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Abstract
Timeout is widely used for failure detection. This paper
proposes SafeTimer, a mechanism to enhance existing
timeout detection protocols to tolerate long delays in the
OS and the application: at the heartbeat receiver, Safe-
Timer checks whether there are any pending heartbeats
before reporting a failure; at the heartbeat sender, Safe-
Timer blocks the sender if it cannot send out heartbeats
in time. We have proved that SafeTimer can prevent false
failure report despite arbitrary delays in the OS and the
application. This property allows existing protocols to
relax their timing assumptions and use a shorter time-
out interval for faster failure detection. Our evaluation
shows that the overhead of SafeTimer is small and ap-
plying SafeTimer to existing systems is easy.

1 Introduction

This paper presents SafeTimer, a mechanism to enhance
existing timeout detection protocols to prevent false fail-
ure reports caused by long delays in the OS and the ap-
plication. With the help of SafeTimer, existing protocols
can relax their timing assumptions and thus use a shorter
timeout interval for faster failure detection.

Timeout is widely used in distributed systems to detect
failures [1, 6, 13, 24, 29, 45]: a node periodically sends
a heartbeat packet to others and if the receiver does not
receive the heartbeat in time, it may report a failure and
may take actions to recover the failure.

Although this idea is simple, delays of packet transfer
create a problem: if a receiver misses a heartbeat, is it
because the sender has not sent the heartbeat, which in-
dicates a failure, or is it because the heartbeat is delayed
somewhere, which should not indicate a failure?

To address this problem, existing systems use one of
the following approaches: the first is to prevent false
failure reports by setting an appropriate timeout inter-
val. However, such setting requires certain timing as-

sumptions about the communication channel [4, 5, 18]
and creates a dilemma: on one hand, these assump-
tions should be conservative enough to tolerate abnor-
mal events that can cause long delays (e.g., congestion),
which means the timeout interval should be long. On the
other hand, long timeout interval can hurt system avail-
ability, because the system has to wait for a long time
before recovering the failure. A recent study shows that
inappropriate timeout interval is a major cause of timeout
related bugs, leading to various problems like data loss or
system hanging [19]. The second approach is to ensure
correctness despite false failure reports, using protocols
like Paxos [34, 35, 42]. This approach allows short time-
out for better availability, but its cost is usually higher.

SafeTimer enhances the first approach to tolerate a
subset of those abnormal events, without requiring any
timing assumptions. It thus allows existing protocols to
relax their timing assumptions to use a shorter timeout
interval, without sacrificing the accuracy of timeout de-
tection. It is motivated by two insights.

First, conservative assumptions are only necessary if
the communication channel is a blackbox, which cannot
provide any additional information other than receiving a
packet. If the channel can tell whether a packet is pend-
ing or dropped, the receiver can simply check whether
there is a pending or dropped heartbeat when missing a
heartbeat. This approach can prevent false failure reports
without requiring any timing assumptions.

Second, we observe that modeling the whole commu-
nication channel as a blackbox is too pessimistic: the
routing layer usually does not provide the users with in-
formation like packet drops, so it is reasonable to model
routing as a blackbox; the OS and the application, how-
ever, can provide precise information about its packet
processing and thus could be modeled as a whitebox.
Furthermore, in today’s datacenters, the whitebox part
often incurs delays that are comparable to or even larger
than those of the blackbox part: on one hand, intra-
datacenter networking delays usually range from tens of
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microseconds to a few milliseconds and can be further re-
duced to hundreds of nanoseconds with techniques like
Infiniband [31]. Improvement in bandwidth and proto-
cols [14, 46] have significantly reduced the chances of
packet drops. On the other hand, a traditional OS can de-
lay processing by several milliseconds because of time
sharing or page fault, etc. Such delay can occasionally
grow to several seconds for reasons like SSD garbage
collection [32] and can grow even higher in abnormal
cases (see Section 2).

Because of these two insights—1) the delay of the
whitebox part is significant among communication and
2) there exist more effective solutions for the whitebox
part—SafeTimer naturally uses a more effective solution
for the whitebox part; for the blackbox part, SafeTimer
relies on existing protocols and their assumptions.

At the receiver side, SafeTimer guarantees that as long
as the network interface card (NIC) has either delivered
or dropped the heartbeat before the deadline, the re-
ceiver will not report a failure. To achieve this property,
SafeTimer’s receiver module checks whether there are
any pending or dropped heartbeats in the system before
reporting a failure. Implementing this idea, however, is
challenging, because modern OS incorporates a highly
concurrent pipeline for fast packet processing. Naive so-
lutions like pausing all its threads requires an intrusive
modification to kernel, which is undesirable.

To solve this problem, we propose a non-blocking so-
lution: when the timer expires at t, SafeTimer’s receiver
module will send a barrier packet to itself. By crafting
the barrier packet and configuring the OS properly, Safe-
Timer ensures that if the receiver module receives the
barrier, all heartbeats processed by the NIC before t must
have been either delivered to the application or dropped.
Therefore, if the receiver module has neither received the
heartbeat nor observed any packet drops, it can safely re-
port a failure.

At the sender side, SafeTimer guarantees that if the
sender has not sent out a heartbeat in time, the sender
will not be able to send out any new packets. Such
suicide idea is not novel [8, 22], but previous solutions
that actively kill or reboot the sender do not work when
considering long processing delays, because the kill or
reboot operations may be delayed as well, leaving the
sender alive. To solve this problem, SafeTimer incorpo-
rates a passive design: SafeTimer’s sender module main-
tains a timestamp to identify till when it is valid for the
sender to send new packets. The sender module updates
this timestamp when successfully sending a heartbeat
and checks this timestamp before sending any packets.
By doing so, SafeTimer prevents a sender which fails to
send heartbeat in time to affect other nodes in the system.

One can enhance an existing timeout detection pro-
tocol by applying SafeTimer at both the sender and the

receiver. We can prove that, as long as the existing pro-
tocol’s assumptions about the blackbox part hold, Safe-
Timer is accurate (i.e., never report failure for a correct
sender) despite arbitrary delays in the whitebox part and
is complete (i.e., eventually report failure for a failed
sender) when the receiver does not experience slow pro-
cessing or packet drops for sufficiently long [12]. Such
properties indicate that one does not need to make con-
servative assumptions about the whitebox part, and thus
can use a shorter timeout interval to improve availability.

