
Reducing Execution Waste in Priority Scheduling: a Hybrid Approach

Derya Çavdar
Bogazici University

Lydia Y. Chen
IBM Research Zurich Lab

Fatih Alagöz
Bogazici University

Abstract

Guaranteeing quality for differentiated services while en-
suring resource efficiency is an important and yet chal-
lenging problem in large computing clusters. Priority
scheduling is commonly adopted in production systems
to minimize the response time of high-priority workload
by means of preempting the execution of low-priority
workload when faced with limited resources. As a re-
sult, the system performance may not only suffer from
the long queueing time of low-priority workload due
to resource starvation, but also non-negligible execution
waste owing to repetitive evictions. In this paper, we pro-
pose a scheduler, HYBRID, which allows the scheduler
to switch between being preemptive and non-preemptive
by providing a fixed number of computing resources –
sticky slots providing uninterruptible task executions. In
addition, to preserve performance advantages of high-
priority workload by conventional preemptive priority
scheduling, HYBRID also aims to reduce repetitive evic-
tions, response times, and wasted executions caused by
the low-priority workload. Trace driven simulation anal-
ysis shows that our proposed HYBRID scheduler out-
performs conventional preemptive priority scheduling by
improving response time of low-priority workload by
15% and reducing wasted executions by 85%.

1 Introduction

Priority scheduling has been widely adopted in the pro-
duction systems as an effective way to provide differen-
tiated services, examples including Google clusters [10]
and Facebook [5]. Certain classes of workloads are given
higher priority when allocating resources, especially dur-
ing the time period of insufficient resources. Typically,
production systems especially for big data like work-
loads dimension their resources by fixed number of slots
which defines the amount of workload can be severed
concurrently on servers. Response times of high-priority

class can be minimized by giving sufficient amount of
slots whereas the low-priority class may suffer from the
resource starvation and being executed without a perfor-
mance guarantee due to insufficient provisions of slots.

Recent studies [3, 8] show that the priority schedul-
ing not only can severely harm the low-priority class
but also can result in significantly high amount of ex-
ecution waste due to preemption – high-priority tasks
can evict low-priority tasks that are in execution. The
amount of resources used for executions of evicted tasks
are thus wasted, especially when tasks are non-resumable
from the eviction points. Particularly, higher number
of low-priority tasks are repetitively evicted by high-
priority tasks which often require large amount of re-
sources, e.g., long CPU execution time. Consequently,
low-priority tasks are repetitively resubmitted to the sys-
tem where their response times are severely degraded.
While the prior work on priority scheduling have differ-
ent performance objectives such as delay [9, 12] and fair-
ness [6, 4], it is still an open question how to improve
the resource efficiency and response time of low-priority
tasks and meanwhile guarantee the performance of high-
priority tasks especially in the case of preemptive priority
scheduling.

In this paper, we develop HYBRID scheduler which
combines the principles of first-come-first-served and
preemptive priority scheduling by considering the pri-
ority of tasks, available resources, and task age. Our
objectives are to preserve performance benefits of high-
priority tasks, to prevent the resource starvation for low-
priority tasks and to minimize execution waste due to
repetitive task evictions. HYBRID guarantees the high-
priority task response time by occasionally allowing the
preemption of low-priority tasks and minimizes the ex-
ecution waste due to repetitive evictions by occasion-
ally enabling uninterruptible executions for low-priority
tasks. We particularly focus on slotted systems where
the basic computing units are slots which are capable
of serving one task at a time. To allow the scheduler

1



switching between being non-preemptive and preemp-
tive, we introduce a limited number of special type of
slots – sticky slots which provide uninterrupted execu-
tion for tasks either from low or high-priority class.

In particular, HYBRID applies two scheduling princi-
ples on tasks depending on the availability of sticky slots
upon their arrival times: (i) sticky phase where all tasks
are served by the order of task arrival times, i.e., first-
arrived-first-served (FCFS), on sticky slots, and (ii) reg-
ular phase where all tasks are served according to pre-
emptive priority scheduling principle on regular slots,
as there is no sticky slot available. During the sticky
phase, HYBRID provides scheduling opportunities for
tasks that already have long queueing times such as low-
priority tasks undergoing multiple evictions. Controlling
the number of sticky slots enables HYBRID to agilely
change the execution order of tasks according to either
task age or task priority. Using trace driven simulations,
we show that HYBRID not only provides better response
time for low-priority tasks, i.e., roughly 15% by greatly
reducing task evictions, but also leads to a noteworthy
decrease on wasted resources, i.e., roughly 85% com-
pared to various preemptive priority schedulers.

