the power consumption of the instruction decoders
in our x86-64 processor. We model the power consump-
tion using linear regression analysis. Our linear model
predicts the power consumption of different components
including the execution units, instruction decoders, and
L1 and L2 caches. The result demonstrates that the de-
coders consume between 3% and 10% of the total pro-
cessor package power in our benchmarks. The power
consumed by the decoders is small compared with other
components such as the L2 cache, which consumed 22%
of package power in benchmark #1. We conclude that
switching to a different instruction set would save only
a small amount of power since the instruction decoder
cannot be eliminated completely in modern processors.

In the future, we plan to port our microbenchmarks
to an ARM platform. This allows us to directly com-
pare the energy consumption of different components be-
tween two different architectures. Another interesting
platform to benchmark would be the Intel Atom, which
is a low-power x86 design. The Atom does not support
AVX instructions, which should simplify the decoders
and thus reduce their power consumption.
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