Our evaluation shows that the overhead of SafeTimer
is negligible when processing big packets and at most
2.7% when processing small packets; SafeTimer can pre-
vent false failure reports when long processing delays are
injected; and applying SafeTimer to HDFS [27, 45] and
Ceph [9] is easy.

2 Motivation

2.1 Long delays in OS and application
SafeTimer allows existing timeout detection protocols to
relax their timing assumptions by excluding delays in
the OS and the application. To demonstrate the poten-
tial benefits of such relaxation, we present a number of
abnormal events that can cause long delays.

• Disk access. Disk accesses caused by logging heart-
beats [29, 45] or page faults can block heartbeat pro-
cessing. A typical hard drive has an average latency of
tens of milliseconds and an SSD usually has a lower
average latency. Worst-case latency, however, is much
longer: SSD’s internal garbage collection can delay
an access by more than one second [32]. Our experi-
ment with hard drives shows that when processing fre-
quent random writes, the buffering mechanism in the
file system can occasionally introduce a latency of tens
of seconds, when it flushes many random writes.

• Packet processing. OS kernel can drop packets at dif-
ferent layers when it runs out of buffer space, which
can cause extra delay. Furthermore, handling of ab-
normal packets may cause a significant delay as well.
For example, when Linux receives a packet to an un-
opened port, it will report “port unreachable” to the
router using ICMP [30]. In our experiment, a large
number of such abnormal packets can delay the pro-
cessing of heartbeat by more than two seconds.

• JVM garbage collection. Garbage collection in a
Java Virtual Machine (JVM) can block the execution
of the application. Our experiment on a JVM with
32GB of memory shows that when the memory is
close to be fully utilized, a single garbage collection
can take up to 26 seconds, even when using parallel
GC. A recent survey [19] has observed similar prob-
lems in ZooKeeper and HBase (HBase-3273 [26]).
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• Applicaton specific delays. Applications may have
specific logics that can cause long delays occasionally.
For example, previous works have reported that HDFS
DataNode’s heartbeat sending thread may be blocked
by the task of scanning local data, which could take
long [48]. Although newer versions of HDFS have
fixed this problem, our investigation shows that sim-
ilar problems still exist: the heartbeat sending thread
can also be blocked by the task of deleting directories,
which can take long as well. A similar problem has
been reported in Ceph, in which a heavy rejoin opera-
tion can block heartbeat processing [11].

As shown in these examples, some events in the OS
and the application can cause delays of tens of seconds,
which are comparable to or larger than many systems’
default timeout intervals (e.g., 30 seconds in HDFS [28],
5 seconds in ZooKeeper [25], 20 seconds in Ceph [10]).
Furthermore, some of these delays may grow longer if a
machine has more resource (e.g., more memory for JVM
garbage collection).

Existing timeout detection protocols must make their
timing assumptions conservative enough to cover all the
events mentioned above. For example, to tolerate long
garbage collection in ZooKeeper [26], the developers in-
creased their timeout intervals, which will hurt system
availability as discussed previously. With the help of
SafeTimer, however, they can tolerate these events with-
out requiring any timing assumptions, and thus can use a
shorter timeout for faster failure detection.

2.2 Can we provide timing guarantees?

The above problems would be trivial if the OS and the ap-
plication can provide hard real-time guarantees for heart-
beat processing, but during our failed attempts, we find
this is a challenging task on commodity OS.

Isolated resource for heartbeats. To prevent other
tasks from interfering with heartbeat processing, the ap-
plication can reserve resources (e.g., a socket) for heart-
beat processing. However, this approach cannot prevent
such interference in OS kernel. For example, packets
from different sockets can be handled by the same thread
or CPU core in the kernel; even if heartbeat handling
does not need to make disk I/Os, page fault in the ker-
nel may incur a disk I/O, blocking heartbeat processing.

Processing heartbeats at lower layers. To avoid de-
lays in the OS kernel, one can implement heartbeat send-
ing and checking at lower layers, as close as possible to
the NIC. This approach can avoid many types of delays,
but cannot eliminate them, because heartbeat checking
can only happen after the OS reads a packet, which

App OS NIC

Network

NIC OS App

Sender Receiver

Packet drop 
statistics

Existing protocols need timing assumptions about the whole channel

SafeTimer only needs timing assumptions about the blackbox part

Clock Clock

Figure 1: System model: SafeTimer can tolerate long
delays in the whitebox part without timing assumptions.

means delays in handling interrupts and reading packets
can still cause false failure reports.

Real-time OS. Real-time Linux [43] and other real-
time frameworks for Linux such as RTAI [44] and Xeno-
mai [49] can give higher priority to certain interrupts, so
that they wouldn’t be delayed by other interrupts. How-
ever, this approach can only guarantee an interrupt han-
dler is triggered in time, but cannot guarantee when the
OS can finish reading a packet. The latter requires us to
analyze the worst-case execution time of handling inter-
rupts and reading packets, which is a challenging task on
complicated kernel code with frequent synchronizations.

We find these approaches, even combined, cannot
achieve hard timing guarantees for heartbeat processing.
The fundamental problem is that commodity OSes are
designed with the principles of resource sharing and high
concurrency, which is against the goal of strict timing
guarantees. Therefore, finally we give up the attempts
to provide timing guarantees. Instead, we investigate
whether we can prevent false failure reports assuming
delays in the OS and the application can be arbitrary.

3 Model

The goal of SafeTimer is to enhance existing timeout de-
tection protocols to tolerate long processing delays in the
OS and the application. To achieve this goal, SafeTimer
makes a few assumptions about the existing protocol: at
the receiver side, SafeTimer assumes the receiver defines
multiple time intervals and reports a failure if it does not
receive any heartbeats during an interval. At the sender
side, SafeTimer assumes the application has its own rules
to decide when to send heartbeats and whether heartbeats
are sent successfully, based on its timing assumptions.
Furthermore, SafeTimer assumes these intervals and as-
sumptions are configurable, so that the user can use a
shorter timeout interval with the help of SafeTimer.

SafeTimer enhances existing protocols to tolerate a
subset of abnormal events without requiring timing as-
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sumptions. Figure 1 shows which events SafeTimer can
tolerate: the blackbox part includes the network interface
cards (NICs) at both sides, the clocks at both sides, and
packet routing between two NICs; the whitebox part in-
cludes the OS and the application’s logic to process pack-
ets at both sides. SafeTimer can tolerate long delays in
the whitebox part without requiring any timing assump-
tions. Instead, SafeTimer only assumes that, a node will
eventually finish processing a heartbeat and SafeTimer
can observe the result (either delivered or dropped). For
the blackbox part, SafeTimer relies on existing protocols
and their assumptions.