In terms of contributions, we develop a novel sched-
uler HYBRID which preserves the advantages of pre-
emptive priority scheduling for high-priority tasks and
reduces the wasted executions due to repetitive evictions
of low-priority tasks. The trace driven simulation results
show that the proposed concept of sticky slots is very ef-
fective in supporting the hybrid design of combining two
different scheduling principles.

In the following, we first illustrate the system model
considered in this study in Section 2. We detail out the
HYBRID scheduler in Section 3, followed by a large
number of trace-driven simulations.

2 System Model

Our system model aims to capture the characteristics
of heterogeneous resources and workloads where tasks
are associated with different priorities. The main com-
ponents considered here are: tasks, the scheduler and
servers. The incoming tasks join the scheduling queue
immediately after their arrival to the system. The sched-
uler controls the resource assignment of tasks based on
the server availability in terms of number of computa-
tional slots and scheduling discipline employed. The
slot-based system is widely used in production systems,
e.g. [1, 7], due to its simplicity in allocating resources
across heterogenous resources and scalability to handle
large amount of workload. Our study is particularly
based on the published trace of Google computing clus-
ters – where there are four dominant types of different
servers as shown in Table 1 – and focused on a scenario

of a cluster consisting of 125 servers. Moreover, we also
leverage the workload information in terms of tasks pro-
vided in Google trace. In the following section, we de-
scribe the working principles of the slot-based system
and the computation of response time.

2.1 Slot-based System
In the slot system, tasks are assigned based on the avail-
ability of predefined number of slots on each server with-
out knowing the actual amount of servers’ available re-
sources and task’s resource requirements. A slot is de-
fined as a virtual token which is required to execute a
task on a server. The number of slots on a machine acts
as a limit on the maximum number of tasks that can con-
currently run on that server.

The principles of assigning tasks in the slot-based sys-
tem are as follows. If there is an available slot in the sys-
tem, the task occupies that slot and immediately starts
its execution. Each task is assigned to only one slot in-
dependent of its resource usage. The resource alloca-
tions are made based on the actual resource usages of
tasks. If priority evictions are allowed, exactly one task
is evicted for each evictor task since the system is slot-
based. In addition to priority evictions, a task may be
evicted due to memory overrun. Furthermore, we assume
that task execution is non-resumable from the eviction
point, meaning that computational results and resources
are thus wasted. We refer successful task execution when
the task is not terminated by an eviction. To quantify
the execution waste, we focus on CPU seconds which
are used for unsuccessful execution of a task whose final
outcome is either eviction or drop-out.

Server quantity CPU Memory slots average CPU
per slot

A 69 0.5 0.50 24 normal
B 38 0.5 0.25 24 normal
C 10 0.5 0.75 24 normal

D
5 1.0 1.0 24 powerful
3 1.0 1.0 48 normal

total 125 - - 3072 -

Table 1: Server types and slot configurations.

2.1.1 Workload-aware Slot Configuration

The efficiency of the slot-based system highly depends
on the slot configuration. Here, we configure slots
according to the workload-aware slot configuration al-
gorithm (WASC) which is proposed in the following
study [2]. The rationale is to exploit workload hetero-
geneity and make slot configurations accordingly in or-
der to better fit workload’s requirements. In the par-
ticular, for the example of Google trace, high-priority

2



tasks from the production classes are rare but consumes
much more resources. Therefore, WASC configures slots
with two kinds of average CPU capacity to better handle
the high-priority tasks. Particularly, WASC configures
server type A-C in Table1 with 24 slots, and server type
D with either 24 slots or 48 slots. The type D servers
are low in terms of quantity and equipped with higher
amount of resources. Therefore, the average CPU capac-
ity capacity at server D can be “normal” or “powerful”
depending on the number of slots.

2.2 Response Time Model for Tasks

We compute the execution time of a task (Tx) by the
amount of time that requires to accumulate enough
CPU consumption satisfying the CPU demand of the
task (∆C). The CPU consumption of a task is the inte-
gral of the assigned CPU rate Γc) over time, as ∆C =∫ Tx

0 Γc(t). Our slot-based system limits tasks to use ex-
actly one slot and run on no more than one core. More-
over, CPU resources of the server is equally shared by
concurrently running tasks. Hence, the maximum CPU
rate that a task can get is limited by the core capacity
and the minimum CPU rate that a task can get is limited
by the average CPU capacity per slot: C

Ns
≤ Γc(t) ≤ C

Nc
.

