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Abstract

High service availability is crucial for cloud systems. A
typical cloud system uses a large number of physical
hard disk drives. Disk errors are one of the most im-
portant reasons that lead to service unavailability. Disk
error (such as sector error and latency error) can be seen
as a form of gray failure, which are fairly subtle fail-
ures that are hard to be detected, even when applications
are afflicted by them. In this paper, we propose to pre-
dict disk errors proactively before they cause more se-
vere damage to the cloud system. The ability to predict
faulty disks enables the live migration of existing virtual
machines and allocation of new virtual machines to the
healthy disks, therefore improving service availability.
To build an accurate online prediction model, we utilize
both disk-level sensor (SMART) data as well as system-
level signals. We develop a cost-sensitive ranking-based
machine learning model that can learn the characteris-
tics of faulty disks in the past and rank the disks based
on their error-proneness in the near future. We evalu-
ate our approach using real-world data collected from a
production cloud system. The results confirm that the
proposed approach is effective and outperforms related
methods. Furthermore, we have successfully applied the
proposed approach to improve service availability of Mi-
crosoft Azure.

1 Introduction

In recent years, software applications are increasingly
deployed as online services on cloud computing plat-
forms, such as Microsoft Azure, Google Cloud, and
Amazon AWS. As cloud service could be used by mil-
lions of users around the world on a 24/7 basis, high
availability has become essential to the cloud-based ser-
vices. Although many cloud service providers target at
a high service availability (such as 99.999%), in reality,
service could still fail and cause great user dissatisfac-

tion and revenue loss. For example, according to a study
conducted on 63 data center organizations in the U.S,
the average cost of downtime has steadily increased from
$505,502 in 2010 to $740,357 in 2016 (or a 38 percent
net change) [33].

Various software, hardware, or network related prob-
lems may occur in a cloud system. Our experience with
Microsoft Azure shows that disk problem is the most se-
vere one among hardware issues. A typical cloud system
like Azure uses hundreds of millions of hard disk drives.
Disk-related problem has become one of the most sig-
nificant factors that contribute to the service downtime.
The importance of disk problem is also observed by re-
searchers in Facebook and Google, who reported that
20-57% of disks experience at least one sector error in
datasets collected over 4-6 years [27, 35].

To improve service availability, many proactive disk
failure prediction approaches have been proposed [18,
31, 32, 42, 41]. These approaches train a prediction
model from historical disk failure data, and use the
trained model to predict if a disk will fail (i.e., whether a
disk will be operational or not) in near future. Proactive
actions, such as replacement of failure-prone disks, can
then be taken. The prediction model is mainly built us-
ing the SMART [1] data, which is disk-level sensor data
provided by firmware embedded in disk drives.

The existing approaches focus on predicting complete
disk failure (i.e., disk operational/not operational). How-
ever, in a cloud environment, before complete disk fail-
ure, upper-layer services could already be affected by
disk errors (such as latency errors, timeout errors, and
sector errors). The symptoms include file operation er-
rors, VM not responding to communication requests, etc.
Disk errors can be seen as a form of gray failure [22],
which are fairly subtle failures that can defy quick and
definitive detection by a conventional system failure de-
tector, even when applications are afflicted by them. Gu-
nawi et al. also pointed out the impact of fail-slow hard-
ware that is still functional but in a degraded mode [20].
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If no actions are taken, more severe problems or even
service interruptions may occur. Therefore, we advocate
that it is important to predict disk errors so that proactive
measures can be taken before more severe damage to the
service systems incur. The proactive measures include
error-aware VM allocation (allocating VMs to healthier
disks), live VM migration (moving a VM from a faulty
disk to a health one), etc. In this way, service availability
can be improved by predicting disk errors.

In this paper, we develop an online prediction algo-
rithm for predicting disk errors, aiming at improving ser-
vice availability of a cloud service system. We find that
disk errors can be often reflected by system-level sig-
nals such as OS events. Our approach, called CDEF
(stands for Cloud Disk Error Forecasting), incorporates
both SMART data and system-level signals. It utilizes
machine learning algorithms to train a prediction model
using historical data, and then use the built model to pre-
dict the faulty disks. We design the prediction model to
have the following abilities:

• Be able to rank all disks according to the degree
of error-proneness so that the service systems can
allocate a VM to a much healthier one.

• Be able to identify a set of faulty disks from which
the hosted VMs should be live migrated out, under
the constrains of cost and capacity.

However, it is challenging to develop an accurate disk
error prediction model for a production cloud system.
We have identified the following challenges:

1. In real-world cloud service systems, the extremely
imbalanced data make prediction much more diffi-
cult. In average, only about 300 out 1,000,000 disks
could become faulty every day. We need to iden-
tify the faulty disks and be careful not to predict
a healthy disk as faulty. In our work, we propose
a cost-sensitive ranking model to address this chal-
lenge. We rank the disks according to their error-
proneness, and identify the faulty ones by minimiz-
ing the total cost. Using the cost-sensitive ranking
model, we only focus on identifying the top r most
error-prone disks, instead of classifying all faulty
disks. In this way, we mitigate the extreme imbal-
ance problem.

