
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Troubleshooting Transiently-Recurring
Errors in Production Systems with

Blame-Proportional Logging
Liang Luo, University of Washington; Suman Nath, Lenin Ravindranath Sivalingam,

and Madan Musuvathi, Microsoft Research; Luis Ceze, University of Washington

https://www.usenix.org/conference/atc18/presentation/luo

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Troubleshooting Transiently-Recurring Problems in Production Systems
with Blame-Proportional Logging

Liang Luo∗, Suman Nath†, Lenin Ravindranath Sivalingam†, Madan Musuvathi †, Luis Ceze∗
∗University of Washington, †Microsoft Research

Abstract
Many problems in production systems are transiently re-
curring — they occur rarely, but when they do, they recur
for a short period of time. Troubleshooting these prob-
lems is hard as they are rare enough to be missed by sam-
pling techniques, and traditional postmortem analyses of
runtime logs suffers either from low-fidelity of logging
too little or from the overhead of logging too much.

This paper proposes AUDIT, a system specifically
designed for troubleshooting transiently-recurring prob-
lems in cloud-based production systems. The key idea is
to use lightweight triggers to identify the first occurrence
of a problem and then to use its recurrences to perform
blame-proportional logging. When a problem occurs,
AUDIT automatically assigns a blame rank to methods
in the application based on their likelihood of being rel-
evant to the root-cause of the problem. Then AUDIT
enables heavy-weight logging on highly-ranked methods
for a short period of time. Over a period of time, logs
generated by a method is proportional to how often it is
blamed for various misbehaviors, allowing developers to
quickly find the root-cause of the problem.

We have implemented AUDIT for cloud applications.
We describe how to utilize system events to efficiently
implement lightweight triggers and blame ranking algo-
rithm, with negligible to < 1% common-case runtime
overheads on real applications. We evaluate AUDIT with
five mature open source and commercial applications,
for which AUDIT identified previously unknown issues
causing slow responses, inconsistent outputs, and appli-
cation crashes. All the issues were reported to develop-
ers, who have acknowledged or fixed them.

1 Introduction
Modern cloud applications are complex. Despite tremen-
dous efforts on pre-production testing, it is common for
applications to misbehave in production. Such misbe-
haviors range from failing to meet throughput or latency
SLAs, throwing unexpected exceptions, or even crash-

ing. When such problems occur, developers and opera-
tors most commonly rely on various runtime logs to trou-
bleshoot and diagnose the problems.

Unfortunately, runtime logging involves an inherent
tradeoff between logging sufficient detail to root-cause
problems and logging less for lower overhead (see for
instance [1, 2, 3, 4, 5]). Our experiments show (§6) that
even for web applications that are not compute intensive,
logging parameters and return values of all methods can
increase latency and decrease throughput by up to 7%.
Moreover, determining what to log is made harder by the
fact that modern cloud and web applications involve mul-
tiple software components owned by different software
developer teams. As a result, most logs generated today
are irrelevant when root-causing problems [6].

To solve this problem, we make an important obser-
vation that many misbehaviors in production systems are
transiently-recurring. As many frequent problems are
found and fixed during initial phases of testing and de-
ployment, we expect many problems in production sys-
tems to be rare and transient (the rarity makes it challeng-
ing to troubleshoot using sampling techniques [1, 2]).
However, when they occur, they recur for a short amount
of time for a variety of reasons, e.g., the user retrying a
problematic request or a load-balancer taking some time
to route around a performance problem (§2.2).1

Contributions. In this paper, we utilize the re-
currence of these misbehaviors and present the de-
sign and implementation of AUDIT (AUtomatic Drill-
down with Dynamic Instrumentation and Triggers): a
blame-proportional logging system for troubleshooting
transiently-recurrent problems in production systems.
The basic idea is as follows. AUDIT uses lightweight
triggers to detect problems. When a problem occurs,
AUDIT automatically assigns a blame rank to methods
in the application based on their likelihood of being rel-

1A notable exception to transient-recurrence are Heisenbugs which
occur due to thread-interleaving or timing issues. AUDIT is not de-
signed to troubleshoot these problems.

USENIX Association 2018 USENIX Annual Technical Conference 321

evant to the root-cause of the problem. Then AUDIT
drills-down—it dynamically instruments highly-ranked
methods to start heavy-weight logging on them until a
user-specified amount of logs are collected. Over a pe-
riod of time, logs generated by a method is proportional
to how often the method is blamed for various misbehav-
iors and the overall logging is temporally correlated with
the occurrence of misbehaviors. Developers analyze the
logs offline, and thus AUDIT is complementary to exist-
ing techniques that help in interactive settings [7, 8].

We demonstrate the feasibility and benefits of AUDIT
with the following contributions. First, AUDIT intro-
duces lightweight triggers that continuously look for tar-
get misbehaviors. Developers can declaratively specify
new triggers, describing target misbehaviors, the set of
metrics to collect, and the duration for which to collect.
The design of the trigger language is motivated by recent
studies on misbehaving issues in production systems and
when/where developers wish to log [3, 9, 10].

To evaluate the triggers and to blame-rank methods,
AUDIT uses continuous end-to-end request tracing. To
this end, our second contribution is a novel tracing tech-
nique for modern cloud applications built using Task
Asynchronous Pattern (TAP), an increasingly popular
way to write asynchrnous programs with sequential con-
trol flow and found in many languages including .NET
languages, Java, JS/Node.js, Python, Scala, etc. AUDIT
leverages system events at thread and method boundaries
provided by existing TAP frameworks for monitoring
and debugging purposes. AUDIT correlates these readily
available events for lightweight end-to-end tracing. As a
result, AUDIT introduces acceptable (from negligible to
< 1%) overhead in latency and throughput during nor-
mal operations. Note that AUDIT can also support non-
TAP applications using known techniques based on in-
strumentation and metadata propagation [8, 11, 12] that
are shown to have acceptable overheads in production
systems.

Our third contribution is a novel ranking algorithm
that assigns blame scores to methods. After a trigger
fires, AUDIT uses the algorithm to identify high-ranked
methods to initiate heavy-logging on them. AUDIT’s
blame ranking algorithm uses lessons from recent stud-
ies on where and what developers like to log for success-
ful troubleshooting [3, 13]. It prioritizes methods where
misbehavior originates (e.g., at a root exception that later
causes a generic exception), that slow down requests,
and that are causally related to misbehaving requests. It
addresses key limitations of existing bottleneck analysis
techniques that ignore critical path [14] or methods not
on critical paths [15, 16, 17].

Our final contribution is an evaluation of AUDIT. We
used AUDIT on a Microsoft production service and 4
popular open source applications. AUDIT uncovered

0

50

100

150

200

250

300

Always On Monitoring

Trigger Fired

Expensive Logging

Developer saw the logs

sometime in the future

time

Always On Monitoring

L
a

te
n

c
y
 (

m
s

)

1

2

3

4

Figure 1: Timeline of AUDIT finding a performance bug
in Forum.

previously-unseen issues in all the applications (§6.1).
Many of the issues manifest only on production, as they
are triggered based on user inputs and concurrency. All
the issues have been reported to and acknowledged by
developers of the applications. Some of them have al-
ready been fixed by developers with insights from logs
generated by AUDIT.