The minimum Tx is determined by the number of cores
(Nc) while the maximum Tx is limited by the number of
slots (Ns) as shown ∆CNc

C ≤ Tx ≤ ∆CNs
C .

We update the assigned CPU rates at each unit time.
Since, a task can not use more than one core, CPU rate
is adjusted to one core capacity if the number of running
tasks is smaller than number of cores on that machine as
shown.

Γc(t) =

{ C
Nr(t)

if C
Nr(t)

≤ C
Nc

C
Nc

if C
Nr(t)

> C
Nc

Γc(t) is the assigned CPU rate of a task and Nr(t) is the
number of concurrently running tasks on the server at
time t. Our response time model also includes the time
spent in the queue and the total time spent on wasted
executions due to evictions in non-resumable systems.

3 HYBRID Scheduler

In this paper, we propose a novel scheduler HYBRID
which effectively assigns tasks to slots for highly hetero-
geneous workloads to provide guaranteed execution of
low-priority tasks as well as giving precedence to high-
priority tasks. Figure 1 depicts the design of HYBRID.
To such an end, HYBRID combines two types of princi-
ples for the scheduling order of tasks: (i) “first” arrival
times of tasks and (ii) priority of tasks, depending on

VWLFN\
SKDVH

UHJXODU�
SKDVH

ILQLVKHG

SULRULW\�
HYLFWLRQ

VHUYHU�
ZLWK�

��FRUHV�	�
��VORW�

FDSDFLW\

QHZ�
DUULYDOV

LI�WKHUH�LV�QR�
DYDLODEOH�VORW

LI�WKHUH�LV�QR�
DYDLODEOH�
VWLFN\�VORW

VWLFN\�VORW�
SRRO

UHJXODU�VORW�
SRRO

Figure 1: HYBRID scheduler design.

the number of available sticky slots. Sticky slots fea-
ture on uninterrupted executions of tasks and the usage
of sticky slot is independent of task’s priority. We note
that the “first” arrival time refers to the time stamp when
a task first ever enter the scheduling queue, instead of
its consequent re-entering due to evictions if any. Upon
task arrivals at the scheduling queue, HYBRID sched-
ules tasks based on the order of their first arrival times, if
there are sticky slots available. No tasks can be evicted
from a sticky slot. On the contrary, when all sticky slots
are occupied, HYBRID schedules tasks which wait in the
scheduling queue to regular slots by the order of their pri-
ority. As such HYBRID alternates between two phases
namely sticky and regular phase. As soon as the sticky
slot are all occupied, HYBRID enters the regular phase
whereas it switches back to sticky phase upon release of
a sticky slot. We note that sticky/regular slots are virtual
labels neither holding resources nor reserved on specific
machines. The tasks scheduled with regular slots and
sticky slots can run on the same machine.

While high-priority tasks can be executed without any
interruption, executions of low-priority tasks can switch
between being interruptible or uninterruptible based on
the state of the scheduler, i.e., sticky or regular phase, re-
spectively. In addition to the advantage of high-priority
tasks which are experiencing no eviction resulting into
successful execution, sticky phase gives high precedence
to low-priority tasks that are already experiencing mul-
tiple evictions because of their “early” first arrival time.
Overall, the number of sticky slots configured in the sys-
tem determines the degree that how often low-priority
tasks might experience eviction due to insufficient num-
ber of slots. In HYBRID, we keep a constant number of
sticky slots and the choice of such number is searched
empirically. We detail out the scheduling principles in
the sticky and regular phase in the following and depict
the outline of HYBRID in Figure 1.

3



3.1 Sticky Phase

At each unit time, HYBRID checks the central schedul-
ing queue. If there are waiting tasks, the tasks are sorted
in ascending order by their “first” arrival time to the sys-
tem. There are two reasons behind this operation. First,
the low-priority tasks usually can not get scheduled due
to low scheduling precedence over high-priority tasks.
Second, repetitively evicted tasks suffer from multiple
disadvantages, i.e., high queueing time, wasted execu-
tions due to evictions. The evicted tasks thus tend to hold
the earliest arrival time to the system [2] among the same
class tasks.