2. Some features, especially system-level signals, are
time-sensitive (their values keep changing drasti-
cally over time) or environment-sensitive (their data
distribution would significantly change due to the
ever-changing cloud environment). We have found
that models built using these unstable features may
lead to good results in cross-validation (randomly

dividing data into training and testing sets) but per-
form poorly in real-world online prediction (divid-
ing data into training and testing sets by time). We
will elaborate this challenge in Section 2.2. To ad-
dress this challenge, we perform systematic feature
engineering and propose a novel feature selection
method for selecting stable and predictive features.

We evaluate our approach using real-world data col-
lected from a production cloud system in Microsoft. The
results show that CDEF is effective in predicting disk er-
rors and outperforms the baseline methods. We have also
successfully applied CDEF in industrial practice. In av-
erage, we successfully reduce around 63k minutes of VM
downtime of Microsoft Azure per month.

In summary, we make the following contributions in
this paper:

• We propose CDEF, a disk error prediction method.
In CDEF, we consider both system-level signals and
disk-level SMART attributes. We also design a
novel feature selection model for selecting predic-
tive features and a cost-sensitive ranking model for
ranking disks according to their error-proneness.

• We have successfully applied CDEF to Azure, a
production cloud system in Microsoft. The results
prove the effectiveness of CDEF in improving ser-
vice availability in industrial practice. We also share
the lessons learned from our industrial practice.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce the background and motivation of
our work. Section 3 describes the proposed approach
and detailed algorithms. The evaluation of our approach
is described in Section 4. We also discuss the results and
present the threats to validity. In Section 5, we share our
experience obtained from industrial practice. The related
work and conclusion are presented in Section 6 and Sec-
tion 7, respectively.

2 Background and Motivation

2.1 Disk Error Prediction
A cloud system such as Microsoft Azure contains hun-
dreds of millions of disks serving various kinds of ser-
vices and applications. Disks are mainly used in two
kinds of clusters, clusters for data storage and clusters
for cloud applications. For the former of clusters, redun-
dancy mechanisms such as RAID [30] could tolerate disk
failures well. The latter form of clusters hosts a tremen-
dous amount of virtual machines, disk errors could bring
undesirable disruptions to the services and applications.
In this paper, we focus on the disks used in the cloud
application cluster.
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For cloud systems such as Microsoft Azure, Amazon
AWS, and Google Cloud, service problems can lead to
great revenue loss and user dissatisfaction. Hence, in
today’s practice, the service providers have made ev-
ery effort to improve service availability. For example,
from “four nines” (99.99%) to “five nines” (99.999%),
and then to “six niness”(99.9999%). Disks are among
the most frequently failing components in a cloud envi-
ronment and have attracted much attentions from both
academia and industry. For example, BackBlaze pub-
lishes quarterly reports and the underlying data for users
to keep track of reliability of popular hard drives in the
market. In their data, disk failure is labelled 0 if the drive
is OK, and 1 if this is the last day the drive was opera-
tional before failing [2].

To mitigate cost incurred by disk failures, researchers
have proposed to automatically predict the occurrence of
disk failure before it actually happens. In this way, proac-
tive measures, such as disk replacement, can be taken.
Disk failure prediction has been a hot subject of study.
Existing work [9, 18, 31, 32, 41, 42] mostly use the
SMART data (Self-Monitoring, Analysis and Reporting
Technology, which monitors internal attributes of indi-
vidual disks) to build a disk failure prediction model.

However, before a disk completely fails, it already
started reporting errors. There are various disk errors
such as disk partition errors (disk volumes and volume
size become abnormal), latency errors (unexpected long
delay between a request for data and the return of the
data), timeout errors (exceeding the predefined disk time-
out value), and sector errors (individual sectors on a drive
become unavailable), etc. Disk failures can be detected
by a conventional system failure detection mechanisms.
These mechanisms often assume an overly simple fail-
ure model in which a component is either correct or
failed. However, such mechanisms are inadequate to deal
with disk errors as they are subtle gray failures [22]. In
our practice, the disk error data is obtained through root
cause analysis of service issues performed by field engi-
neers.

Disk errors are common. For example, a study by
Bairavasundaram et al. [8] reports that 5-20% of hard
disk drives in Netapps storage systems report sector er-
rors over a period of 24 months. The disk errors can
affect the normal operations of upper-layer applications
and can be captured by unexpected VM downtime. The
symptoms include I/O requests timeout, VM or container
not responding to communication requests, etc. If no ac-
tions are taken, more severe problems or even service
interruptions may occur. Therefore, it is important that
disk errors to be captured and predicted before the vir-
tual machines get affected.

2.2 Challenges
In this work, we propose to predict the error-proneness of
a disk based on the analysis of historical data. The ability
to predict disk error can help improve service availability
from the following two aspects:

• VM allocation, which is the process of allocating
a VM (virtual machine) to a host. To enable more
effective VM allocation, we can proactively allocate
VMs to a host with a healthier disk rather than to a
host with a faulty disk.

