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Abstract
As the influence of machine learning grows over deci-
sions in businesses and human life, so grows the need
for Model Governance. In this paper, we motivate the
need for, define the problem of, and propose a solution
for Model Governance in production ML. We show that
through our approach one can meaningfully track and
understand the who, where, what, when, and how an ML
prediction came to be. To the best of our knowledge, this
is the first work providing a comprehensive framework
for production Model Governance, building upon previ-
ous work in developer-focused Model Management.

1 Introduction
Machine Learning (ML) and Deep Learning (DL) have
recently made tremendous advances in algorithms, ana-
lytic engines, and hardware. However, production ML
deployment is still nascent [17]. While production de-
ployments are always challenging, ML generates unique
difficulties [21, 7, 22]. We focus on the governance chal-
lenge: the management, diagnostic, compliance, and reg-
ulatory implications of production ML models. With re-
cent demands for explainable/transparent ML [9, 3, 16,
5], the need to track provenance and faithfully reproduce
ML predictions is even more serious. Given the strong
data-dependent nature of ML/DL, even small changes in
configurations can have unexpected consequences in pre-
dictions, making Governance critical to production ML.

Previous research has focused on Model Management:
managing these models and enabling efficient reuse by
developers [28, 25, 20]. Production deployment further
complicates governance with i) complex topologies with
retraining, ii) continuous inference programs that run in
parallel with (re)training programs, iii) actions (such as
model approvals) that need to be recorded for auditing,
vi) model rollbacks that may occur in real time, and v)
heterogeneous and distributed environments.

We define Production Model Governance as the abil-
ity to determine the creation path, subsequent usage, and

consequent outcomes of an ML model, and the use of
this information to accomplish a range of tasks includ-
ing reproducing and diagnosing problems and enforcing
compliance. In this paper, we propose and motivate a
generic solution approach that can be adapted across dif-
ferent governance usage examples.

Our goal is to highlight the Model Governance prob-
lem and propose solutions. Our contributions are: i) we
propose a definition for Production Model Governance
and its necessary inclusive elements; ii) We propose a
two-layer model for Governance. The lower layer con-
tains each pipeline as a DAG and tracks everything (such
as features, datasets, and code) similar to what is pro-
posed by prior research. We add a second layer directed
graph where each pipeline or policy invocation is a node
and edges represent cross-pipeline, policy, and human
action dependencies. We temporally track and corre-
late both of these levels to comprehensively cover Model
Governance; iii) Using this model, we build a production
Model Governance system that supports heterogeneous
frameworks (currently, Spark, TensorFlow, Flink); iv)
We propose a robust approach to a wide range of possi-
ble Governance applications via generic access to Gover-
nance metadata; and v) At the pipeline level, we expand
upon prior research by illustrating a generic API-based
instrumentation approach across analytic engines.

2 Motivation
Machine learning algorithms execute as ”pipelines”,
which ingest data (via batch data lakes, stream brokers,
etc.) and compute (feature engineering, model training,
scoring, inference, etc.). Pipelines may run on engines
(Spark, Flink, etc.) or as standalone programs.

To highlight the importance of Model Governance, we
use an example medical application that leverages ML to
recommend to a doctor which tests to run on a patient.
The calling application sends user information to an ML
prediction pipeline which returns a prediction. Figure 1
shows several examples of how this simple scenario can
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Figure 1: Evolution of ML Pipelines in production. (a) The prediction pipeline is executing in production and is
using a model trained offline and uploaded. (b) A more dynamic scenario where the model itself is retrained on a
schedule. (c) Yet another sophistication, where newly trained models undergo an approval process prior to production
deployment. (d) Here an ensemble model is used for prediction (requiring each sub-model to be trained individually).
Finally, (e) shows the scenario if a control pipeline (canary) is used in production to ensure that the primary prediction
pipeline is behaving stably. The control pipeline could also be running a surrogate model to improve explainability.