At this phase, HYBRID functions as a first come
first serve non-preemptive scheduler which ensures the
schedulability and uninterrupted execution of tasks. In
particular, we use 200 sticky slots (6.5% of all slots)
throughout the evaluations in this paper. Such a value is
chosen that we can strike a good trade-off between the
mitigation of repetitive evictions on low-priority tasks
and the potential latency increase on the high-priority
tasks. Due to space limitations, we only present results
based on the optimal number of sticky slots.

3.2 Regular Phase

HYBRID enters regular phase when there is no available
sticky slot. At regular phase, HYBRID works as a fully
preemptive priority scheduler. The central scheduling
queue is sorted according to tasks’ priority in descend-
ing order first and then according to the arrival time in
ascending order. HYBRID dispatches the task from the
head of the queue and schedules the task based on the
availability of regular slots. When there is no regular slot
available, HYBRID evicts the low-priority task that is
not executing on a sticky slot and starts most recently so
to schedule a high-priority task that waits in the central
scheduling queue.

To better explore the heterogeneity of the underly-
ing hardware and task requirements, HYBRID tries to
utilize powerful slots. The average CPU capacity per
slot listed in Table 1. Specifically, when scheduling so-
called production-class tasks, e.g., priority 9-11 tasks,
HYBRID sorts the slots according to their average CPU
per slot and assigns tasks to the most powerful slot to
satisfy their higher resource demands. For the tasks from
non-production classes, they are assigned to a randomly
chosen slot. Moreover, when there is no available regu-
lar slot upon the arrival of a production class task, HY-
BRID evicts the task that occupy most powerful slot from
the lowest priority class. HYBRID thus ensure the occu-
pancies of such “powerful” slots by the production-class
tasks that indeed require higher amount of resources.

4 Evaluation

To evaluate the effectiveness of HYBRID on a heteroge-
nous cluster, we use trace-driven simulations based on
Google cluster trace [11]. The workload is composed of
tasks from 12 priority classes with diverse resource re-
quirements. Google cluster trace also provides informa-
tion about server environment in terms of CPU, memory
and percentages of server types as well as the workload.
All task resource usages and machine resource capaci-
ties are normalized with a range between [0,1] according
to the machine with maximum capacity. In particular,
we evaluate a data center of 125 heterogeneous servers
with four dominant types of server shown in Table 1.
In our analysis, we use trace-driven 15 hour long sim-
ulations with approximately 68.000 tasks in total. The
performance metrics of interest are the Wasted Execu-
tions (WE) measured in CPU seconds and class response
times, particularly the low (class 0) and high-priority
ones (class 9). WE is defined as the CPU seconds con-
sumed in executions that are terminated with unsuccess-
ful outcomes, i.e., eviction and drop out.

4.1 Performance of HYBRID
To highlight performance advantages achieved by HY-
BRID, we compare HYBRID against two types of sched-
ulers: PRI and PRI5. PRI is a standard preemptive pri-
ority scheduler which schedules tasks only by their pri-
ority class and evicts low-priority tasks to free up slots
for high-priority tasks in case of insufficient number of
slots. One can also think of PRI as a degenerated version
of HYBRID having only regular phase and zero number
of sticky slots. Moreover, to mitigate the potential down-
side of repetitive evictions in PRI, we impose a limit on
the number of evictions experienced by tasks. Such a
scheduler with limit 5 is called PRI5. When tasks reach
eviction limit, they are immediately dropped out by the
scheduler. The choice of such a limit is based on em-
pirical evaluations so that the percentage of task drops is
under 1% and the resulting maximum number of repeti-
tive eviction per task is similar to HYBRID. By dropping
tasks, PRI5 avoids further evictions and hence potential
execution waste. Essentially, PRI5 is a reactive approach
that bounds the negative impact of evictions whereas HY-
BRID is a proactive approach to control repetitive evic-
tions through the number of sticky slots. In the follow-
ing, we present the wasted executions and class response
times achieved by HYBRID, PRI and PRI5.

4.1.1 On Wasted Executions

In Table 2, we summarize five metrics related to exe-
cution waste: (i) NEpriority, the total number of priority
evictions, (ii) pe, the average number of evictions per

4



task that experience at least one eviction, (iii) max(pe),
the maximum number of evictions experienced by tasks,
(iv) the number of task drops, and (v) WE, the accumu-
lated wasted CPU seconds. One can expect there exists a
positive dependency among WE, the number of evictions
and task drops.

metric HYBRID PRI PRI5
NEpriority 1231 8509 4857
max(pe) 4 14 4
pe 1.1 2.23 1.72
number of task drops - - 400
WE(103)[cpu.sec] 20.9 141 95

Table 2: Statistics on number of evictions, drops and
wasted executions.