• Live migration, which is the process of moving a
running VM among hosts without disconnecting the
client or application. To enable more effective live
migration, we can proactively migrate VMs from a
host with a faulty disk to a host with healthy disks.

To achieve so, we can build a prediction model based
on historical disk error data using machine learning tech-
niques, and then use the model to predict the likelihood
of a disk having errors in the near future. There are sev-
eral main technical challenges in designing the disk error
prediction model for a large-scale cloud:

Extremely imbalanced data: For a large-scale cloud
service system such as Microsoft Azure, each day, at
most only 3 disk in ten thousand disks could become
faulty. The extreme 3-in-10,000 imbalanced ratio poses
difficulties in training a classification model. Fed with
such imbalanced data, a naive classification model could
attempt to judge all disks to be healthy, because in this
way, it has the lowest probability of making a wrong
guess. Some approaches apply data re-balancing tech-
niques, such as over sampling and under sampling tech-
niques, to address this challenge. These approaches help
raise the recall, but at the same time could introduce a
large number of false positives, which dramatically de-
crease the precision. In our scenario, the cost of false
positives is high as the cost of VM migration is in-
neglectable and the cloud capacity may be affected by
the false positives.

Online prediction: Existing work [9, 26] usually
deals with prediction problem in a cross-validation man-
ner. However, we found that it is inappropriate for evalu-
ating our disk error prediction model. In cross validation,
the dataset is randomly divided into training and testing
set. Therefore, it is possible that the training set con-
tains parts of future data, and testing set contains parts
of past data. However, when it comes to online predic-
tion (using historical data to train a model and predict
future), training and testing data will have no time over-
lap. Besides, some data, especially system-level signals,
are time-sensitive (their values keep changing drastically
over time) or environment-sensitive (their data distribu-
tion could change due to the ever-changing cloud envi-
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Figure 1: The overview of the proposed approach

ronment). For example, a rack encounters an outage at
time t, all disks on it will experience such a change at
the same time. Using cross validation, the environment-
specific knowledge can spread to both training set and
testing set due to random splitting. The knowledge
learned from the training set could be applied to the test-
ing set, which causes high accuracy in cross validation
but poor result when evaluating new data.

Therefore, to construct an effective prediction model
in practice, we should use online prediction instead of
cross-validation: the future knowledge should not be
known at the time of prediction.

3 Proposed Approach
In this section, we present CDEF (Cloud Disk Error
Forecasting), our proposed approach that can improve
service availability by predicting disk errors. Figure 2
shows the overview of CDEF. First, we collect histori-
cal data about faulty and health disks. The disk label
is obtained through root cause analysis of service issues
by field engineers. The feature data includes SMART
data and system-level signals. We then select for training
those features that are stable and predictive. Based on
the selected features, we construct a cost-sensitive rank-
ing model, which ranks the disks and identifies the top r
ones that minimize the misclassification cost as the pre-
dicted faulty disks.

CDEF addresses the challenges described in the pre-
vious section by incorporating: 1) a feature engineering
method for selecting stable and predictive features 2) a
ranking model to increase the accuracy of cost-sensitive
online prediction. We describe these two components in
this section.

3.1 Feature engineering

3.1.1 Feature Identification

We collect two categories of data, SMART data and
system-level signals. SMART (Self-Monitoring, Analy-
sis and Reporting Technology) is a monitoring firmware
which allows a disk drive to report data about its inter-
nal activity. Table 1 gives some of the SMART features.

Table 1: Examples of SMART features
SMART
ID

Description

S2 Start/Stop Count
S12 Power Cycle Count
S193 Load Cycle Count
S187 The number of read errors that could not be

recovered using hardware ECC
S5 Count of reallocated sectors. When a read

or a write operation on a sector fails, the
drive will mark the sector as bad and remap
(reallocate) it to a spare sector on disk.

S196 The total count of attempts to transfer data
from reallocated sectors to a spare area.
Unsuccessful attempts are counted as well
as successful.

Table 2: The system-level signals

Signal Description
PagingError Windows encounters an error in

creating a paging file.
FileSystem-
Error

An error occurs when trying to read,
write, or open a file.

DeviceReset Device is forced to reset or shut-
down.

TelemetryLoss Telemetry data cannot be captured
over a period.

DataExchange-
Disabled

The data exchange integration ser-
vice cannot be enabled or initial-
ized.

VMFrozen VM is unresponsible to communi-
cation request

Windows
Event 129

A Windows event log caused by
dropped requests.

More information about SMART can be found in [31].
In cloud systems, there are also various system-level

events, which are collected periodically (typically ev-
ery hour). Many of these system-level events, such as
Windows events, file system operation error, unexpected
telemetry loss, etc., are early signals of disk errors. Ta-
ble 2 gives the descriptions of some system-level sig-
nals. For example, the FileSystemError is an event that
is caused by disk related errors, which can be traced back
to bad sectors or disk integrity corruption.