Abnormal events in the whitebox part may affect the
processing speed of the blackbox part. SafeTimer as-
sumes such effect can be observed at the boundary: a
slow receiver may cause its NIC to drop packets because
the receiver’s buffer is full and SafeTimer assumes the
NICs can provide packet drop statistics. We find this
function is commonly provided by modern NICs.

With the help of SafeTimer, existing timeout detection
protocols only need to make conservative assumptions
about the blackbox part, which means the protocol can
use a shorter timeout interval to accelerate failure detec-
tion. Note that SafeTimer cannot make concrete sugges-
tions about timeout interval: the user still has to estimate
possible delays in the blackbox part. However, consid-
ering the various kinds of abnormal events in the white-
box part (Section 2), SafeTimer should be able to reduce
timeout interval by at least tens of seconds.

Case studies. We present a few existing timeout detec-
tion protocols to show how SafeTimer models them and
how they can benefit from SafeTimer.

Budhiraja et al. [5] discuss how to detect failures in
primary-backup protocols, given different models. In the
simplest model, which assumes clocks are sufficiently
synchronized, links are reliable, and packet delay is
bounded (δ ), the sender can send heartbeats every τ sec-
onds and the receiver reports a failure if it does not re-
ceive a heartbeat for δ +τ seconds. SafeTimer can model
this protocol in the following way: when the receiver re-
ceives a heartbeat at t, it creates a new interval from t to
t + δ + τ and checks whether it receives a heartbeat by
the end of the new interval; the sender can define a suc-
cessful heartbeat sending for interval i as sending a heart-
beat at ti and ti ≤ ti−1 + τ . With the help of SafeTimer,
this protocol may reduce δ because it does not need to
include the delays of the whitebox part. This work also
discusses more complicated models, which consider link
failures and proposes a gossip protocol to route heart-
beats through multiple links, which is adopted in Ceph.
SafeTimer can model it accordingly. For example, to tol-
erate one link failure, the sender can define a successful
heartbeat sending as sending two heartbeats to two nodes

1 /* The application calls safetimer_check when
missing heartbeats from starti to endi */

2 function safetimer_check(starti)
3 send a barrier to itself
4 wait for barrier (with a timeout)
5 if barrier received and tlastHeartbeat < starti
6 read drop count in OS and NIC and reset to 0
7 if (drop count = 0 and tdrop < starti)
8 return TRUE_FAILURE
9 else if (drop count != 0)

10 tdrop = current_time()
11 end
12 end
13 return FALSE_FAILURE

15 function safetimer_recv_thread()
16 when receiving heartbeat
17 tlastHeartbeat = current_time()
18 when receiving barrier
19 notify safetimer_check

Figure 2: Pseudo code of SafeTimer’s receiver module.
For simplicity, it assumes there is only one sender, but
it can easily be extended to support multiple senders.
tlastHeartbeat records the timestamp of the last heartbeat.
tdrop records the timestamp of the last drop event.

by ti−1 + τ . Similarly, SafeTimer may help to reduce δ .
In HDFS, a DataNode sends a heartbeat to the Na-

meNode every three seconds, and the NameNode marks
the DataNode as stale if it misses heartbeats for 30 sec-
onds. In the common case, the NameNode will acknowl-
edge a heartbeat to the DataNode; if the DataNode de-
tects errors, it will send heartbeats more aggressively ev-
ery second. SafeTimer can model it in the following way:
when the receiver receives a heartbeat at t, it creates a
new interval from t to t + 30 and checks whether it re-
ceives a heartbeat by the end of the new interval (note
intervals can overlap in this case); the sender can define
a successful heartbeat sending for interval i as 1) getting
acknowledgement for one heartbeat or 2) sending heart-
beats with an interval of less than one second. SafeTimer
may help to reduce the 30-second interval because it does
not need to consider delays in the whitebox part.

4 Design

SafeTimer enhances existing timeout detection protocols
to tolerate long processing delays in the whitebox part.
In this section, we first present SafeTimer’s mechanisms
and then prove its accuracy and completeness.

4.1 Accurate timeout at the receiver

As discussed in Section 3, SafeTimer assumes the appli-
cation’s heartbeat receiver defines multiple time intervals
(interval i from starti to endi), and reports a failure if no
heartbeat is received during an interval.

SafeTimer guarantees that as long as the receiver’s
NIC has processed (either delivered or dropped) a heart-
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beat during interval i, SafeTimer’s receiver module will
not report a failure for interval i.

Its key idea is simple: if the receiver module does not
receive any heartbeats by the end of an interval, it will
check whether there are any pending or dropped heart-
beats in its whitebox part, and if not, the receiver module
can safely report a failure.

The key challenge, however, is how to implement this
idea in modern OS. For fast packet processing, modern
OS incorporates a highly concurrent design, which in-
volves a pipeline with multiple threads in each stage. To
identify whether some heartbeats are pending, a naive
solution is to pause all threads and check all buffers, but
this solution will have negative impact on performance
and require intrusive modification to the kernel.

To solve this problem, SafeTimer incorporates a non-
blocking design as shown in Figure 2: if the applica-
tion does not receive any heartbeat by endi, it will check
whether any heartbeats are pending or dropped by call-
ing safetimer check, which sends a barrier packet to it-
self (line 3). By crafting the barrier packet and config-
uring the system properly, SafeTimer ensures that a bar-
rier will follow the same execution path of heartbeats.
Therefore, if the receiver module receives the barrier, it
can know that any heartbeats processed by the NIC be-
fore endi must have been processed by the OS and Safe-
Timer as well, either delivered to the receiver module or
dropped. We will present details about how to implement
the barrier mechanism in Section 5. For now, the readers
can simply assume SafeTimer somehow drives the heart-
beats and the barriers into a FIFO channel.

If the receiver module receives the barrier, it will check
again whether it has received a heartbeat (tlastHeartbeat <
starti in line 5). If not, the receiver module will read drop
statistics from both the OS and the NIC: if dropcount =
0 and tdrop < starti (line 7), which means there are no
drops in interval i, the receiver module can safely report
a failure. If the barrier is dropped as well, the receiver
module will not report a failure for interval i. In this
case, the application will perform the same check in the
following intervals and will eventually report a failure.