2 Overview
2.1 A motivating case study

Microsoft Embedded Social. We start with an example
demonstrating how AUDIT helped troubleshoot a prob-
lem in Microsoft Embedded Social (hereafter referred to
as Social for brevity), a large-scale social service at Mi-
crosoft. Social is written in C#, deployed on Microsoft
Azure, and is used by several applications and services
in production. Social lets users add/like/search/delete
posts, follow each other, and see feeds.2

Enabling AUDIT. AUDIT is easy to use. AUDIT works
with unmodified application binaries and is enabled by
simply setting a few environment variables. AUDIT
comes with a set of triggers targeting common perfor-
mance and exception-related problems. Social develop-
ers enabled AUDIT with these default triggers.
The problem. Figure 1 shows a performance problem
that occurred in production: the latency of retrieving
global feeds increased for a few hours. The developer
was offline during the entire time and later relied on AU-
DIT logs to troubleshoot the issue.
AUDIT in operation. An AUDIT trigger fired shortly
after the sudden spike in latency ((2) in Figure 1). For
all misbehaving requests, AUDIT logged end-to-end re-
quest trace consisting of the request string, names and
caller-callee relationship of executed methods. In ad-
dition, its blame ranking algorithm selected top-k (k =
5 by default) ranked methods and dynamically instru-
mented them to log their parameters and return values.

2Open source SDKs are available on GitHub, e.g., https://github.
com/Microsoft/EmbeddedSocial-Java-API-Library

322 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/Microsoft/EmbeddedSocial-Java-API-Library
https://github.com/Microsoft/EmbeddedSocial-Java-API-Library

The heavyweight logging continues for a short time (5
minutes by default, stage (3) in Figure 1). This spatially-
and temporally-selective logging helped the developer to
root-cause of the problem, even long after the problem
disappeared (stage (4) in Figure 1).

Troubleshooting with AUDIT logs. AUDIT’s request
traces showed that the misbehaving request was retriev-
ing the global feed. The feed consists of a list of
post-ids and contents; the latter is stored in a back-end
store (Azure Table Storage) and is cached (in Redis) to
achieve low-latency and high-throughput. Request trac-
ing showed that the spike was due to post contents con-
sistently missing the cache, albeit without revealing the
cause of cache misses.

Among the methods AUDIT selected for heavyweight
logging was a method that queries the backing store
(Azure Table Storage). The logged arguments showed
that the spike was caused by one particular post id, which
according to logged return value didn’t exist in the back-
ing store. This inconsistency lead to the root-cause of
the bug — a post id was present in the global feed but its
contents were missing.

This inconsistency occurred when a user deleted a
post. Social deleted its content from cache and backing
store but failed to delete its id from the global feed due
to a transient network failure. This inconsistency was
not visible to users as missing posts are omitted in feeds,
but it created a persistent performance spike. The incon-
sistency eventually disappeared when the problematic id
was moved out of the global feed by other posts.

In addition to pinpointing the inconsistency, AUDIT
also helped the developer root-cause the inconsistency to
the failure in the delete operation through its detailed fail-
ure logging. We discuss the bug in more detail in §6.1.1.
The developer chose to fix the problem by implement-
ing negative caching, where Redis explicitly stores that a
post is deleted from the backing store.

The case study demonstrates the value of AUDIT: it
can capture useful logs for relatively rare issues that may
appear in production or large-scale tests when the devel-
oper is absent. Moreover, logs are collected only for a
short period after the issue occurs, reducing the log col-
lection overhead and making it suitable even for expen-
sive logging operations.

2.2 Transiently-recurring Problems

We argue that many problems in cloud-based produc-
tion systems are transiently-recurring. First, if an er-
ror is frequent, it will most likely be detected and fixed
during pre-production testing and staging of the appli-
cation. Second, many problems are due to infrastruc-
ture problems such as transient network hardware is-
sues [9, 18]; SLAs from cloud service providers ensure
that such problems are rare and fixed within a short win-

dow of time. Therefore, cloud applications commonly
use the “retry pattern” [19, 20] where the application
transparently retries a failed operation to handle transient
failures. Third, some problems are due to user inputs
(e.g., malformed). Such errors are rare in well-tested pro-
duction systems; however, once happened, they persist
till the user gives up after several retries [21].

Note that AUDIT is also useful for troubleshooting er-
rors that appear frequently—as long as they persist for a
small window of time (e.g., not Heisenbugs).

3 AUDIT design
At a high level, AUDIT consists of four components:
(1) declarative triggers for defining misbehaving con-
ditions (§ 3.1), (2) a light-weight always-on monitoring
component that continuously evaluates trigger conditions
and collects request execution traces (§3.2 and § 4), (3)
a blame assignment algorithm to rank methods based on
their likelihood of being relevant to the root cause of a
misbehavior (§ 3.3), and (4) a selective logger that uses
dynamic instrumentation to enable and disable logging
at top-blamed methods (§ 3.4).

3.1 AUDIT triggers

Trigger Language. AUDIT triggers are similar to
Event-Condition-Action rules that are widely used in tra-
ditional databases [22] and in trigger-action program-
ming such as IFTTT [23]. A key challenge in design-
ing AUDIT’s trigger language is to make it concise, yet
expressive enough for a developer to specify interesting
misbehaviors and useful logs. Before we elaborate on
the rationale behind our choice, we first describe the four
key components of an AUDIT trigger:

(1) ON. It specifies when (RequestStart, RequestEnd,
Exception, or Always) the trigger is evaluated.

(2) IF. It describes a logical condition that is evalu-
ated on the ON event. The condition consists of sev-
eral useful properties of the request r or the excep-
tion e such as r.Latency, e.Name, r.ResponseString,
r.URL, etc. It also supports several streaming aggregates:
r.AvgLatency(now,−1min) is the average latency of
request r in the last 1 min, e.Count(now,−2min) is the
number of exception e in the last 2 mins, etc.

(3) LOG. It describes what to log when the IF condition
satisfies. AUDIT supports logging RequestActivity3

and method of a request. A key component of LOG is
ToLog, which indicates target metrics to log: e.g., args,
retValue, exceptionName, latency, memoryDump.
Logs can be collected for requests matching (or not
matching) the IF condition with a sampling probability
of MatchSamplingProb (or UnmatchSamplingProb,

3A request activity graph (§3.3) consists of all methods invoked by
the request as well as their causal relationship.