Apart from the features that are directly identified
from the raw data, we also calculate some statistical fea-
tures as follows:

Diff Through data analysis, we have found that the
changes in a feature value over time could be useful for
distinguishing disk errors. We call such a feature Di f f .
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Given a time window w, we define Di f f of feature x at
time stamp t as follows:

Di f f (x, t,w) = x(t)− x(t−w) (1)

Sigma Sigma calculates the variance of attribute val-
ues within a period. Given a time window w, Sigma of
attribute x at time stamp t is defined as:

Sigma(x, t,w) = E[(X−µ)2], (2)

where X = (xt−w,xt−w−1, ...,xt) and µ = ∑(X)
w .

Bin Bin calculates the sum of attribute values within a
window w as follows:

Bin(x, t,w) =
t

∑
j=t−w+1

x( j) (3)

In our work, we use three different window sizes 3, 5,
7 in calculating Di f f , Bin, and Sigma.

3.1.2 Feature Selection

Through the feature identification process described in
the previous section, we have identified 457 features in
total from SMART and system-level data. However, we
have found that not all of the features can well distin-
guish between healthy and faulty disks, especially in the
context of online prediction.

Feature selection proves very useful in selecting rele-
vant features for constructing machine learning models.
Existing feature selection methods fall into two main cat-
egories, statistical indicators (Chi-Square, Mutual Infor-
mation, etc.) and machine-learning based methods like
Random Forest [17]. However, in our scenario, the tra-
ditional feature selection methods cannot achieve good
prediction performance because of the existence of time-
sensitive and environment-sensitive features. These fea-
tures carry information that are highly relevant to the
training period, but may not be applicable for predict-
ing samples in the next time period. We call this kind of
features non-predictive features, meaning they have no
predictive power in online prediction. Our experimental
results (to be described in Section 4.3.2) show that the
traditional feature selection methods lead to poor perfor-
mance in our scenario.

Figure 2(b) illustrates an example of a non-predictive
feature SeekTimePer f ormance. Line G train indicates
the feature values of healthy disks over time in train-
ing set, and Line F train indicates the feature values of
faulty disks in the training set. Clearly, in the training
set, the mean feature value of healthy disks is lower than
that of faulty disks. We expect the same pattern for the
same feature in the testing set (which is collected from
the next time period). However, our data shows that it

is not the case. In Figure 2(b), Lines G test and F test
indicate the feature values of healthy and faulty disks
over time in the testing set, respectively. Clearly, in the
testing set, the mean feature value of healthy disks is
higher than that of faulty disks. Therefore, the behav-
ior of this feature is not stable. We consider this feature
a non-predictive feature and not suitable for online pre-
diction. As a comparison, Figure 2(a) shows a predic-
tive feature ReallocatedSectors, from which we can see
that the behavior of this feature is stable - the values of
healthy disks are always close to zero and the values of
faulty disks keep increasing over time, in both training
and testing sets.

Algorithm 1: Prune non-predictive features
Input : Training data TR with feature set F

( f1, f2, , , , fm)
Output: Reduced feature set F ′

1 Split TR by time equivalently into TR1 and TR2
2 foreach fi in F do
3 // use TR1 to predict TR2, get accuracy result
4 r← train(TR1) and test(TR2)
5 // remove data about fi from TR, then predict
6 r fi ← train(TR1- fi) and test(TR2- fi)
7 if r fi > r then
8 delete fi from F
9 end

10 if number of remaining features <= θ ∗m
then

11 Break
12 end
13 end
14 Return F ′

To select the stable and predictive features, we per-
form feature selection to prune away the features that
will perform poorly in prediction. The idea is to simu-
late online prediction on the training set. The training
set is divided by time into two parts, one for training and
the other for validation. If the performance on validation
set gets better after deleting one feature, then the feature
is deleted until the number of remaining features is less
than θ% of the total number of the features. The details
are described in Algorithm 1. In our experiment, we set
θ = 10% by default, which means that the pruning pro-
cess will stop if the number of remaining features is less
than 10%.

At last, we re-scale the range of all selected features
using zero-mean normalization as follows: xzero−mean =
x−mean(X).
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(a) Predictive features (b) Non-predictive feature

Figure 2: An example of predictive and non-predictive feature

3.2 Cost-sensitive ranking model
Having collected features from historical data, we
then construct a prediction model to predict the error-
proneness of disks in the coming days. In this step, we
formulate the prediction problem as a ranking problem
instead of a classification problem. That is, instead of
simply telling whether a disk is faulty or not, we rank
the disks according to their error-proneness. The ranking
approach mitigates the problem of extreme imbalanced
fault data because it is insensitive to the class imbalance.

To train a ranking model, we obtain the historical fault
data about the disks, and rank the disks according to their
relative time to fail (i.e., the number of days between the
data is collected and the first error is detected). We adopt
the concept of Learning to Rank [24], which automat-
ically learns an optimized ranking model from a large
amount of data to minimize a loss function. We adopt the
FastTree algorithm [28, 14], which is a form of “Multi-
ple Additive Regression Trees” (MART) gradient boost-
ing algorithm. It builds each regression tree (which is
a decision tree with scalar values in its leave) in a step
wise fashion. This algorithm is widely used in machine
learning and information retrieval research.