4.2 Stop sender when missing heartbeat

As discussed in Section 3, SafeTimer assumes that the
application has rules to decide when to send heartbeats
and whether they are sent successfully. In particular,
without losing generality, SafeTimer assumes for each
interval i, the application defines a deadline end′i to send
heartbeats, which should be earlier than endi at the re-
ceiver side because of clock drift and network latency.

SafeTimer guarantees that if a sender cannot success-
fully send heartbeats by end′i , the sender will not be able
to send out any other packets after end′i , because the re-

1 function safetimer_send_heartbeat(end′i, end′i+1)
2 send heartbeats
3 if sending succeeded before end′i
4 tvalid = end′i+1
5 end

7 function safetimer_intercept_sending()
8 if (current_time() > tvalid)
9 drop the packet

10 else
11 perform the send
12 end

Figure 3: Pseudo code of SafeTimer sender module. The
application defines end′i as the deadline to send heart-
beats for interval i; the application defines whether send-
ing succeeds; SafeTimer maintains a timestamp tvalid to
identify till when it is safe to send out packets.

ceiver may report a failure at that time. This is necessary
because the accuracy property requires that if the receiver
reports a failure, the sender must have failed: violating
this property can cause correctness issues. Taking the
primary backup protocol as an example, a backup should
only become active if the primary fails. If a backup re-
ceives a failure report and becomes active while the pri-
mary is still active, there will be two active nodes, creat-
ing a classic “split brain” problem [20].

Killing a sender when it is slow is not a new idea [8,
22], but how to implement it correctly despite arbitrary
processing delays requires careful thought. Existing so-
lutions ask a specific component (e.g., a watchdog [22])
to actively kill the sender. When considering arbitrary
processing delays, however, such active solution is in-
complete, because the delay of processing the “kill”
command may allow the sender to be alive for an arbi-
trary amount of time, violating the accuracy property.

SafeTimer uses a passive solution by utilizing the idea
of output commit [41]: a slow sender may continue pro-
cessing, but as long as other nodes do not observe the ef-
fects of such processing, the slow sender is indistinguish-
able from a failed sender. As shown in Figure 3 (lines 3-
12), SafeTimer’s sender module maintains a timestamp
tvalid , which indicates it is safe for the sender to send
packets before tvalid . During startup, the sender sets tvalid
to end′0. If the sender successfully sends heartbeats for
interval i, the sender extends tvalid to end′i+1 (line 4).
Whenever the sender is about to send a packet, Safe-
Timer will compare the current time with tvalid : if cur-
rent time is larger than tvalid , the sender will discard the
packet (lines 7-12). Since heartbeat is blocked as well in
this case, an invalid sender cannot extend tvalid and send
packets in the future, unless with recovery operations.

Note that since the sending operation itself may take
arbitrarily long, SafeTimer allows a packet generated be-
fore tvalid to be actually sent out after tvalid . This is fine
because the packet is generated when the sender is still
valid (i.e., when the receiver has not reported the failure).
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4.3 Proof of accuracy and completeness
As discussed in Section 3, SafeTimer relies on the exist-
ing protocol to send and receive heartbeats in the black-
box part. When the existing protocol’s assumptions
about the blackbox part hold, we can prove that Safe-
Timer is accurate (i.e., never report failure for a correct
node) despite arbitrary delays in the whitebox part and is
complete (i.e., eventually report failure for a failed node)
when the receiver does not experience slow processing
or packet drops for sufficiently long. We provide the de-
tailed proof in the appendix.

4.4 Benefit of SafeTimer
Because of the accuracy and completeness properties, the
users of SafeTimer do not need to make conservative tim-
ing assumptions about the whitebox part. They do need
to provide a reasonable estimation of such delay in the
common case, because the sender needs some time to
send out heartbeats. However, this requirement is only
for performance: if the actual delay is longer than estima-
tion, which means the sender cannot send the heartbeat in
time, SafeTimer will block the sender, which may cause
unnecessary recovery and hurt performance, but this will
not violate accuracy. Therefore, SafeTimer only requires
the user to provide a reasonable estimation to make sure
such events are rare. As a comparison, in existing proto-
cols, if the actual delay is longer than estimation, sys-
tem correctness can be violated, and that is why ex-
isting systems require conservative assumptions so that
such events never happen. The gap between “rare” and
“never” is where SafeTimer gains its benefit.

5 Implementation

This section presents the barrier mechanism at the re-
ceiver and the packet checking at the sender in detail.

5.1 Barrier mechanism at the receiver
The goal of the barrier mechanism is to ensure that if
SafeTimer’s receiver module sent a barrier to itself at t
and received it later, then all heartbeats delivered by NIC
before t must have been either delivered to the applica-
tion or dropped. Achieving this property would be trivial
if the OS processes all packets in FIFO order, but unfor-
tunately, this is not true in modern OS. To illustrate the
problem and motivate our design, we first present how
Linux processes incoming packets.

Background. As shown in Figure 4, Linux incorpo-
rates a multi-stage pipeline to process incoming packets.

At the lowest level, an NIC buffers incoming packets
in its RX queues and tries to transfer them to kernel’s ring

buffers: if the ring buffer has empty slots, the NIC will
transfer the packet using DMA and fire an interrupt; if
the buffer is full, the NIC will retry and may drop pack-
ets. For efficiency, modern NIC and Linux incorporate
the Receive Side Scaling (RSS) technique [40] to allow
parallel packet processing: the NIC creates multiple RX
queues and the kernel creates an equal number of ring
buffers so that each RX queue is mapped to a unique
ring. Furthermore, Linux assigns a unique interrupt re-
quest (IRQ) number to each RX queue so that Linux can
handle interrupts from different RX queues in parallel.

For efficiency, Linux separates interrupt handling into
two parts—hard IRQ and soft IRQ—and invokes hard
IRQ first. For an NIC interrupt, its hard IRQ simply
sets some registers and triggers a soft IRQ. The soft IRQ
reads packets from the ring buffer and executes the logic
of the networking protocol, such as TCP/IP. The RSS
technique allows Linux to handle IRQs in parallel.

By default, the soft IRQ reads from the ring buffer and
executes the protocol logic within a single critical sec-
tion protected by the lock of the ring. For more paral-
lelism, Linux incorporates the Receive Packet Steering
(RPS) technique [40]: when RPS is enabled, a soft IRQ
reads a packet from the ring, puts it into a buffer called
backlog, and then releases the lock of the ring. A sepa-
rate thread, which may run on another CPU, will retrieve
packets from the backlog and execute the protocol logic.