USENIX Association 2018 USENIX Annual Technical Conference 323

1 DEFINE TRIGGER T
2 ON RequestEnd R
3 IF R.URL LIKE ’http:*GetGlobalFeed*’
4 AND R.AvgLatency(-1min, now) > 2 * R.

AvgLatency(-2min, -1min)
5 LOG RequsetActivity A, Top(5) Methods M
6 WITH M.ToLog=args, retValues
7 AND MatchSamplingProb = 1
8 AND UnmatchSamplingProb = 0.3
9 UNTIL (10 Match,10 Unmatch) OR 5 Minutes

Figure 2: An AUDIT trigger that fires when the latency
of the global feed page in Social increases.

respectively). This enables comparing logs from “good”
and “bad” requests. Finally, AUDIT supports logging all
or a specified number of top performance-critical meth-
ods (with the Top() keyword). The later is useful when
the request involves a large number of methods and in-
strumenting all of them would incur a high runtime over-
head. Users can also define custom logging library that
AUDIT can dynamically load and use.
(4) UNTIL. It describes how long or how many times the
LOG action is performed.
Language Rationale. As mentioned, AUDIT’s trigger
language is motivated by prior works [3, 9, 10]. The
general idea of enabling logging on specific misbehaving
conditions (specified by ON and IF) and disabling it after
some time (specified via UNTIL) addresses a key require-
ment highlighted in a recent survey of 54 experienced de-
velopers at Microsoft by Fu et. al [3]. The authors also
analyzed two large production systems and identified
three categories of unexpected situation logging. AU-
DIT’s triggers support all of them: (1) exception logging,
through exceptionName and RequestActivity, (2)
return-value logging, via retValue, and (2) assertion-
check logging, via args. The ToLog metrics are chosen
to support common performance and reliability issues in
production systems [9]. Logging both “good” and “bad”
requests is inspired by statistical debugging techniques
such as Holmes [10].
An Example Trigger. Figure 2 shows a trigger that can
be used by Social for the scenario described in §2.1. The
trigger fires when the average latency of the global feed
page computed over a window of 1 minute increases sig-
nificantly compared to the previous window. AUDIT
starts logging all requests matching the IF condition and
30% of requests not matching the condition (for compar-
ison) once the trigger fired. For each such request, AU-
DIT logs the request activity, consisting of all sync/async
methods causally related to the request. Additionally, it
assigns a blame rank to the methods and logs parame-
ters and return values of 5 top-ranked methods. AUDIT
continues logging for 10 matched and 10 unmatched re-
quests, or for a maximum of 5 minutes.

Specifying Triggers. The trigger in Figure 2 may look
overwhelming, with many predicates and parameters.
We use this trigger for illustration purpose. In practice, a
developer does not always need to specify all trigger pa-
rameters, letting AUDIT use their default values (all nu-
merical values in Figure 2 are default values). Moreover,
AUDIT comes with a set of predefined triggers that a de-
veloper can start with in order to catch exceptions and
sudden spikes in latency and throughput. Over time, she
can dynamically refine/remove existing triggers or install
new triggers as she gains more operational insights. For
example, the trigger in Figure 2 minus the predicate in
Line 3 is a predefined trigger; Social developers modi-
fied its scope to global feed requests.

3.2 Always-on monitoring

AUDIT runtime continuously evaluates installed trig-
gers. AUDIT instruments application binaries to get noti-
fied of triggering events such as exceptions, request start
and end, etc. AUDIT automatically identifies instrumen-
tation points for web and many cloud applications that
have well-defined start and end methods for each re-
quest; AUDIT users can declaratively specify them for
other types of applications. The handlers of the events
track various request and exception properties supported
by AUDIT trigger language. In addition, if needed by
active triggers, AUDIT maintains lightweight streaming
aggregates such as Count, Sum, and AvgLatency over a
window of time.

In addition, AUDIT uses end-to-end causal tracing
to continuously track identity and caller-callee relation-
ships of methods executed by each request. For gen-
eral applications, AUDIT uses existing tracing tech-
niques based on instrumentation and metadata propa-
gation [1, 8, 24, 25, 26, 27, 28]. For cloud applica-
tions using increasingly popular Task Asynchrnous Pat-
tern (TAP), AUDIT uses a more lightweight and novel
technique that we describe in §4.

AUDIT represents causal relationships of methods
with a request activity graph (RAG), where nodes repre-
sent instances of executed methods and (synchronous or
asynchrnous) edges represent caller-callee relationships
of the nodes. A call chain to a node is the path from
the root node to that node. (A call chain is analogous to
a stack trace, except that it may contain methods from
different threads and already completed methods.)

For multi-threaded applications, a RAG can contain
two special types of nodes. A fork node invokes multiple
asynchronous methods in parallel. A join node awaits
and starts only after completion of the its nodes. A join
node is an all-join node (or, any-join node), if it waits
for all (or, any, respectively) of its parents node to com-
plete. For each method in the RAG, AUDIT also tracks
four timestamps: a (tstart , tend) pair indicating when the

324 2018 USENIX Annual Technical Conference USENIX Association

method starts and ends, and a (tpwStart , tpwEnd) pair indi-
cating when the method’s parent method starts and ends
waiting for it to complete (more details in §4).

3.3 Blame assignment and ranking

After a misbehaving request fires a trigger, AUDIT uses
a novel algorithm that ranks methods based on their
blames for a misbehavior – the higher the blame of a
method, the more likely it is responsible for the mis-
behavior. Thus, investigating the methods with higher
blames are more likely to be helpful in troubleshooting
the misbehavior.

To assign blames, AUDIT relies on RAGs and call
chains of misbehaving requests, as tracked by the
always-on monitoring component of AUDIT.

3.3.1 Exception-related triggers

On an exception-related trigger, AUDIT uses the call
chain ending at the exception site to rank methods (on
the same or different threads). Methods on the call chain
are ranked based on their distance from the exception –
the method that throws the exception has the highest rank
and methods nearer to the exception are likely to contain
more relevant information to troubleshoot root causes of
the exception (as suggested by the survey in [3]).

3.3.2 Performance-related triggers

On a performance-related trigger, AUDIT uses a novel
bottleneck analysis technique on the RAGs of mis-
behaving requests. Existing critical path-based tech-
niques (e.g., Slack [15], Logical Zeroing [16], virtual
speedup [17]) fall short of our purpose because they ig-
nore methods that should be logged but are not on a crit-
ical path or have very little exclusive run time on crit-
ical path. Techniques that ignore critical paths (e.g.,
NPT [14]) also miss critical methods that developers
wish to log. §6 shows several real-world examples that
illustrate these limitations.

Blame assignment. AUDIT addresses the above limita-
tions with a new metric called critical blame that com-
bines critical path, execution time distribution, and join-
node types. Given a RAG, computation of critical blames
of methods consists of two steps.

First, AUDIT identifies critical paths in the RAG. A
critical path is computed recursively, starting from the
last node of the RAG. Critical path to a node includes
the node itself and (recursively computed) critical paths
of (1) all parent non-join nodes, (2) longest parents of
all-join nodes, and (3) shortest parents of any-join nodes.
Each method in the critical path has the property that if
its runs faster, total request latency goes down. See §5
for how these timestamps are derived.