be put into production. While the basic function requires
only one pipeline, once you add the need to improve ac-
curacy via re-training, the need for human approvals, and
state-of-the-art models, the complexity grows rapidly.
We now illustrate sample Governance scenarios for the
example in Figure 1(e).
Scenario 1: Say we needed to know why a certain pa-
tient was recommended a CT-Scan while another patient
was not. For each recommendation, we would need to
answer: Which model(s) were running in the ensem-
ble? Which code was executing the models? When/How
was each model trained (using which configurations and
which features)? Which model provided the control
pipeline and would its recommendation have differed?
Which operator approved each of the models in the pri-
mary pipeline? Who approved the model in the control
pipeline? Were any errors noted in this time frame? Can
both predictions be reproduced in order to test for bias?
Scenario 2: Assume a data scientist wishes to leverage
some of the models for a new production ML applica-
tion. They would want to know under which circum-
stances the existing models were generated, as well as
which datasets and features were used. These may also
be required for production approval.

3 Model Governance
We define Production Model Governance as the ability to
determine the creation path, subsequent usage, and con-
sequent outcomes of an ML model, and the use of this
information in various ways, as illustrated above. Given
the wide range of usages, we believe any Model Gover-
nance solution should include:
Provenance/Lineage: For any ML prediction, the ability
identify the exact sequence of events (datasets, trainings,
code, pipelines, human approvals) that led to the event.
Reproducibility: The ability to replay the above se-
quence and replicate the prediction, thereby setting the
context to investigate alternatives.
Audit and Compliance: The ability to evaluate all ML

operations in an organization and determine compliance
with regulations.
Leverage: The ability to reuse past ML work (such as
algorithms, models, features) to determine whether the
derived object is appropriate for the new usage.
Scale and Heterogeneity: The ability to work with
many models, pipelines, and varied analytic engines and
languages in a distributed setting such as Cloud/Edge.
Multiple Governance Metadata Usages: The ability to
multi-purpose the metadata. For example, Data Scien-
tists may analyze experiments or reuse models. Opera-
tors may diagnose issues, help address bias concerns, or
ensure compliance to policies.

4 Approach and Design
Our solution must support simple to complex topolo-
gies, parallel pipelines, streaming and batch pipelines,
pipelines changing state mid-run as new models ar-
rive, policy actions and relationships between non-
overlapping pipeline runs. For these we must provide: (i)
Sufficient dependency information to infer provenance;
(ii) Configuration including code and input parameters
for reproducibility; (iii) A durable record of all meta-
data; (iv) Metadata from disjoint pipeline, possibly from
different analytic engines and languages; (v) Metadata
provenance, trends, and policy analysis and beyond.
4.1 The Intelligence Overlay Network
Core to our design is a two layer model we call the In-
telligence Overlay Network (ION). An ION is a logical
model that connects objects such as pipelines, policy ex-
ecution modules, and messages between them. The first
level of an ION is inspired by the traditional graph-based
modeling of message passing parallel programs, where
each node is a execution element and directed edges are
messages between programs (allowing for cycles) [1]. In
our case, execution nodes are ML pipelines or policy ac-
tions, and messages (such as ML models or events) are
passed between them. At the second level of the ION,
each execution node can itself be a DAG of components.
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Figure 2: ION for Flow in Figure 1(c)

An ML pipeline is a single execution node in an ION.
Figure 2 shows how Figure 1(c)’s pattern maps to an
ION. The Inference and Training nodes are pipelines, the
approval is a Policy node, and the edges show the path of
a model. Figure 3 shows how the graph in Figure 2 is
tracked by our system across time.

We apply this approach to ML workflows: (i) All ex-
ecution elements are nodes. Nodes execute on a sched-
ule (batch), continuously (streaming), or are event trig-
gered; (ii) Nodes can pass messages and each message
and send/receive events are recorded; (iii) Within each
node, a DAG can be defined with its stages monitored.

The ION approach delivers important benefits. First,
many ML pipelines map easily to the ION nodes as
DAGs. Statistics from these pipelines are gathered as
time-series variables that support Governance scenarios,
for example, by providing required transparency to com-
plex feature selection within a pipeline.

Second, the ION graph cleanly captures the depen-
dencies and interactions between the pipelines, including
their repeated executions over time, their connections to
human actions, and their relationships to each other.

Finally, the combined statistics of both levels enables
powerful usages, such as (a) tracking pipeline metrics
like confusion matrices across multiple training runs,
(b) comparing Models across multiple training runs, (c)
tracking the approval actions of any human operator and
cross-checking those against the performance of infer-
ence pipelines that ran the approved models.