Finally the soft IRQ puts packets into socket buffers
and the user-space threads may read from these buffers
in parallel.

Such a multi-stage pipeline may re-order packets.
Modern NIC and Linux preserve FIFO order for TCP
packets with the same (sender IP, sender port, destina-
tion IP, destination port) and UDP packets with the same
(sender IP, destination IP), by directing packets with
same such information to the same RX queue, backlog
and socket buffer. For SafeTimer, such guarantee is not
enough since heartbeats and barriers are from different
senders.

Overview of SafeTimer’s solution. Our implementa-
tion is driven by three principles: 1) for portability, we
hope to minimize modification to OS kernel code; 2) for
performance, it should not incur significant overhead; 3)
for portability, we hope to minimize dependence on spe-
cific NIC features or modification to NIC drivers.

As shown in Figure 4, SafeTimer re-directs heartbeats
and barriers to a separate FIFO queue (called STQueue)
early in the pipeline, so that they are not affected by
re-ordering in later stages. However, since the earliest
place we can perform such re-direction is after the soft
IRQ reads the packets, RSS technique in the earlier stage
may still re-order packets from different ring buffers. To
solve this problem, SafeTimer sends a barrier packet to
each RX queue/ring. If all of them later go through the
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Figure 4: Barrier mechanism at the receiver. The algorithm in Figure 2 reads from STQueue.

STQueue, SafeTimer can know that all previous heart-
beats are processed. The key to the correctness of this
approach is that a soft IRQ needs to grab the lock of
the ring buffer when reading a packet from the ring, and
thus packets from each ring are read in a FIFO manner.
As long as SafeTimer re-directs a packet before the soft
IRQ releases the lock, such per-ring FIFO order will be
retained in the STQueue. Therefore, when SafeTimer re-
trieves a barrier from the STQueue, it knows all previous
heartbeats from the same ring must have been processed.

Next we present each step in detail.

Forcing a barrier to go through NIC. SafeTimer re-
quires a barrier packet to follow the same execution path
of a heartbeat packet. Putting a barrier in the ring buffer
does not work because the OS won’t read from the buffer
until an NIC interrupt is triggered. Therefore, SafeTimer
receiver forces the barrier packet to go through its NIC.
This task, however, is challenging for multiple reasons.

First, Linux has the loopback optimization to route a
local packet by memory copy instead of sending it to the
NIC. SafeTimer bypasses this optimization by sending
the barrier directly to the device driver. This approach,
however, creates a new problem: the NIC will actually
send the packet to the router. To prevent loops, routing
protocols usually have a constraint that a router should
never forward a packet to the port where the packet is
received. Therefore, the router will drop a barrier packet,
whose destination and source are the same.

Our prototype uses an NIC with two ports and sends
a barrier from one port to the other, which eliminates
the above problem. This solution requires the receiver
to have at least two links to the router, but considering
the fact that redundant links are already widely used for
fault tolerance, such requirement often does not incur ad-
ditional cost. If redundant link is not available, another
alternative is to use the virtual LAN (vLAN) technique

to virtualize a physical port into two virtual ports [47].

Sending a barrier to a specific RX queue. A few
NICs provide the “N-tuple filter” feature to direct pack-
ets to specified RX queues, which makes this problem
trivial. However, we find this feature is not common so
far [21]. Most NICs calculate a hash value based on the
IPs and ports information in a packet and then direct the
packet to an RX queue based on the hash value. There-
fore, we propose a general solution based on the assump-
tion that one cannot control which RX queue a packet is
directed to, but packets with same IPs and ports will al-
ways be directed to the same RX queue.

SafeTimer uses a brute-force search approach: during
initialization, its receiver module sends barriers with dif-
ferent sender ports to its NIC to see which RX queue they
are directed to, until SafeTimer can find a port for each
RX queue. Since usually there are not many RX queues,
such procedure could finish quickly. The challenge, how-
ever, is how to know which RX queue (represented by its
IRQ number) a packet is directed to. SafeTimer uses net-
filter [39], which is a tool provided by Linux, to intercept
soft IRQ functions to check whether a packet is a barrier,
but soft IRQ functions do not carry the IRQ number of
the RX queue. We can modify the driver to pass the IRQ
number to the soft IRQ, but this violates our principle to
minimize driver-specific modifications.

To solve this problem, we leverage the irq-cpu affin-
ity configuration provided by Linux, which can configure
the mapping between RX queues and CPUs during RSS.
By default, it is configured to be an all-to-all mapping,
which means any CPU can execute any IRQ to read from
its corresponding RX queue/ring, but Linux also allows
one-to-one mapping. We leverage this option to “test”
whether a barrier is sent to a specific IRQ i: we map IRQ
i to CPU 0 and the other IRQs to the remaining CPUs ar-
bitrarily. When intercepting the soft IRQ function, Safe-
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Timer reads the CPU ID: if the packet is a barrier and
the IRQ function is run on CPU 0, we can know the bar-
rier must be sent to IRQ i; otherwise, SafeTimer tests a
different i until it can find the right one.

Note that since the NIC always directs packets with
same IPs and ports to the same RX queue, we only need
to run the inferring procedure once for one machine. Af-
terwards we can use all-to-all mapping for efficiency.

Re-directing packets to STQueue. As shown in Fig-
ure 4, SafeTimer re-directs heartbeats and barriers to a
FIFO STQueue after packets are read.

To implement this functionality, SafeTimer uses net-
filter to hook the ip local deliver function, and config-
ures iptable to re-direct heartbeats and barriers to a FIFO
netfilter queue, which is called STQueue in SafeTimer.
SafeTimer hooks ip local deliver because this is the ear-
liest point packets can be re-directed in netfilter. Safe-
Timer sends heartbeats and barriers to specific ports so
that they can be efficiently distinguished from normal
packets.

This approach, however, is not fully correct when RPS
is enabled: recall that when RPS is enabled, a soft IRQ
will put a packet into the backlog and then releases the
lock of the ring. In this case, ip local deliver is called af-
ter the lock is released and thus re-direction may not pre-
serve the order of packets from the corresponding ring.
To solve this problem, we use kretprobe [33] to inter-
cept get rps cpu to return -1 for heartbeats and barriers:
doing so essentially disables RPS for heartbeats and bar-
riers. As a result, the re-direction will be executed under
the protection of the lock of each ring and thus STQueue
will preserve the order of packets from each ring. Nor-
mal packets, however, are not affected.