Second, AUDIT assigns to each method on the crit-
ical path a critical blame score, a metric inspired by

Method 1 Method Blame

1 A+H/2

1.1 (B+D+G)/2
1.1.1 C/2
1.1.2 E/3+(F+G+H)/2

1.1.3 E/3+F/2
1.2 (B+C+D)/2+E/3

Method 1.1

Method 1.1.1

Method 1.1.2

Method 1.1.3

Method 1.2
A B C D G HE F

Fork JoinAll

Fork JoinAny

Time

Figure 3: Critical blame assignment to methods. Solid
edges represent methods on the critical path.

NPT[14]. Critical blame for a method consists of its ex-
clusive and fair share of time on the critical path. Fig-
ure 3 illustrates how AUDIT computes critical blames
of various methods in a RAG. Recall that each node in
the RAG has four timestamps: a (tstart , tend) pair and a
(tpwStart , tpwEnd) pair. At a given time t, we consider a
node to be active if t is within its tstart and tend but not
within any of its child method’s tpwStart and tpwEnd .

To compute critical blames of methods, AUDIT lin-
early scans the above timestamps of all methods (includ-
ing the ones not in the critical path) in increasing order.
Conceptually, this partitions the total request lifetime
into a number of discrete segments, where each segment
is bounded by two timestamps. In Figure 3, the segments
are marked as A,B, . . . at the bottom. At each segment,
AUDIT distributes the total duration of the segment to all
methods active in that segment. For example, in the seg-
ment A, Method 1 is the only active method, and hence it
gets the entire blame A. In segment B, methods 1.1 and
1.2 are active, and hence they both get a blame of B/2.
Total blame of a method is the sum of all blames it gets
in all segments (Method 1’s total blame is A+H/2).

Selecting top methods. Given a target number n, AU-
DIT first selects the set B1 of n highest-blamed methods
on the critical path. Let α be the lowest blame of meth-
ods in B1. AUDIT then compute another set B2 of meth-
ods not in the critical path whose execution times overlap
with a method in B1, and whose blame scores are ≥ α .
Finally, AUDIT computes B = B1 ∪B2, and outputs all
unique method names in B. Essentially, the algorithm
includes all slow critical methods and some slow non-
critical methods that interfere with the critical methods.

Note that size of B can be larger (as it takes non-
critical methods in B2) or smaller (as it ignores method
instances) than n. If needed, AUDIT can try different
sizes of B1 to produce a B whose size is close to n.

The intuition behind the above algorithm is as follow:
(1) we want to blame only tasks that are actually running
for the time they use; (2) we want co-running tasks to
share the blame for a specific time period, assuming fixed
amount of resources; (3) we want to first focus on tasks
that are critical path as they affect runtime directly and
(4) we want to include selective non-critical path tasks
as they can be on the next longest path, may interfere

USENIX Association 2018 USENIX Annual Technical Conference 325

with tasks on the critical path, and not all critical path
methods can be modified to run faster. §6.2 compares
critical blame to other metrics quantitatively.

3.4 Enabling and disabling logging

AUDIT uses dynamic instrumentation to temporarily in-
ject logging statements into blamed methods. The pro-
cess works with unmodified applications and only re-
quires setting few environment variables pointing to AU-
DIT library. Like Fay [7] and SystemTap [29], AUDIT
supports instrumenting tracepoints at the entry, normal
return, and exceptional exit of any methods running in
the same address space as the application.

Specifically, AUDIT decorates each selected method
with three callbacks. OnBegin is called as the first in-
struction of the method, with the current object and all
arguments. It returns a local context that can be corre-
lated at two other callbacks: OnException, called with
the exception object, and OnEnd, called with the return
value. These callbacks enable AUDIT to collect a va-
riety of drilldown information. To log method parame-
ters, global variables, or system parameters such as CPU
usage, AUDIT uses OnBegin. To log return values, it
uses OnEnd. Latency of a method is computed by taking
timestamps at OnBegin and OnEnd. To collect memory
dumps on exception, AUDIT uses OnException.

4 Optimizations for TAP applications
Task asynchronous pattern (TAP) is an increasingly
popular programming pattern4, especially in cloud
applications that are typically async-heavy. Unlike
traditional callback-based Asynchronous Programming
Model (APM), TAP lets developer write non-blocking
asynchronous programs using a syntax resembling syn-
chronous programs. For example, TAP async functions
can return values or throw exceptions to be used or
caught by callers. This makes TAP intuitive and easier
to debug, avoiding callback hell [30]. Major languages
including .NET languages (C#, F#, VB), Java, Python,
JavaScript, and Scala support TAP. In Microsoft Azure,
for many services, TAP is provided as the only mecha-
nism to do asynchronous I/O. Amazon AWS also pro-
vides TAP APIs for Java [31] and .NET [32].

One contribution of AUDIT is to show that for TAP
applications, it is possible to construct RAG and call
chains extremely efficiently, without extensive instru-
mentation or metadata propagation. Our techniques pro-
vide intra-machine RAG and call chains, where APIs

4To quantify TAP’s popularity, we statically analyzed all C# (total
18K), JavaScript (Node.js) (16K), and Java (Android) (15K) GitHub
repositories created between 1/1/2017 and 6/30/2017. Our conservative
analysis, which may miss applications using 3rd party TAP libraries,
identified 52% of C#, 50% of JavaScript, and 15% of Java projects
using TAP. The fractions are significantly higher than the previous year
(e.g., 35% higher for C#), showing increasing popularity of TAP.

of nodes may cross machine boundaries but edges are
within the same machine. We focus only on such RAGs
as we found them sufficient for our target cloud applica-
tions; if needed, inter-machine edges can be tracked by
using the techniques used by Pivot Tracing [8].

4.1 Continuous tracking of RAGs

AUDIT utilizes async lifecycle events provided by exist-
ing TAP frameworks for constructing RAGs. For debug-
ging and profiling purpose, all existing TAP frameworks
we know provide light-weight events or mechanisms
indicating various stages of execution of async meth-
ods. Examples include ETW events in .NET [33], Asyn-
cHooks [34] in Node.js, Decorators for Python Asyn-
cIO [35], and RxJava Plugin [36] for Java. The events
provide limited information about execution times and
caller-callee relationships between some async methods,
based on which AUDIT can construct RAGs. Using life-
cycle events for tracing is not trivial. Depending on the
platform, the lifecycle events may not directly provide
all the information required to construct a RAG. We de-
scribe a concrete implementation for .NET in § 5.

4.2 On-demand construction of call chains

Even though call chain is a path in the RAG, AUDIT
uses a separate mechanism to trace it for TAP applica-
tions. The advantage is that it lazily constructs a call
chain on-demand, only after an exception-related trig-
ger fires. Thus, the mechanism has zero cost during nor-
mal execution, unlike existing proactive tracking tech-
niques [11, 12, 37]. AUDIT combines several mecha-
nisms to achieve this.

AUDIT exception handler. AUDIT registers AUDIT
event handler (AEH) to system events that are raised on
all application exceptions. Examples of such events are
First Chance Exception [38] for .NET and C++ for Win-
dows, UncaughtExceptionHandler [39, 40] for Java, and
RejectionHandled [41] for JavaScript.