Figure 3: ION Timeline

4.2 System Design
We use an agent/server architecture. The agents run

on each instance of an analytic engine (for example, a
15 node Spark cluster would have a single agent). Each
agent communicates with its engine via standard inter-
faces. The server receives Governance metadata from

the agents and interlinks the information via the ION.
Currently our server also runs the policy execution code
blocks. The server maintains a metadata database and
manages garbage collection.

While recent Model Management approaches have
been passive [28], we chose an active Agent based ap-
proach to enable disconnected operation (a common oc-
currence in Edge based ML environments [26]). During
disconnections, the agent saves information locally and
transmits it when connectivity is restored. If the agent is
disconnected for long periods of time and runs out of lo-
cal storage resources, some information can be lost. The
agent/server architecture also enables scale and support
of heterogeneous analytic engines.

This approach requires no changes to the analytic en-
gines. We can also connect to existing analytic engines
and can share analytic engines with other programs that
we do not monitor. Any program that already works in
these engines works in this environment. An Agent can
also support custom standalone programs. The required
changes to the programs themselves, for all the cases, are
discussed in Section 4.3.

Figure 4 shows the database schema. The Level 1
schema includes tracked objects within a pipeline. The
Level 2 schema captures the ION pattern as well as spe-
cific elements of each ION instance. Contextual infor-
mation (such as which machines a particular pipeline ran
on) is also captured. All objects are timestamped. All
objects link to an ION and from the ION to each other.
4.3 Information Import and Export

ML pipelines exchange Governance metadata with our
system in three ways (see Figure 5). First, a JSON-based
ION definition which contains links to pipeline code is
uploaded to our server. Second, each pipeline is instru-
mented via an API library to provide runtime metadata.
Pipelines can export time series variables, digests, con-
figuration, models, etc. Supported Model formats are
PMML, SavedModel or opaque. Since our system also
supports opaque model formats, other industry standard
model formats (like ONNX) that we do not yet interpret
can be immediately used. Third, for standard pipelines
and models, we auto-extract metadata (like [25]).

The API library has import and export capabilities.
On the export side, running pipelines send metadata to
our Governance system. On the import side, running
pipelines can query the database for stored metadata and
perform additional analytics (see Section 4). The library
implementation is engine-specific and to date we have
implemented our API library for Spark, Flink, and Ten-
sorflow and in Scala, Java, and Python.

Unlike prior approaches [25], we employ both a fully
declarative approach (where the developer decides what
to instrument) and automatic extraction wherever stan-
dardized pipelines and model formats allow. While train-
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Figure 4: Governance Schema

Figure 5: Interaction of ML Pipelines with our Governance System

ing pipelines can be quite structured (like SparkML),
production inference pipelines have not standardized on
any pipeline or code structure, running the gamut from
auto-generated (via JPMML inference) to latency opti-
mized hand-coded programs. This range of inference
pipeline structures renders approaches that rely only on
automatic extraction impractical for generalized produc-
tion usage. With our approach, even custom written stan-
dalone programs can be instrumented for Governance.

4.4 Correlation and Causality
IONs are used to create a coherent time view of all

metadata by (a) merging the views of multiple concurrent
pipelines or policy blocks and (b) by relating different
executions of the same logical node (e.g., re-training).
Causality: Within each ION node, we assume mono-
tonically increasing timestamps. Across nodes within an
ION, causality is established via messages.
Inter-Node Correlation: Across ION nodes, we assume
correlation based on synchronized timestamps. Prove-
nance is derived directly from messages and not from
time correlation. Correlation is only used if a single se-

quence of statistics from the ION is retrieved for visual-
ization. We have not used logical clocks to date because
the governance usages we have worked with can be ad-
dressed sufficiently with the approaches above.