To improve service availability, we would like to intel-
ligently allocate VMs to the healthier disks so that these
VMs are less likely to suffer from disk errors in near fu-
ture. To achieve so, we identify the faulty and healthy
disks based on their probability of being faulty. As most
of the disks are healthy and only a small percentage of
them are faulty, we select the top r results returned by
the ranking model as the faulty ones. The optimal top r
disks are selected in such a way that they minimize the
total misclassification cost:

cost =Cost1∗FPr +Cost2∗FNr,

where FPr and FNr are the number of false positives and
false negatives in the top r predicted results, respectively.
Cost1 is the cost of wrongly identifying a healthy disk as
faulty, which involves the cost of unnecessary live migra-
tion from the “faulty” disk to a healthy disk. Although
we have very good technology for live migration, the mi-
gration process still incurs an unneglectable cost and de-
creases the capacity of the cloud system. Cost2 is the
cost of failing to identify a faulty disk. The values of
Cost1 and Cost2 are empirically determined by experts
in product teams. In our current practice, due to the con-
cerns about VM migration cost and cloud capacity, Cost1
is much higher than Cost2 (i.e., we value precision more
than recall). The ratio between Cost1 and Cost2 is set
to 3:1 by the domain experts based on their experience
on disk error recovery. The number of false positives
and false negatives are estimated through the false pos-
itive and false negative ratios obtained from historical
data. The optimum r value is determined by minimiz-
ing the total misclassification cost. The top r disks are
predicted faulty disks, which are high-risk disks and the
VMs hosted on them should be migrated out.

4 Experiments

In this section, we evaluate the effectiveness of our ap-
proach. The aim is to answer the following research
questions:

RQ1: How effective is the proposed approach in pre-
dicting disk errors?

RQ2: How effective is the proposed feature engineer-
ing method?

RQ3: How effective is the proposed ranking model?
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4.1 Dataset and Setup

Dataset To evaluate the proposed approach, we collect
real-world data from a large-scale Microsoft cloud ser-
vice system. We use one-month data (October 2017)
for training, and divide the data of November 2017 into
three parts for testing. In each dataset, the ratio between
healthy disks and faulty disks is around 10,000 : 3.

Setup We utilize Microsoft COSMOS [3] to store and
process data collected from product teams. For ranking
algorithm, we use the FastTree algorithm implemented in
Microsoft AzureML [4]. We use 200 iterations in Fast-
Tree setting. The experimental evaluation is performed
on a Windows Server 2012 with (Intel CPU E5-4657L
v2 @2.40GHz 2.40 with 1.0 TB Memory).

4.2 Evaluation Metric

Following the existing work [23, 32, 42], we evaluate the
accuracy of the proposed approach using the FPR and
TPR metrics. We consider faulty disks as positive and
healthy ones as negative. True Positive (TP) denotes the
faulty disks that are predicted as faulty. False Positive
(FP) denotes the healthy disks that are falsely predicted
as faulty. True Negative (TN) denotes the healthy disks
that are predicted as healthy. False Negative (FN) de-
notes the faulty disks that are falsely predicted as healthy.
False Positive Rate (FPR) denotes the proportion of FP
among all healthy disks. FPR = FP/(FP+T N). True
Positive Rate (TPR) denotes the proportion of TP among
all faulty disks. T PR = T P/(T P+FN).

We also use the ROC curve [5] that plots TPR (True
Positive Rate) versus FPR (False Positive Rate), and
compute the Area Under Curve (AUC). Following the
related work [23, 29], we compute the TPR value when
FPR is 0.1%, which indicates how good an algorithm can
predict faulty disks under a high precision requirement.

4.3 Results

4.3.1 RQ1: How effective is the proposed approach
in predicting disk errors?

We evaluate the effectiveness of the proposed CDEF ap-
proach on all three datasets. We also compare CDEF
with the Random Forest and SVM based methods pro-
posed in the related work on disk failure prediction
[26, 32]. These methods use the Random Forest or SVM
classifiers to classify disks based on the SMART data.
We treat them as baseline methods in this experiment.

The experimental results are shown in Figure 3. The
diagonal lines indicate the accuracy obtained by Random
Guess (meaning random prediction with 50% probabil-
ity). The results show that CDEF outperforms the base-
line methods consistently under different FPR/TPR ra-

tios on all datasets. For example, on Dataset 1, the AUC
values for our approach is 0.93, while the AUC value for
Random Guess, Random Forest, and SVM is 0.5, 0.85,
and 0.53, respectively.

We evaluate the effectiveness of the proposed ranking
approach in terms of misclassification cost and the TPR
value (when FPR is 0.1%). The misclassification cost
is obtained as: cost= Cost1*FP+Cost2*FN, where Cost1
and Cost2 are set to 3 and 1 respectively by the prod-
uct team. Table 3 shows the results. Clearly, CDEF ob-
tains better results than the other two methods. The TPR
value is 36.50%, 41.09%, and 29.67% on Dataset 1, 2,
and 3, respectively. CDEF is also cost-effective. In aver-
age, CDEF achieves around 187.92% cost reduction than
Random Forest, and 10.13% cost reduction than SVM.
SVM has low cost because SVM is accurate in predict-
ing healthy disks and induces less false positives. But
SVM performs worse in predicting faulty disks and in-
duces low TPR.