AUDIT’s exception tracing starts whenever the appli-
cation throws an exception that satisfies a trigger con-
dition. Consider foo synchronously calling bar, which
throws an exception. This will invoke AEH with bar as
the call site and a stacktrace at AEH will contain foo.
This enables AUDIT to infer the RAG edge from foo to
bar. If, however, bar runs asynchronously and in a dif-
ferent thread than foo, stacktrace won’t contain foo. To
infer the async edge from foo to bar, AUDIT relies on
how existing TAP frameworks handle exceptions.

Exception propagation in TAP. Recall that TAP allows
an async method to throw an exception that can be caught
at its caller method. When an exception e is thrown
in the async method bar, the framework first handles
it and then revisits or rethrows the same exception ob-
ject e when the caller method foo retrieves the result of

326 2018 USENIX Annual Technical Conference USENIX Association

bar [42]. This action may trigger another first chance
exception, calling the AEH with e.

AUDIT correlates on exception objects to discover
async caller methods in a call chain and uses the order
in which the AEHs are invoked in various methods to es-
tablish their order. In general, a call chain may contain
a combination of synchronous and asynchronous edges.
AUDIT uses stack traces to find small chains of consecu-
tive synchronous edges, and correlates on exception ob-
jects to stitch the chains.

An application may catch one exception e1 and
rethrow another exception e2. This pattern is dominant
especially in middleware, where library developers hide
low-level implementation details and expose higher level
exceptions and error messages. The exception tracing
technique described so far will produce two separate call
chains, one for e1 and another for e2. However, since e1
has triggered e2, causally connecting the two chains can
be useful for troubleshooting and root cause analysis [3].
Inheritable thread-local storage (ITS). AUDIT uses
ITS to connect correlated exceptions. Inheritable thread-
local storage allows storing thread-local contents that au-
tomatically propagate from a thread to its child threads.
This is supported in Java (InheritableThreadLocal),
.NET (LogicalCallContext), and Python (AsyncIO
Task Local Storage[43]). Using ITS is expensive due to
serialization and deserialization of data at thread bound-
aries. Existing causal tracing techniques use ITS all the
time [27]; in contrast, AUDIT uses it only for exception
tracing and on demand.

When e1 and e2 happens in the same thread, AUDIT
can easily correlate them by storing a correlation id at the
AEH of e1, and then using the id at the AEH of e2.

If e2, however, is thrown on a different thread than
e1, the situation is more subtle. This is because e2 is
thrown on the parent (or an ancestor) of e1’s thread, and
the correlation id stored in a thread’s ITS is not copied
backward to the parent thread’s context (it is only copied
forward to child threads).

To address this, AUDIT combines ITS with how TAP
propagates exceptions across threads (described above).
More specifically, AUDIT uses the first exception e1 as
the correlation id and relies on TAP to propagate the id
to the parent thread, which can correlate it to e1. The
AEH for e2 stores e1 in ITS for further correlating it
with other related exceptions on the same thread.

5 Implementation
We here describe our implementation of AUDIT for TAP
applications written in .NET for Windows and cross-
platform .NET Core.
Listening to exceptions. AUDIT listens to AppDo-
main.FirstChanceException to inspect all ex-
ceptions thrown by the application. First chance excep-

tion is a universal debugging concept (e.g., catch point
in GDB, first chance exception in Visual Studio). A first
chance exception notification is raised as soon as a run-
time exception occurs, irrespective of whether it is later
handled by the application.
Request tracing. For efficiently constructing the RAG
of a request, AUDIT uses TplEtwProvider, an ETW-
based [33] low overhead event logging infrastructure in
.NET. TplEtwProvider generates events for the life-
cycle of tasks in TAP.

Specifically, AUDIT uses TraceOperationBe-
gin event to retrieve the name of a task. TaskWait-
Begin is used for timestamp when a parent task
transitions to suspended state and starts to wait on a
child task. TraceOperationRelation is used to
retrieve children tasks of a special join task (WhenAll,
WhenAny), these join tasks are implemented in a
special way such that they do not produce other life
cycle events. At last, TraceOperationCom-
plete, TaskWaitEnd, TaskCompleted,
RunningContinuation, TaskWaitContin-
uationComplete are used to track the completion
of a task. Many events are used because not all tasks
generate the same event.

Constructing RAG based only on TPL ETW events
is challenging for two key reasons, which AUDIT ad-
dresses by utilizing semantics of the events. First, ETW
events are not timestamped by their source, but by the
ETW framework after it receives the event. The times-
tamps are not accurate representation of the event genera-
tion times as the delivery from source to ETW framework
can be delayed or out-of-order. To improve the quality of
timestamps, for each method on the RAG, AUDIT ag-
gregates multiple ETW events. For example, ideally, the
tend timestamp should come from the TaskCompleted

ETW event. However, TPL generates other events im-
mediately after a task completes. AUDIT takes the ear-
liest of the timestamps of any and all of these events,
to tolerate loss and delayed delivery of some events.
AUDIT also uses the fact that in a method’s lifetime,
tstart ≥ tpwStart ≥ tend ≥ tpwEnd . Thus, if, e.g., all ETW
events related to tstart are lost, it is set to tpwStart .

Second, TPL does not produce any ETW events for
join tasks, which are important parts of RAG. AUDIT
uses reflection on the joining tasks (that produce ETW
events) to identify join tasks, as well as their types (all-
join or any-join). The tstart and tend timestamps of a
join task is assigned to the tstart and tend timestamps of
the shortest or the longest joining task, depending on
whether the join task is any-join or all-join, respectively.
Dynamic instrumentation AUDIT uses .NET’s profil-
ing APIs to dynamically instrument target methods dur-
ing runtime. The process is similar to dynamically in-
strumenting Java binaries [44].

USENIX Association 2018 USENIX Annual Technical Conference 327

6 Evaluation
We now present experimental results demonstrating:

1. AUDIT can effectively root-cause transiently recur-
ring problems in production systems (§6.1).

2. AUDIT’s blame ranking algorithm is more effective
in root-causing than existing techniques (§6.2)

3. AUDIT has acceptably small runtime overhead for
production systems, and its TAP-related optimiza-
tions further reduce the overhead (§6.3).

6.1 Effectiveness in root-causing bugs

We used AUDIT on five high-profile and mature .NET
applications and identified root causes of several tran-
siently recurring problems and bugs (Table 1). All
the issues were previously unknown and are either ac-
knowledged or fixed by developers. In all cases, AU-
DIT’s ability to trigger heavyweight logging in a blame-
proportional manner were essential to resolve problems.

6.1.1 Case study: Embedded Social

In § 2.1, we described one performance issue AUDIT
found in Embedded Social (Social), a large-scale produc-
tion social service in Microsoft. We now provide more
details about Social and other issues AUDIT found in
it. At the time of writing, Social had millions of users
in production and beta deployments. We deployed So-
cial in a deployment cluster. We enabled AUDIT with a
generic exception trigger and a few performance triggers
for latency-sensitive APIs (e.g. Figure 2).