The timeout detection protocol (Figure 2) always reads
heartbeats and barriers from the STQueue. However,
SafeTimer does not remove heartbeats and barriers from
later stages of the pipeline, because the OS needs to ex-
ecute the logic of the network protocol, like congestion
control or sending acknowledgements in TCP.

Reading drop count. SafeTimer’s receiver module
needs to read packet drop counts from both the OS and
the NIC. Linux and most NICs have provided such statis-
tics, but their implementation cannot achieve our goal.

In Linux, the NIC device driver periodically reads the
drop count from the NIC, which can be fetched by read-
ing /proc files system or using tools such as ethtool. Pe-
riodic reading means such statistics may be stale, which
can cause SafeTimer’s receiver module to miss recent
drops and generate a false failure report. To make things
worse, the NIC will reset drop count to 0 after it is read,
so even if SafeTimer reads the drop count directly from
the NIC, it may still get inaccurate results. To solve
this problem, SafeTimer reads drop count from the NIC

and then merges it with the number reported by the NIC
driver. This is the only place SafeTimer requires modifi-
cation to device drivers and OS kernel.

5.2 Blocking slow sender
As shown in Figure 3, SafeTimer’s sender module blocks
the sender if it cannot deliver heartbeats to the NIC in
time. However, when sending a packet, Linux does not
notify users whether or not the packet is delivered to the
NIC successfully. Instead, it may write the packet to a
buffer, return to the user, and send the packet to the NIC
later, which may fail. To solve this problem, we use
kprobe to intercept the function that the NIC driver in-
vokes to reclaim resources after transmission is complete
(e.g., napi consume skb or dev kfree skb any). As
shown in Figure 3, SafeTimer applies the rules of the ex-
isting timeout detection protocol to check whether heart-
beats are sent successfully. If so, SafeTimer’s sender
module will update tvalid . To block invalid packets, we
use netfilter to intercept the ip output function: if current
time is larger than tvalid , the packet will be dropped.

Because of the processing delay, SafeTimer cannot get
the exact time when a packet is sent. Instead, SafeTimer
conservatively uses the timestamp after sending a packet,
ta f ter: when checking whether a heartbeat is sent before
end′i (line 3 in Figure 3), SafeTimer compares ta f ter with
end′i . Such conservative approach ensures a sender fail-
ing to send heartbeats in time must be blocked, but it
may also block a sender that has sent heartbeats in time,
which is unnecessary but does not violate accuracy. Pre-
vious works have discussed how to minimize the impact
of such unnecessary killing [38].

Since a slow sender process may communicate with
other processes on the same machine, SafeTimer needs
to block those processes as well, and thus it provides
two blocking modes: the first blocks all processes on
a machine; the second blocks only the sender process
if the user is sure it does not communicate with other
processes. Automatically tracking the information flow
among different processes is out of the scope of this pa-
per.

5.3 Supporting virtual machine
To maximize the benefit of SafeTimer in a virtual ma-
chine architecture, we could implement SafeTimer in the
host OS or hypervisor and provide related functions to
applications using hypercalls or remote procedure calls.
By doing so, we can model the host OS or hypervisor
as a whitebox. We plan to implement such support in
the future. However, if the user has no control of the
host OS or hypervisor, he/she can still deploy SafeTimer
to the guest OS and model the host OS/hypervisor as a
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blackbox, but this approach of course loses the ability to
tolerate long delays in the host OS/hypervisor.

6 Evaluation

Our evaluation tries to answer three questions:

• What is the overhead of SafeTimer?

• Can SafeTimer achieve the expected accuracy prop-
erty, despite long delays in the OS and the application?

• How much effort does it take to apply SafeTimer to
existing systems?

To answer the first question, we have evaluated Safe-
Timer with a performance benchmark, which can send
packets with different sizes, and compared its throughput
and latency to those without SafeTimer. For the blackbox
part, we use a simple protocol that sends heartbeats peri-
odically with a configurable interval.

To answer the second question, we have injected long
delays and packet drops at different layers at both the
sender and the receiver to observe whether SafeTimer
can prevent false failure report. Of course, this is by
no means a complete test: we have proved the accuracy
of SafeTimer in the appendix. This set of experiments
serves as a sanity check about whether our implementa-
tion has actually achieved the expected properties.

To answer the third question, we have applied Safe-
Timer to HDFS and Ceph to enhance their timeout de-
tection protocols and report our experience.

Testbed setting. We ran all experiments on Cloud-
Lab [15]. Each machine is equipped with two Intel Xeon
E5-2630 8-core CPUs, 128GB of memory, 1.2 TB of
SAS HDD, and a dual-port Intel X520-DA2 10Gb NIC.
All machines are connected to a Cisco Nexus C3172PQs
switch. Linux 4.4.0 is installed on all machines.

6.1 Overhead
SafeTimer incurs overhead for each packet at both the
sender and the receiver: SafeTimer’s sender module
compares current time with tvalid before sending each
packet; SafeTimer’s receiver module re-directs heart-
beats and barriers to the STQueue. To know whether
a packet is a heartbeat or a barrier, the receiver mod-
ule checks the destination port of each packet. When a
sender fails, SafeTimer performs additional operations to
block the sender, send barriers, and read drop counts, but
since failure is rare, we focus on overhead in the failure-
free case.

Since SafeTimer incurs overhead for each packet, such
overhead should be relatively higher for workloads with
smaller packets and thus we measure the overhead of
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Figure 5: Throughput of the ping-pong benchmark with
and without SafeTimer.
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Figure 6: 99 percentile latency of the ping-pong bench-
mark with and without SafeTimer.

SafeTimer with different packet sizes. However, TCP
may merge small packets in the same connection and
thus affect our experiment results. To prevent such effect,
we use a ping-pong benchmark as suggested in a previ-
ous work [2]: we create multiple sender threads at the
sender, each creating a connection to the receiver. The
sender thread sends a packet to the receiver and waits
for the receiver to forward the packet back. In this case,
since each connection has only one outstanding packet,
TCP has no chance to merge packets. To increase load,
we can increase the number of sender threads.

To measure the overhead of SafeTimer, we apply Safe-
Timer to the ping-pong benchmark and measure how it
affects throughput and latency. To measure the maximal
throughput, we increase the number of sender threads till
we cannot gain higher throughput. To measure the la-
tency, we run experiments under two loads: a light load
of about 40% of the maximal throughput and a heavy
load of about 90% of the maximal throughput. We do
not measure the latency under the maximal throughput
because in this case, the latency will be dominated by
queuing delay. We run each setting 20 times to compute
the average and standard deviation. We set the timeout
interval of the blackbox part to be one second.