In summary, the experimental results show that CDEF
is effective in predicting disk errors. This is because of
two reasons: the proposed feature engineering method
and the proposed ranking model. We will show the ef-
fectiveness of these two methods in the following RQs.

Table 3: Experimental results of CDEF on three datasets
CDEF RandomForest SVM

Cost TPR Cost TPR Cost TPR
Dataset 1 2508 36.50% 3157 30.51% 2907 15.51%
Dataset 2 234 41.09% 1211 34.11% 258 21.71%
Dataset 3 760 29.67% 1675 18.81% 792 7.20%

4.3.2 RQ2: How effective is the proposed feature en-
gineering method?

In our work, we propose to use system-level signals
in disk error prediction. We also propose a feature
selection method to select the predictive features for
model training. In this RQ, we evaluate the effective-
ness of our proposed feature engineering method. We
experiment with three feature engineering methods: S
(traditional SMART-based features), S+A (SMART and
system-level signals), and S+A+F (SMART and system-
level signals with feature selection, which is used in
CDEF). All other experimental settings remain the same.

The results are shown in Figure 4. We can see that the
results achieved by incorporating system-level signals
outperform those achieved by SMART alone on all the
three datasets. Furthermore, by incorporating SMART
and system-level signals with feature selection, we can
obtain the best results on all the three datasets. In aver-
age, the TPR value (when FPR is 0.1%) is 27.6%, 30.3%,
and 35.8%, for S, S+A, and S+A+F, respectively. These
results confirm the effectiveness of the proposed feature
engineering methods.
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Figure 3: ROC of comparative methods

Figure 4: Evaluation results with different features
S: traditional SMART-based features; S+A: SMART and
system-level signals; S+A+F: SMART and system-level sig-
nals with feature selection.

We also evaluate the effectiveness of CDEF using
the features selected by the proposed feature selection
method and the features selected by conventional feature
selection methods Chi-Square, Mutual Information, and
Random Forest [17, 21]. The results are given in Fig-
ure 5, which shows that the proposed feature selection
method outperforms the conventional feature selection
methods on all datasets.

4.3.3 RQ3: How effective is the proposed ranking
model?

In our work, we propose to use a cost-sensitive ranking
method to rank the disks and then select the top r disks
as faulty ones by minimizing the total misclassification
cost. In this RQ, we evaluate the effectiveness of the
proposed ranking approach.

To perform classification for imbalanced data, one
common approach is to apply the over-sampling tech-
nique SMOTE [10] to balance the training data for model
construction. The other approach is weighted classifi-
cation, which is essentially cost-sensitive learning [12]
that learns from extremely imbalanced data and assigns
a larger weight to minority class. The weight is usually

Figure 5: The comparison between the proposed feature
selection method and existing methods

set inversely to the sample portion. In our experiment,
we compare the proposed cost-sensitive ranking method
with these two approaches. To better evaluate the accu-
racy of the proposed method, we also compare with the
random guess method.

We evaluate the effectiveness of the proposed rank-
ing approach in terms of misclassification cost. The
proposed cost-sensitive ranking model achieves the min-
imum cost among all comparative methods on all
datasets. For example, on Dataset 2, the misclassification
cost obtained by our model is 234, while cost obtained
by Random Guess, weighted classification, and classifi-
cation with SMOTE are much higher (1146662, 717, and
7812, respectively).

We also evaluate the effectiveness of the proposed
ranking approach in terms of TPR and FPR values. Fig-
ure 6 shows the ROC curves achieved by the comparative
methods. Table 4 shows the TPR values when FPR is
0.1%, achieved by different methods on all the datasets.
Clearly, our cost-sensitive ranking method achieves the
best accuracy values. For example, on Dataset 2, the
TPR value (when FPR is 0.1%) achieved by our model
is 41.09%, while the values achieved by Random Guess,
weighted classification, and classification with SMOTE
are much lower (0.1%, 27.91%, and 27.94%, respec-
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tively). The AUC value achieved by our model is
88.75%, while the values achieved by Random Guess,
weighted classification, and classification with SMOTE
are 0.5%, 84.22%, and 83.56%, respectively.

In summary, the experimental results confirm the ef-
fectiveness of the proposed cost-sensitive ranking model.

4.4 Discussions of the Results
In our work, we do not use cross-validation to build
and evaluate the proposed approach. Instead, we do on-
line prediction - using the data before a certain date to
train the model and use the data after the date to test
the model. Existing work on failure prediction such as
[9, 26] uses cross-validation to evaluate their machine-
learning based models. In our scenario, cross-validation
can lead to much better results than online prediction,
as shown in Figure 7. For example, on Dataset 1, us-
ing cross-validation we can obtain TPR value of 91.64%
(when FPR is 0.1%), while using online prediction the
TPR value is only 36.50%. However, our experiences
show that cross-validation may not always reflect the ac-
tual effectiveness of a prediction model. Online predic-
tion should be used in practice.