As seen from Table 2, HYBRID significantly de-
creases the total number of priority evictions NEpriority
by 85% and 75% respectively compared to PRI and
PRI5. Moreover, HYBRID scheduler also improves the
average number of evictions per evicted task pe by 50%
and effectively bounds the maximum number of prior-
ity evictions per task max(pe) under 4. Without any
surprise, PRI5 can effectively limit the number of max-
imum evictions experienced by a task, at the expense of
400 task drops. The reduction on the number of evic-
tions and task drops made by HYBRID is directly re-
flected on wasted executions – a significant improvement
of 85 %. Another worth mentioning observation is that,
though PRI5 indeed reduces the total number of evictions
by 50%, PRI5 only reduces WE by roughly 30%, com-
pared to PRI. The reason behind is that, as PRI5 only re-
actively drops tasks that already reexperience high num-
ber of evictions, i.e., 4, there is still a great amount of
wasted executions which are consumed before tasks are
dropped. In contrast, HYBRID can successfully mini-
mize the wasted executions by using the sticky slots to
proactively modulate the degree of task preemption.

4.1.2 On Response Time

Here, we focus on presenting per-class response times,
particularly class 0 (low-priority) and class 9 (high-
priority) under HYBRID, PRI, and PRI5. As the low-
priority class can experience repetitive evictions, we sep-
arate the response times of class 0 into two types: R0−ev,
the ones that experience at least one eviction and R0−nev,
the ones that never experience any eviction. By com-
paring these two statistics, we quantify the degradation
on the performance of low-priority class due to eviction.
Also, one can also view R0−ev as a proxy of response
time outlier in the entire system. We summarize R0−ev,
R0−nev and the response time of class 9 (R9) in Figure 2.

Let’s first focus on the comparison between HYBRID
and PRI. We can see that HYBRID significantly reduces
R0−ev by a factor of 2 compared to PRI though there
is a slight increase in R0−nev. We attribute the success
of HYBRID to the introduction of sticky slots which
not only ensures uninterruptible execution but also ter-
minates the loop of repetitive evictions for low-priority
tasks. Another significant observation is that, HYBRID
also reduces the response time of class 9 by 10% by re-
ducing the extra system load generated by resubmissions
due to evictions. Consequently, by allowing the sched-
uler to switch between scheduling principles of non-
preemptive FCFS and preemptive priority, HYBRID not
only greatly reduces the outliers from low-priority class,
i.e., R0−nev, but also improves the response time of high-
priority tasks.

0

1000

2000

3000

4000

5000

6000

HYBRID PRI PRI5

A
v
er

ag
e 

re
sp

o
n
se

 t
im

e

R0-nev
R0-ev

R9

Figure 2: Response time of class 0 and 9 under HYBRID,
PRI and PRI5.

In terms of performance of PRI5, we can see that PRI5
indeed improves R0−ev and R9 slightly without incurring
higher R0−nev compared to PRI. Similar to HYBRID,
PRI5 reduces the system load by terminating evictions
and dropping tasks. Consequently, R9 is slightly lower.
However, due to the reactive nature of PRI5, response
time outliers in low-priority class persist. Nonetheless,
task dropping in PRI5 may hurt user experiences. Over-
all, HYBRID successfully eliminates response time out-
liers in the low-priority and provides more uniform re-
sponse time among same priority class, while incurring
minimum amount of wasted executions due to evictions.

4.1.3 Usage of Sticky Slots

As the effectiveness of HYBRID lies at adopting sticky
slots, we provide basic statistics on how HYBRID uses
sticky slots on different priorities in Figure 3. First of all,
the usage of sticky slots fluctuates with the nature of the
workload, i.e., the distribution of priorities. In terms of
class usages, more than 90% of the sticky slots are ex-
ploited for the successful execution of class 4 and lower
priorities as shown in Figure 3(a). The major users of

5



sticky slots are class 0 and class 4 which are dominant in
population.

Quantity[%]

Usage[%]

0 20 40 60 80 100

Slots[%]

Sticky Regular

Usage[%]

0 20 40 60 80 100

Sticky slots[%]

0
1

2
3

4
6

8
9

(a) Sticky slot usage by priority class.

Config[%]

Usage[%]

0 20 40 60 80 100

Slots[%]

Sticky Regular

Usage[%]

0 20 40 60 80 100

Sticky slots[%]

0
1

2
3

4
6

8
9

(b) Slot usage and configuration (config) by slot type.