As shown in Figures 5 and 6, SafeTimer’s overhead
is small: for 4KB and 64KB packets, the overhead is
less than 1%; for 8B and 64B packets, SafeTimer can
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Node Instrument Position Injected Event SafeTimer Vanilla
Receiver System call (recv) Delay No timeout Timeout
Receiver Socket (sock queue rcv skb) Delay/Drop No timeout Timeout
Receiver NFQueue (nfqnl enqueue packet) Delay/Drop No timeout N/A
Receiver IP (ip rcv) Delay No timeout Timeout
Receiver RPS (enqueue to backlog) Delay/Drop No timeout Timeout
Receiver Ethernet (napi gro receive) Delay No timeout Timeout

Sender System call (send) Delay Blocked Alive
Sender Socket (sock sendmsg) Delay Blocked Alive
Sender IP (ip output) Delay/Drop Blocked Alive. Can observe drop.
Sender Ethernet (dev queue xmit) Delay Blocked Alive

Table 1: Verifying accuracy of SafeTimer by injecting long delay or packet drops. Gray cells indicate injection in
kernel. N/A means this test case does not apply.

increase 99p latency by 0.7% to 2.7% and decrease
throughput by 1.6% to 2.4%. Such low overhead is rea-
sonable because SafeTimer’s additional work (i.e., com-
paring tvalid at the sender and reading destination port
at the receiver) is small compared to other work the OS
has to perform for each packet (e.g., interrupt handling,
memory copy). To confirm the result, we run the same
benchmark on another set of machines on CloudLab
(m510 [16]) with different NICs (Mellanox ConnectX-
3 10G) and we find the overhead of SafeTimer is similar.

6.2 Accuracy
Although we have proved the accuracy of SafeTimer, we
hope to sanity check whether our implementation has
achieved the expected property. For this purpose, we in-
ject long delays and packet drops at different layers at
the sender and the receiver. We compare SafeTimer to a
vanilla timeout implementation, which has a user thread
to periodically send heartbeats at the sender and a user
thread to periodically check timeout at the receiver.

Table 1 summarizes the events we injected and how
SafeTimer responds to these events. We inject long de-
lays at all positions but only inject drops if the corre-
sponding function can actually drop packets. In these
experiments, we set timeout interval to be one second
and inject a delay of two seconds. As shown in the table,
SafeTimer correctly prevents false failure report at the
receiver and blocks the sender in all cases. The vanilla
implementation, however, violates accuracy in almost all
cases except when a heartbeat is dropped in ip output: in
this case, the sender receives an error and can retry.

6.3 Case studies
To evaluate how much effort it takes to apply SafeTimer
to real-world applications and its performance overhead,
we have applied SafeTimer to HDFS [45] and Ceph [9].

APIs of SafeTimer. At the sender side, SafeTimer pro-
vides two APIs: safetimer send HB to send a heartbeat

and check whether it is delivered to the NIC in time; safe-
timer extend to extend the t valid value. At the receiver
side, SafeTimer provides one API: safetimer check to
check whether it is safe to report a failure.

HDFS. In HDFS, a DataNode needs to periodically
send a heartbeat to the NameNode and if the NameNode
misses a number of consecutive heartbeats, the NameN-
ode will mark the DataNode as “stale”.

We modified one line of code in NameNode’s isStale
function, which checks whether heartbeats are miss-
ing for a DataNode, to perform the additional safe-
timer check. We modified six lines of code in DataNode
to use SafeTimer’s APIs to send heartbeats and check
whether heartbeats are sent in time. To simplify mod-
ification, we do not remove HDFS’ original heartbeat
mechanism: this leads to duplicate heartbeats but during
our experiments, the overhead is negligible.

We killed a DataNode and found the NameNode can
correctly mark a failed DataNode as stale. We have
measured the performance of an HDFS deployment with
three DataNodes by using Hadoop’s built-in benchmark
tool DFSIO. We ran each experiment five times. With-
out SafeTimer, DFSIO can achieve a write throughput
of 203 MB/s (stdev 12.6) and a read throughput of 627
MB/s (stdev 18.4); with SafeTimer, it can achieve a write
throughput of 206 MB/s (stdev 5.5) and a read through-
put of 632 MB/s (stdev 8.4). The difference is not statis-
tically significant.

Ceph. In Ceph, an Object Storage Daemon (OSD)
sends heartbeats to its two peers every 6 seconds and if
they can’t receive the heartbeat for 20 seconds, they will
send a failure report to the Monitor, which will consider
the OSD as failed if receiving two reports.

In this mechanism, an OSD is both the sender and
receiver of heartbeats. We modified two lines of code
in OSD’s heartbeat check function to perform the safe-
timer check before sending the failure report; we mod-
ified five lines of code to use SafeTimer’s APIs to send
heartbeats and check whether heartbeats are sent in time.
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We killed an OSD and found the Monitor can mark
it as down. We have measured the performance of a
Ceph deployment with three OSDs by using Ceph’s in-
buit benchmark tool RADOS. We ran each experiment
five times. Without SafeTimer, RADOS can achieve a
bandwidth of 43.3 MB/s (stdev 1.6); with SafeTimer, it
can achieve a bandwidth of 42.2 MB/s (stdev 1.1). The
difference is not statistically significant.

7 Related work

Chandra et al. show that many classic problems in dis-
tributed system, such as consensus, can be solved with
an accurate and complete failure detector [12]. In prac-
tice, timeout is widely used for failure detection, whose
accuracy depends on their timing assumptions.

Synchronous systems. Under synchronous assump-
tions (i.e., delay of message transfer and clock devia-
tion are bounded [12]), timeout can achieve both accu-
racy and completeness for failure detection. Many sys-
tems like primary-backup replication and HDFS [4, 5,
18, 24, 45] work under this assumption. To guarantee
accuracy, these systems must make conservative assump-
tions about message delay and clock deviation. Previ-
ous works have tried to improve its accuracy by esti-
mating the upper bound adaptively at runtime [3] and
by killing a node if the failure detector reports the node
has failed [8, 22]. SafeTimer can enhance synchronous
systems to tolerate abnormal events in the OS and the
application, without requiring any timing assumptions.