Social 1: The persistent performance spike (Figure 1)
arose because of an inconsistency caused by a failure
(network timeout) during post deletion – the post id in
the feed was left undeleted. Social swallowed the ac-
tual exception and produced only a high level exception
for the entire delete operation. AUDIT logged the en-
tire chain, pinpointed that post contents were deleted, but
global feed deletion failed. AUDIT also logged the re-
quest URL, which identified the post id that was being
deleted. The RAGs produced by the performance trigger
showed the persistent store being consistently hit for one
post. AUDIT’s blame ranking algorithm top-ranked the
persistent store query method, dynamically instrumented
it, and logged arguments and return value for the next
few requests to the global feed. The logged arguments
showed the problematic post id causing the spike and the
logged return value (NULL) indicated that it was deleted
from the store and pointed to lack of negative caching
as an issue. The post id matched the one logged during
delete operation failure, which explained the bug.

Social 2: AUDIT revealed a few more transiently re-
curring issues related to lack of negative caching. For
example, Social recommends a list of users with high
follower count to follow. In the corner case of a popu-
lar user not following anyone, Social did not create an

entity for the following count in the persistent store (and
thus in the cache). In this case, the main page persis-
tently missed the cache when reporting such users in the
recommended list. AUDIT correctly assigned blame to
the count-query method and logged both the user id (as
part of parameters) and the return value of 0. Social’s
developers implemented negative caching to fix them.

Social 3: AUDIT’s exception trigger in Social helped
root-cause several transiently recurring request failures.
We discuss a couple of them here. “Likes” for a post are
aggregated and persisted to ATS using optimistic concur-
rency. When a specific post became hot, updates to ATS
failed because of parallel requests. Through drill down,
AUDIT pinpointed the post id (parameter) of the hot post
and showed that like requests were failing only for that
particular post id and succeeding for others.

Social 4: As posts are added, Social puts them in a
queue and indexes the content of the posts in a backend
worker. Typical to many systems, when a worker execu-
tion fails, the jobs are re-queued and retried a few times
before being dead-lettered. This model perfectly fits AU-
DIT’s triggered logging approach. After the first time a
worker fails on a request, AUDIT triggers expensive pa-
rameter logging for subsequent retries. By logging their
parameters, AUDIT root-caused many content-related
bugs during indexing due to bad data formats.

We also found AUDIT useful in root-causing rare but
recurrent problems in several open-source projects. Be-
low we summarize the symptoms, AUDIT logs, and root
cause of the problems.

6.1.2 Case study: MrCMS

MrCMS[45] is a content management system (CMS)
based on the ASP.NET 5 MVC framework.
Symptoms. On a rare occasion, after an image is up-
loaded, the system crashed. Then the system became
permanently unusable, even after restarting.
AUDIT logs. The AUDIT log from the first
occurrence of the problem indicated an unhandled
PathTooLongException. This was surprising because
MrCMS checks for file name length. The methods on
the call chain, however, indicated that the exception hap-
pened when MrCMS was creating thumbnail for the im-
age. After AUDIT instrumented methods on the call
chain, recurrence of the problem (i.e., recurrent crashing
after restart) generated logs including method parame-
ters. This included the actual file name for which a file
system API was throwing the exception.
Root cause and fix. When image files are uploaded, Mr-
CMS generates thumbnails with the image file name suf-
fixed with dimensions. Thus, when an input file name is
sufficiently long, the thumbnail file name can exceed the
filesystem threshold which is unchecked and caused the
crash. As most bugs in production systems, the fix for

328 2018 USENIX Annual Technical Conference USENIX Association

Application Issue Root cause based on AUDIT log Status from devs
Social 1 Performance spike when reading global feeds Deleted operation failed to delete the post

from global feeds
Fixed

Social 2 Poor performance reading user profiles with
no following in “Popular users” feed

Lack of caching zero count value Fixed

Social 3 Transient “Like” API failures Concurrent likes on a hot post Acknowledged, open
Social 4 Indexing failures Bad data formats Some of them fixed
MrCMS Crash after image upload and subsequent

restart of the application (Issue# 43)
Auto-generated thumbnail file name too
long

Acknowledged, investi-
gating

CMSFoundation Failure to save edited image (Issue# 321) Concurrent file edit and delete Acknowledged, open
Massive Slow request (Issue# 270) Unoptimal use of Await Fixed and closed
Nancy Slow request (Issue# 2623) Redundant Task method calls Fixed and closed

Table 1: Summary of previously-unknown issues found by using AUDIT.

the bug once the root cause is known is simple: check
file name lengths after adding the suffixes. The issue was
acknowledged by the developer.

6.1.3 Case study: CMS-Foundation

CMS-Foundation[46] is a top-rated open source CMS
with more than 60K installations worldwide.

Symptoms. When an admin saves after editing an im-
age, they occasionally get a cryptic “Failed to get image
properties: check that the image is not corrupt” message.
The problem recurred as the admin retried the operation.

AUDIT logs. AUDIT log showed a crucial causality
through two exception chains (as the application caught
and rethrew exceptions) to the file being deleted while
the admin was editing the image.

Root cause and fix. While the admin was editing the im-
age, another admin deleted it, leading to a race condition.
One way to fix this behavior is to use locking to prevent
two admins from performing conflicting operations. The
issue was acknowledged by the developers.

We now summarize two case studies demonstrating
AUDIT’s value in diagnosing performance problems.

6.1.4 Case study: Massive

Massive[47] is a dynamic MicroORM and a showcasing
project for ASP .NET. Massive is popular and active on
GitHub, with 1.6K stars and 330 forks.

Symptoms. Slow requests for certain inputs.

AUDIT logs. AUDIT produced RAG for the slow re-
quests, as well as input parameters and return values of 5
top-ranked methods.

Root cause and fix. The top two methods ranked by
AUDIT constituted 80% of the latency for some inputs.
These methods query a backend database. Input param-
eters (i.e., query string) of the methods indicated that the
method calls are independent (we confirmed this by look-
ing at the code), yet Massive runs them in sequence. We
modified the code to call both methods in parallel. This
simple change resulted in a 1.37× speedup of the query
in our deployment. We filed this potential optimization
on GitHub and this issue was acknowledged and fixed.

6.1.5 Case study: Nancy

Nancy[48] is “a lightweight, low-ceremony, framework
for building HTTP based services on .NET Framework/-
Core and Mono”. Nancy is also popular on GitHub, with
5.8K stars, 1.3K forks, and more than 250 contributors.

Symptoms. Some requests were slow.

AUDIT logs. AUDIT’s log identified RAG and top-
blamed method calls for the slow requests.

Root cause and fix. The top-blamed method calls, that
constitued signficant part of the latency, were expensive
and redundant [42]. We therefore changed the code by
simply removing the redundant code, without affecting
semantics of the code. This reduced average latency of
the Nancy website from 1.73ms to 1.27ms with our de-
ployment, a 1.36× improvement. We have reported this
issue to Nancy developers, who have quickly acknowl-
edged and fixed it. This, again, shows effectiveness of
AUDIT’s blame ranking algorithm.