Figure 3: Percentage of configuration of slot types and
usage of slot types by tasks.

In terms of overall task usages, 20% of finished tasks
use sticky slots for their successful execution as shown
in Figure 3(b). Even though only 6.5% of the total num-
ber of slots are configured as sticky ones, the usage rate
of sticky slots by overall finished tasks is significantly
higher. There are two reasons behind. First the order
of use of slot types where sticky phase has precedence.
Second, sticky slots are mainly utilized by short lived
low-priority tasks. Hence, the resource usage associated
with the tasks executing on sticky slots is higher than
expected. Therefore, we can conclude HYBRID suc-
cessfully handles disadvantages of low-priority tasks by
extensively using sticky slots to provide opportunity for
their uninterrupted execution.

5 Conclusion

Motivated by non-negligible execution waste and repet-
itive evictions in priority scheduling systems, we pro-
pose HYBRID scheduler which aims to provide schedul-
ing and execution guarantees for low-priority tasks while
preserving the performance of high-priority tasks. HY-
BRID introduces a novel design where the availability
of sticky slots decides the scheduling principles and cor-
responding phase of the scheduler, i.e., non-preemptive
FCFS in the sticky phase and preemptive priority in
the regular phase. Using on-production Google cluster
traces, our simulation results show that HYBRID is able
to achieve lower response time for low-priority tasks as
well as a significant reduction on wasted executions com-
pared to various preemptive priority schedulers. Under
HYBRID, sticky slots not only improve the scheduling
opportunity of low-priority tasks that already experience
multiple evictions but also ensure their uninterrupted and
successful executions. Overall, HYBRID significantly

reduces wasted executions and improves response time
of low-priority tasks by mitigating priority evictions as
well as repetitive evictions.

6 Acknowledgments

This work has been supported supported by the Swiss National
Science Foundation (200021 141002), EU commission FP7
GENiC project (608826) and DPT TAM project (07K120610).

References

[1] Apache hadoop. http://hadoop.apache.org/, 2014.

[2] ÇAVDAR, D., CHEN, L. Y., AND ALAGOZ, F. Prior-
ity scheduling for heterogeneous workloads: Tradeoff be-
tween evictions and response time. IEEE Systems Journal
PP, 99 (2015), 1–12.

[3] ÇAVDAR, D., ROSÀ, A., CHEN, L., BINDER, W., AND

ALAGOZ, F. Quantifying the brown side of priority
schedulers: Lessons from big clusters. SIGMETRICS Per-
formance Evaluation Review 42, 3 (2014), 76–81.

[4] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWIN-
SKI, A., SHENKER, S., AND STOICA, I. Dominant re-
source fairness: Fair allocation of multiple resource types.
In USENIX NSDI (2011), pp. 323–336.

[5] GODER, A., SPIRIDONOV, A., AND WANG, Y. Bistro:
Scheduling data-parallel jobs against live production sys-
tems. In USENIX ATC (2015), pp. 459–471.

[6] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GH-
ODSI, A., JOSEPH, A. D., KATZ, R., SHENKER, S.,
AND STOICA, I. Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center. In USENIX NSDI
(2011), pp. 295–308.

[7] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS,
C., CHALIPARAMBIL, K., FUMAROLA, G. M., HED-
DAYA, S., RAMAKRISHNAN, R., AND SAKALANAGA,
S. Mercury: Hybrid centralized and distributed schedul-
ing in large shared clusters. In USENIX ATC (2015),
pp. 485–497.

[8] ROSA, A., CHEN, L., AND BINDER, W. Understanding
the dark side of big data clusters: An analysis beyond
failures. In DSN (2015), pp. 207–218.

[9] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-
MALEK, M., AND WILKES, J. Omega: Flexible, scal-
able schedulers for large compute clusters. In EuroSys
(2013), pp. 351–364.

[10] VERMA, A., PEDROSA, L., KORUPOLU, M. R., OP-
PENHEIMER, D., TUNE, E., AND WILKES, J. Large-
scale cluster management at Google with Borg. In Eu-
roSys (2015), pp. 1–17.

[11] WILKES, J. More Google cluster data. https://

github.com/google/cluster-data, 2011.

[12] ZHANG, Q., ZHANI, M., BOUTABA, R., AND HELLER-
STEIN, J. Dynamic heterogeneity-aware resource provi-
sioning in the cloud. IEEE Transactions on Cloud Com-
puting 2, 1 (2014), 14–28.

6