In cross validation, the dataset is randomly divided
into training and testing sets. Therefore, it is possible
that the training set contains parts of future data, and the
testing set contains parts of past data. However, in real-
world online prediction, training and testing sets are di-
vided by time. The past data is used to train the model
and the future data is used to test the model.

The gap is magnified when there are time-sensitive
features and environment-sensitive features. In disk error
prediction, some features have temporal nature and their
values vary drastically over time. Some features may
be easily affected by environmental changes to the cloud
system. For example, the disks on the same rack or the
same motherboard encounter similar attribute changes
caused by unstable voltage. However, such changes may
not happen before the time of prediction. Using cross-
validation we may utilize the knowledge that should not
be known at the time of prediction, thus obtaining bet-
ter evaluation results. Therefore, cross-validation is not
suitable for evaluating our model in practice. The prob-
lem of cross-validation in evaluating an online prediction
model is also observed by others [36].

4.5 Threats to Validity
We have identified the following threats to validities:

Subject systems: In our experiments, we only col-
lect data from one cloud service system of one company.
Therefore, our results might not be generalizable to other
systems. However, the system we studied is a typical,
large-scale cloud service system, from which sufficient

data can be collected. Furthermore, we have applied our
approach in the maintenance of the cloud system. In fu-
ture, we will reduce this threat by evaluating CDEF on
more subject systems and report the evaluation results.

Data noise: After a disk is identified to be faulty, it
could be sent to repair. After that, some disks could be
returned and used again. Therefore, a small degree of
noise may exist in the labeling of a disk.

Evaluation metrics: We used the FPR/TPR metrics
to evaluate the prediction performance. These metrics
have been widely used to evaluate the effectiveness of a
disk fault prediction mode [32]. Prior work [38] points
out that a broader selection of metrics should be used in
order to maximize external validity. In our future work,
we will reduce this threat by experimenting with more
evaluation measures such as Recall/Precision.

5 Lessons Learned from Practice

We have successfully applied CDEF to the maintenance
of Microsoft Azure, which is a large-scale cloud service
system that allows IT professionals to build, deploy, and
manage applications. The cloud service achieves global
scale on a worldwide network of data centers across
many regions. Due to the unreliable nature of the un-
derlying commodity hardware, various issues occur in
Azure every day. Without proper handling of these is-
sues, Azure service availability could be seriously af-
fected. We found disk error is the most severe one among
all hardware issues.

CDEF is currently used by Azure to preferentially se-
lect healthier disks for VM allocation and live migration.
After deploying CDEF, in average, we successfully saved
around 63k minutes of VM downtime per month. Note
that 99.999% service availability means that only 26 sec-
onds per month of VM downtime is allowed. Therefore,
CDEF has significantly improved service availability of
Microsoft Azure.

Currently the training is performed daily over the past
90-day data, and keeps a moving window of 90 days. The
cutting point r in the ranking model is set along with the
training process. When a disk is predicted as faulty, we
mark the host node unallocable and trigger live migration
process. We also run disk stress test on the predicted
disks before they are taken out for replacement.

We have learned the following lessons from our indus-
trial practice:

• Continuous training. Many factors could affect
the distribution of disk error data, such as bugs in
OS driver/firmware, workload on clusters, platform
maintenance, etc. A model trained in the past will
not always work in the future. Therefore, we build
a continuous training pipeline. For every predicted
disk error, we also let the disk go through a disk
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Table 4: The cost and TPR values (when FPR is 0.1%) achieved by the proposed cost-sensitive ranking model
Random Guess Cost-sensitive ranking Weighted Classification Classification+SMOTE
Cost TPR Cost TPR Cost TPR Cost TPR

Dataset 1 1447986 0.1% 2508 36.50% 2910 26.52% 9442 24.63%
Dataset 2 1146662 0.1% 234 41.09% 717 27.91% 7812 27.94%
Dataset 3 1446929 0.1% 760 29.67% 1234 17.42% 8239 17.68%

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 6: ROC of cost-sensitive ranking and classification

Figure 7: Evaluation results - cross validation vs. online
prediction

stress test to check if it is really faulty. This forms
a continuous feedback loop between disk error pre-
diction and disk stress test.

• Cost-effectiveness. Prediction alone may not make
much impact if the cost of recovery operation is re-
ally high (because the cost of leaving the host node
as it is might be cheaper than the cost of taking the
recovery operation). Furthermore, the cost to re-
cover a node with one VM on top is much cheaper
than the cost of recovery with 10 VMs in terms of
VM availability. Thus, the cost of recovery could
vary depending on the state of the host node, the re-
covery operation, etc. The prediction could be even
more useful if we can better estimate the cost.

• Faulty disks will get even worse. Our experience
shows that before a disk completely fails, it may al-
ready start emitting errors that affect upper-layer ap-

plications and services. That is why incorporating
the system-level signals is better than using SMART
alone. We found that disk errors, in average, occur
15.8 days earlier than complete disk failure. Our
experience also shows that, before completely fails,
the status of a disk will actually get worse over time.
For example, for faulty disks, the value of the fea-
ture ReallocatedSectors increases by 3 times dur-
ing the last week of its operation. The value of
system-level signal DeviceReset even increases by
10 times during the same period. This finding con-
firms our intention to detect disk error earlier before
it makes severe impact on application usage.