Asynchronous systems. Under asynchronous assump-
tions (i.e., delay of message transfer and clock deviation
are unbounded), building a failure detector that is both
accurate and complete is proved to be impossible [23].
Paxos [34, 35, 42] is a replication protocol designed for
asynchronous environments: it is always correct (i.e., all
correct replicas process the same sequence of requests)
and is live (i.e., the system can make progress) when the
environment is synchronous for sufficiently long. Paxos
is used as building blocks in larger systems like Span-
ner [17] and Microsoft Azure Storage [7]. Compared to
synchronous replication systems, Paxos is more expen-
sive in terms of number of replicas and messages. Asyn-
chronous systems don’t need accurate failure detection
for correctness, but since there is a cost to recover a fail-
ure, SafeTimer may help to reduce such unnecessary re-
covery by reducing the number of false failure reports.

Lease systems. A number of systems [1, 13] in-
stall a replicated lease manager (e.g., Chubby [6] and
ZooKeeper [29]): a server needs to acquire a lease from
the lease manager before it can service clients; the server
has to renew the lease before it expires, and if not suc-
cessful, the server will stop servicing clients. For accu-

racy, this approach requires the clock speed of servers
and the lease manager to be sufficiently close, but it does
not require the delay of message transfer to be bounded.
Lease systems strike a balance between cost and timing
assumptions, but it has its own limitations: first, the cen-
tralized nature of the lease manager means if a long delay
happens at the lease manager, all leases will expire and
all servers will stop servicing, which does not violate
the accuracy property, but is certainly undesirable. As
a result, lease systems prefer coarse-grained leases [6],
which hurts system availability as well, similar as using
a long timeout. Second, the requirement of a replicated
lease manager makes it less desirable in small-scale sys-
tems. Systems using leases can benefit from SafeTimer
by installing its sender module to ensure a server will not
continue servicing after its lease expires.

Failure detection without timeout. A few systems
implement a failure detector without using timeout. For
example, Falcon [38] and its following works [36, 37]
install probes in routers to monitor servers and install
probes at different layers in a server to monitor upper lay-
ers. This approach essentially converts the whole com-
munication channel into a white box. As a result, it re-
quires intrusive modification to the routing layer, which
makes its deployment challenging and sometimes impos-
sible if the routers are out of the control of the user. To
solve these problems, Falcon uses timeout as a backup.

Real-time OS. Real-time Linux [43] and other real-
time frameworks for Linux such as RTAI [44] and Xeno-
mai [49] can guarantee important tasks or interrupts are
scheduled before given deadlines. However, this is not
sufficient to achieve our goal, because long delay is not
only caused by untimely scheduling, but also caused by
the fact that an important task is occasionally blocked by
a heavy task (Section 2). Real-time scheduling can ad-
dress the former problem, but not the latter one.

8 Conclusion

This paper shows that we do not need to include the max-
imal local processing delay in timeout interval. Because
of the whitebox nature of local processing, we can build
efficient and accurate failure detection for this part, de-
spite arbitrary processing delays. Our prototype Safe-
Timer allows one to use a shorter timeout to improve
system availability, without sacrificing accuracy.
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A Appendix: Proof of accuracy and com-
pleteness

Assumption of the blackbox part. The existing proto-
col can guarantee that if a sender has successfully sent
heartbeats for interval i, at least one of the heartbeats
will be processed (either delivered to the OS or dropped)
by the receiver’s NIC by endi.

Theorem A.1. (Accuracy) If SafeTimer’s receiver mod-
ule reports a failure at time t, the sender will not be able
to send any packets generated after t.

Proof. As shown in the protocol, SafeTimer’s receiver
module reports a failure for interval i if two conditions
are both satisfied: first, the receiver module has received
the barrier but not any heartbeats for interval i. Because
the barrier is sent after endi and because of the barrier’s
semantic, any heartbeats processed by the NIC before
endi must either have been delivered to the receiver mod-
ule or have been dropped. Since the receiver module has
not received any heartbeats, we can conclude that it is
either because the NIC has not processed any heartbeat
by endi or because some heartbeats are dropped at the
receiver side.

The second condition is dropcount = 0 and tdrop <
starti, which means there are no packet drops at the re-
ceiver side in interval i. By combining this condition
with the first one, we can conclude that the receiver’s
NIC must have not processed any heartbeat packets for
interval i before endi. This means the sender must have
not successfully sent the heartbeats for interval i (As-
sumption of the blackbox). In this case, the sender will
not extend its tvalid = end′i , and thus will stop sending any
messages after tvalid .

Since t is larger than endi and tvalid = end′i at the sender
should be earlier than endi at the receiver, we can con-
clude that tvalid < endi < t and thus the sender will not
send any packets generated after t.

Theorem A.2. (Completeness) If the sender has failed,
SafeTimer’s receiver module will eventually report a fail-
ure if the following two conditions both hold for suf-
ficiently long (five consecutive intervals in the worst
case): 1) the receiver’s processing speed is normal,
which means events (e.g., heartbeat, barrier, and read-
ing drop count) generated before or during an interval
can be handled by the end of the interval; 2) the receiver
does not experince any packet drops.

Proof. Suppose the sender fails to send heartbeats in in-
terval i, and afterwards, there are five consecutive inter-
vals j to j+4 ( j > i) during which the receiver’s process-
ing speed is normal and the receiver does not experience
any packet drops.

Since the receiver’s processing speed is normal in in-
terval j, the receiver should be able to handle all delayed

heartbeats from the sender, if any, by the end of inter-
val j, which means the receiver won’t receive any heart-
beats in interval j+ 1. Therefore, the receiver will send
a barrier at the end of interval j+1. Since the receiver’s
processing speed is normal and there are no packet drops
in interval j+2, the receiver will receive the barrier and
read drop count by the end of interval j+2. If drop count
is 0 (tdrop must be smaller than start j+2 because the re-
ceiver does not read drop count in interval j+1), the re-
ceiver will report the failure; otherwise, the receiver will
update tdrop (the new tdrop must be smaller than start j+3)
and repeat the above procedure. At the end of interval
j + 3, the receiver must report a failure because both
conditions to report a failure can be met: 1) since the
processing speed is normal and there are no packet drops
in interval j+ 4, the receiver can receive the barrier for
j+ 3 but it cannot receive any heartbeats; 2) drop count
is 0 because there are no packet drops in interval j + 3
and j+4; tdrop < start j+3.

Note that five intervals are the worst case: if previ-
ously there are no delayed heartbeats or packet drops,
the receiver will report the failure after one interval.
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