6.2 Blame ranking algorithm

We compare AUDIT’s blame ranking algorithm with
three other algorithms: (1) NPT [14] that distributes run-
ning time evenly among concurrently running methods
and ranks methods based on their total time, (2) Top criti-
cal methods (TCM), which ranks methods based on their
execution time on critical path, and (3) Iterative Logi-
cal Zeroing (ILZ), an extension of Logical Zeroing [16].
ILZ first selects the method that, if finished in zero time,
would have the maximum reduction in end-to-end la-
tency. It then selects the second method after setting the
first method’s execution time to zero, and so on.

We consider four common code patterns observed in
11 different open source TAP applications and tutorials.
Figure 4 shows corresponding RAGs. Two developers
manually studied the applications and RAGs and iden-
tified the methods they would log to troubleshoot per-
formance misbehaviors. Methods identified by both the
developers are used as baseline.

Table 2 shows top-3 methods identified by different
algorithms (and the baseline). TCM and ILZ fail to iden-
tify methods not on critical paths (e.g., Scenario 3). NPT

USENIX Association 2018 USENIX Annual Technical Conference 329

A1

B1
A2

All-Join

C1

A3

Scenario 1

C2B2

B3 C3

Delay1 Delay2 Delay3

Any-Join

A1

Any-Join

A2 A3

Any-Join

Scenario 4

Any-Join

Delay

A

B C

Scenario 2

All-Join

A

B

C

DE

F

H

Task JoinTask Fork Task Exec Task WaitTime

Scenario 3

(A: async method, A1: first instance of A, Delay: timeout method)

Figure 4: Common code patterns in TAP. Scenario 1 (found in Social, [49, 50]) starts parallel tasks with same code
path and awaits all to finish. Scenario 2 (found in [51, 52]) starts several different tasks (which in turns fires up more
children tasks) and they could finish close to each other. Scenario 3 (found in [53, 54]) starts a task and waits for a
timeout. Scenario 4 (found in [20, 55, 56, 57]) retries a failed task a few times, and each trial is guarded with a timeout.

Algorithm Scenario 1Scenario 2Scenario 3Scenario 4 Total
Baseline C3,B3,A3 H,B,A A,C,B A1,A2,A3 −

NPT C3,C2,C1 H,B,A A,D,C D3,D2,D1 6/12
TCM C3,B3,A3 B,A,C D A2,A1,A3 7/12
ILZ C3,C2,C1 B,H,A D A2,A1,A3 7/12

AUDIT C3,B3,A3 H,B,A D,A,B A1,A2,D3 11/12
D1,D2,A3

Table 2: Top 3 blamed methods identified by various al-
gorithms for scenarios in Figure 4. (D = Delay.)

fail to find important methods on the critical path (e.g.,
Scenario 4). Last column of the table shows how many
of the developer-desired methods (baseline) are identi-
fied by different algorithms. Overall, AUDIT performs
better – it identified 11 out of 12 methods marked by de-
velopers; while other algorithms identified 6-7 methods
only. The only scenario where AUDIT failed to identify
an important method C is Scenario 3, where C does nei-
ther fall on a critical path nor overlap or interfere with
any method on the critical path.

6.3 Runtime overhead

We now evaluate runtime overhead of AUDIT running
on a Windows 10 D8S V3 instance, on Microsoft Azure.
Web applications are hosted using ASP.NET 5 on IIS
10.0. SQL Server 2016 is used as database.

6.3.1 Micro benchmark results

Considerable design effort went in reducing the always-
on overhead of AUDIT. We measure the overhead with
a simple benchmark application that waits on two con-
secutive tasks. To measure the overhead of AUDIT’s ex-
ception handling mechanism, we modified the applica-
tion such that the async task throw an exception that the
main task catches. Finally, to measure the lower bound
on the cost of dynamic instrumentation, we instrumented
an empty callback at the beginning and the end of each
function with no parameter.

Table 3 shows AUDIT overhead numbers averaged
over 100k runs. As shown, AUDIT’s always-on ETW
monitoring incurs small overhead – tens of µs per task.

Without Exception With Exception
Always-On ETW 15.56µs 112.2µs
Overhead +13.96µs/task +19.2µs/task
Always-On INST 91.5µs 152µs
Overhead +89.9µs/method +59µs/method
Trigger 29.66µs 283µs
Overhead +28.06µs/task +190µs/task
Logging 93.5µs 148µs
Overhead +90.9µs/method +55µs/method

Table 3: AUDIT overhead on benchmark application.

0% 0.59% 1.13% 2.50% 0.45% 7.05%

0

5

10

15

20

25

30

35

40

L
a

te
n

c
y

 (
m

s
)

0% 0.60% 2.78% 2.50% 1.82% 7.91%

0

50

100

150

200

250

Th
ro

u
gh

p
u

t
(r

e
q

/s
)

(a) Latency (b) Throughput
Figure 5: AUDIT overhead for Massive.

The overhead is acceptable for modern-day cloud ap-
plications that contain either compute-intensive or I/O-
intensive tasks that typically run for tens of millisec-
onds or more. Always-on monitoring with instrumenta-
tion (Always-On INST) and metadata propagation incurs
higher overhead mainly from instrumentation cost.5 AU-
DIT significant lowers always-on monitoring overhead
by leveraging ETW in TAP applications. The overhead
is also higher immediately after a trigger fires (for con-
structing RAG and computing blames). This cost is ac-
ceptable as triggers are fired infrequently. Finally, log-
ging has the highest overhead. Even an empty callback
incurs hundreds of µs; serializing and logging method
parameters, return values, stacktrace, etc. and writ-
ing to storage will add more overhead. This overhead
clearly motivates the need for blame-proportional log-
ging, which limits the number of logging methods and
the duration of logging.

5Our measurement shows accessing an integer from ITS takes about
100ns and propagating an integer across thread costs 800ns, with a base
cost of 700ns

330 2018 USENIX Annual Technical Conference USENIX Association

6.3.2 Overheads for real applications

We measured AUDIT’s overhead on Massive and Social,
two TAP applications we used in our case studies. To
emulate AUDIT’s overhead on non-TAP applications in
the always-on monitoring phase, we use AUDIT with
and without its TAP optimizations (§4). We report maxi-
mum throughput and average query latency at maximum
throughput over 5000 requests. We use a trigger to fire
when latency is 2× the average latency (over 1 minute)
and to log method parameters and return values.

Figure 5 shows the results for Massive, with a reason-
ably complex request that comes with Massive, involv-
ing 55 method invocations. Without TAP-optimizations,
AUDIT always-on monitoring increases latency by 1.1%
and reduces throughput by 2.8%. The overhead is
smaller for simpler requests (with fewer methods) and
is acceptable in many non-TAP applications in produc-
tion. The overhead is significantly smaller with TAP-
optimizations: latency and throughput are affected only
by < 0.6%, showing effectiveness of the optimizations.