6 Related Work

6.1 Disk Failure Prediction
There are a large amount of related work on predicting
disk failures. For example, BackBlaze publishes quar-
terly report [6] for users to keep track of reliability of
popular hard drives in the market. Most of the modern
hard drives support Self-Monitoring, Analysis and Re-
porting Technology (SMART), which can monitor inter-
nal attributes of individual drives. SMART is used by
some manufacturers to predict impending drive failure
by simple threshold-based method [31, 34].

As the prediction performance of the thresholding al-
gorithm is disappointing, researchers have proposed vari-
ous machine learning models for predicting disk failures.
For example, Zhu et al. [42] predicted disk failure based
on raw SMART attributes and their change rates, and
neural network and SVM model are applied. Ganguly
et al. [16] utilized SMART and hardware-level features
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such as node performance counter to predict disk failure.
Ma et al. [25] investigate the impact of disk failures on
RAID storage systems and designed RAIDShield to pre-
dict RAID-level disk failures.

Tan et al. [37] proposed an online anomaly prediction
method to foresee impending system anomalies. They
applied discrete-time Markov chains (DTMC) to model
the evolving patterns of system features, then used tree-
augmented naive Bayesian to train anomaly classifier.
Dean et al. [11] proposed an Unsupervised Behavior
Learning (UBL) system, which leverages an unsuper-
vised method Self Organizing Map to predict perfor-
mance anomalies. Wang et al. [41] also proposed an
unsupervised method to predict drive anomaly based on
Mahalanobis distance. There are also other work [19, 40]
in online machine learning [7], which aims to update the
best predictor at each step for steaming data (as opposed
to batch learning techniques). While our “online predic-
tion” focuses on the prediction workflow: always using
a batch of historical data to predict the future (as op-
posed to cross-validation). Furthermore, unlike [37], we
deal with the evolving features by proactively selecting
the consistently predictive features. Unlike [11, 41] that
can be used even when label data is difficult to get, we
adopt a supervised method as we have quality labeled
data. We will compare our method with unsupervised-
learning based methods in our future work.

For feature selection, Botezatu et al. [9] selected
the most relevant features based on statistical measures.
Gaber et al. [15] used machine learning algorithms to ex-
tract features representing the behavior of the drives and
predict the failure of the drives. However, these feature
selection methods are not able to prune non-predictive
features in online prediction scenario.

All these related work focus on disk failure prediction
based on SMART and other hardware-level attributes.
While our work focuses on predicting disk errors that
affect the availability of virtual machines, before com-
plete disk failure happens. We incorporate both SMART
and system-level signals, which proves better than using
SMART data alone. Also, most of the related work eval-
uate their prediction model in a cross validation manner,
which is not appropriate in real-world practice. In our
work, we perform online prediction and propose a novel
algorithm to select stable and predictive features.

6.2 Failures in Cloud Service Systems

Although tremendous effort has been made to maintain
high service availability, in reality, there are still many
unexpected system problems caused by software or plat-
form failures (such as software crashes, network outage,
misconfigurations, memory leak, hardware breakdown,
etc.). There have been some previous studies in the lit-
erature on failures of a data center. For example, Ford

et al. studied [13] the data availability of Google dis-
tributed storage systems, and characterized the sources
of faults contributing to unavailability. Their results indi-
cate that cluster-wide failure events should be paid more
attention during the design of system components, such
as replication and recovery policies. Vishwanath and Na-
gappan [39] classified server failures in a data center and
found that 8% of all servers had at least one hardware
incident in a given year. Their studies could be helpful
to reduce the hardware faults, especially the networking
faults. Huang et al. [22] also found that the major avail-
ability breakdowns and performance anomalies we see in
cloud environments tend to be caused by subtle underly-
ing faults, i.e., gray failure rather than fail-stop failure.
The above-mentioned related work shows that failures
in cloud systems can be triggered by many software or
hardware issues. In our work, we only focus on disk er-
ror prediction. In particular, disk errors can be also seen
as a form of gray failures: the system’s failure detectors
may not notice them even when applications are afflicted
by them.

7 Conclusion
Disk error is one of the most important reasons that cause
service unavailability. In this paper, we propose CDEF,
an online disk error prediction approach that can predict
disk errors proactively before they cause more severe
damage to the cloud system. We collect both SMART
and system-level signals, perform feature engineering,
and develop a cost-sensitive ranking model. We evalu-
ate our approach using real-world data collected from a
cloud system. The results confirm that the proposed ap-
proach is effective and outperforms related methods. The
ability to predict faulty disks enables the live migration
of existing virtual machines and allocation of new vir-
tual machines to the healthy disks, thus improving ser-
vice availability. We have also successfully applied the
proposed approach to Microsoft Azure.

There are many viable ways of extending this work.
We have applied our approach to hard disk drives in pro-
duction. In the future, we will apply it to other disk types
such as Solid State Drive. We will also explore the syn-
ergy between disk error prediction and other cloud fail-
ure detection techniques such as [22], and propose an
integrated solution to service availability improvement.
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