4.5 Governance Usages
Model Governance metadata has multiple uses. Any

pipeline can use the API library to extract and compute
additional analytics on governance metadata. For exam-
ple, a pipeline can analyze all models approved by a user
and correlate with training accuracy metrics or do addi-
tional model selection or model improvement. Compli-
ance enforcement can be done via functions that period-
ically review recent metadata and confirm adherence to
specific polices (such as human model approval or train-
ing accuracy thresholds for production deployed mod-
els). The metadata information can be used for advanced
optimizations such as Meta-Learning. The applications
of this approach are vast and to date we have only used
our system to explore simple usages. Due to lack of
space, we do not elaborate on this capability further in
this paper but it is an area of our future work.
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Object Occurrence Count Size
Models multiple 24 48KB

Statistics multiple 536K 242MB
Signatures multiple 1.8K 136MB
Pipelines once 3 14KB

Node once 3 1KB
Events multiple 84 140KB
Logs multiple 264 74MB
Total N/A 5̃38K 452MB

Table 1: Governance information captured from the
three node ION after a day of execution.

5 Evaluation
A governance solution should include lineage, repro-
ducibility, audit, leverage, scale, heterogeneity, and mul-
tiple usages (see Section 3). We conduct a simple experi-
ment to illustrate lineage, audit, scale, and heterogeneity
in our solution. Additionally, we measure the overheads
of Governance metadata gathering, including instrumen-
tation and model propagation.

Our experiment consists of a three node ION: a Spark
training pipeline, a Flink inference pipeline, and a pol-
icy module configured to always approve models (Fig-
ure 1c). The training pipeline is batch Logistic Regres-
sion with hyperparameter search in PySpark training a
new model every hour. The selected model propagates
via the Policy node to the Flink streaming inference in
Scala. Governance metadata gathered includes input and
prediction signatures (histograms), ML statistics, code,
libraries, etc. ML statistics are any items reported via the
API, including generic metrics such as accuracy, preci-
sion, recall, etc. and algorithm-specific metrics. Hyper-
parameter search configuration and result information is
also reported via the API.

Figure 6 shows the dashboard view of a model gener-
ated in the ION. The governance dashboard provides the
lineage information for every model generated (or up-
loaded), the training pipeline and the parameters used to
generate the selected model, model approval information
and the subsequent usage of the selected model in in-
ference pipelines. Each hyperlink within the dashboard
provides in-depth information on ION template, pipeline,
configuration, statistics, etc. These in-depth views are
not included due to lack of space.

Table 1 summarizes the list of objects that are captured
in our system during the ION’s execution. The overheads
of our API instrumentation was less then 1% in this ex-
periment and model propagation delay on average was
around 3s for models of size 2KB. We were able to both
replay and reproduce predictions using our system.

6 Related Work
The related work closest to ours includes [28, 25, 20].
We add several fundamental contributions over each.
First we define and implement the ION model which

Figure 6: Model Governance Page: This page high-
lights the lineage, approval/rejection status across IONs,
and usage of the selected model across IONs.

links multiple pipelines and policy actions, including a
full governance metadata and schema. Second, while
both we and [25] integrate with multiple analytic en-
gines, our approach adds a fully declarative instrumenta-
tion approach to the base auto-extraction approach, en-
abling our system to work with changing analytic en-
gines and standalone ML programs. Finally, we have
designed and built an import/export function where pro-
grams can access and compute additional analytics on
Governance metadata, enabling a vast range of Gover-
nance usages which can themselves be tracked and man-
aged. Additional model management approaches have
been presented in [18]. Production ML challenges have
been described in [21, 7, 22, 24, 4, 15, 8]. Meta-
learning is discussed in [23, 13]. Overviews of ana-
lytic engines, libraries, and model serving systems are
in [19, 10, 11, 12, 27, 2, 29, 6, 14].

7 Discussion and Future Work
Our system addresses most of the goals laid out in Sec-
tion 3. We can track any prediction (or other event) to
all related pipelines, datasets, execution configurations,
code and human actions, and reproduce the functional
steps. Via both tracking of input dataset pathnames and
dataset signatures, we identify which data was used to
generate which model. Using the API library, a user can
write a pipeline to extract and analyze any information in
the database to evaluate compliance or do audits. As an-
other example, programs using our API can analyze data
trends and correlate them with model outcomes.

For future work, we plan to explore the possibilities
of meta-learning via Governance metdata and expand on
how Governance relates to AI explainability. We want to
couple the provenance data with explainable ML to help
answer the question of not just how/where/what/when
but also why ML decisions were made.
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