Overhead of the trigger phase is slightly larger
(+2.5% latency and −2.5% throughput). Logging all
methods decreases throughput by 8% and increases la-
tency by 7%. The high overhead is mainly due to serial-
izing method parameters and return values of 55 dynam-
ically invoked methods. Logging at only five top-blamed
methods, however, has much smaller overhead (−0.45%
latency and −1.8% throughput). This again highlights
the value of logging only for a short period of time, and
only a small number of top methods.

For Social, we used a complex request involving 795
method invocations. With TAP optimizations, latency
and throughput overheads of always-on phase is within
the measurement noise (< 0.1%). Without the optimiza-
tions, the overhead of always-on is 4.3%, due to instru-
mentation overhead of 795 method invocations. Trigger
phase incurs 4.1% overhead. Logging, again is the most
expensive phase, causing 5.3% overhead.

7 Related work
In previous sections, we discussed prior work related to
AUDIT’s triggers (§3.1), request tracing (§4), dynamic
instrumentation (§3.4), and blame ranking (§3.3). We
now discuss additional related work.

AUDIT triggers are in spirit similar to datacenter
network-related triggers used in Trumpet [58], but are
designed for logging cloud and web applications.

Collecting effective logs and reducing logging over-
head have been an important topic of research. Er-
rlog [2] proactively adds appropriate logging statements
into source code and uses adaptive sampling to reduce
runtime overhead. In contrast, AUDIT dynamically in-
struments unmodified application binary and uses trig-
gers rather than sampling to decide when to log. Log2 [4]

enables logging within an overhead budget. Unlike AU-
DIT, it uses static instrumentation, continuous logging,
and decides only whether (not what) to log. Several
recent works investigate what should be logged for ef-
fective troubleshooting [3, 13], and AUDIT incorporates
their findings in its design. Several recent proposals en-
hance and analyze existing log messages for failure diag-
nosis [59, 60, 61, 62], and are orthogonal to AUDIT.

Pivot Tracing [8] is closely related, but complimentary
to AUDIT. It gives users, at runtime, the ability to define
arbitrary metrics and aggregate them using relational op-
erators. Unlike AUDIT, Pivot Tracing requires users to
explicitly specify tracepoints to instrument and to inter-
actively enable and disable instrumentation. Techniques
from Pivot Tracing could be used to further enhance AU-
DIT; e.g., if implemented, happen-before join could be
used as a trigger condition and baggage could be used to
trace related methods across machine boundaries.

AUDIT’s techniques for identifying methods related
to a misbehaving request is related to end-to-end causal
tracing [1, 24, 25, 26, 27, 28]. Existing solutions use
instrumentation and metadata propagation; in contrast,
AUDIT can also leverage cheap system events. To keep
overhead acceptable in production, prior works trace
coarse-grained tracepoints [1, 24], or fine-grained but a
small number of carefully chosen tracepoints (which re-
quires deep application knowledge) [26], and/or a small
sample of requests [1]. In contrast, AUDIT traces all re-
quests at method granularity, along with forks and joins
of their execution.

Adaptive bug isolation [63], like AUDIT, adapts in-
strumentation during runtime. However, AUDIT’s adap-
tation can be triggered by a single request (rather than
statistical analysis of many requests, as in many other
statistical debugging techniques [10, 64]), can work at a
much finer temporal granularity (logging only for a small
window of time), and has much better selectivity of log-
ging methods due to causal tracking.

8 Conclusions
We presented AUDIT, a system for troubleshooting
transiently-recurring errors in cloud-based production
systems through blame-proportional logging, a novel
mechanism with which logging information generated by
a method over a period of time is proportional to how of-
ten it is blamed for various misbehaviors. AUDIT lets a
developer write declarative triggers, specifying what to
log and on what misbehavior, without specifying where
to collect the logs. We have implemented AUDIT and
evaluated it with five mature open source and commer-
cial applications, for which AUDIT identified previously
unknown issues causing slow responses and application
crashes. All the issues are reported to developers, who
have acknowledged or fixed them.

USENIX Association 2018 USENIX Annual Technical Conference 331

References
[1] Benjamin H Sigelman, Luiz Andre Barroso, Mike

Burrows, Pat Stephenson, Manoj Plakal, Donald
Beaver, Saul Jaspan, and Chandan Shanbhag. Dap-
per, a large-scale distributed systems tracing in-
frastructure. Technical report, Technical report,
Google, 2010.

[2] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou,
and Stefan Savage. Be conservative: Enhancing
failure diagnosis with proactive logging. In Pre-
sented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pages 293–306, Hollywood, CA, 2012.
USENIX.

[3] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang
Lou, Rui Ding, Qingwei Lin, Dongmei Zhang, and
Tao Xie. Where do developers log? an empirical
study on logging practices in industry. In Compan-
ion Proceedings of the 36th International Confer-
ence on Software Engineering, pages 24–33. ACM,
2014.

[4] Rui Ding, Hucheng Zhou, Jian-Guang Lou,
Hongyu Zhang, Qingwei Lin, Qiang Fu, Dongmei
Zhang, and Tao Xie. Log2: A cost-aware logging
mechanism for performance diagnosis. In 2015
USENIX Annual Technical Conference (USENIX
ATC 15), pages 139–150, Santa Clara, CA, 2015.
USENIX Association.

[5] Gerd Zellweger, Denny Lin, and Timothy Roscoe.
So many performance events, so little time. In
Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems, APSys ’16, pages 14:1–
14:9, New York, NY, USA, 2016. ACM.

[6] Rui Ding, Qiang Fu, Jian-Guang Lou, Qingwei Lin,
Dongmei Zhang, and Tao Xie. Mining historical
issue repositories to heal large-scale online service
systems. In 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
DSN 2014, Atlanta, GA, USA, June 23-26, 2014,
pages 311–322, 2014.

[7] Úlfar Erlingsson, Marcus Peinado, Simon Peter,
Mihai Budiu, and Gloria Mainar-Ruiz. Fay: ex-
tensible distributed tracing from kernels to clusters.
ACM Transactions on Computer Systems (TOCS),
30(4):13, 2012.

[8] Jonathan Mace, Ryan Roelke, and Rodrigo Fon-
seca. Pivot tracing: Dynamic causal monitoring
for distributed systems. In Proceedings of the

25th Symposium on Operating Systems Principles,
SOSP ’15, pages 378–393, New York, NY, USA,
2015. ACM.

[9] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesa-
tapornwongsa, Tiratat Patana-anake, Thanh Do,
Jeffry Adityatama, Kurnia J Eliazar, Agung Lak-
sono, Jeffrey F Lukman, Vincentius Martin, et al.
What bugs live in the cloud? a study of 3000+
issues in cloud systems. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–
14. ACM, 2014.

[10] Trishul M Chilimbi, Ben Liblit, Krishna Mehra,
Aditya V Nori, and Kapil Vaswani. Holmes: Ef-
fective statistical debugging via efficient path pro-
filing. In Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on, pages 34–
44. IEEE, 2009.

[11] Async stacktraceex 1.0.1.1. https://www.nuget.
org/packages/AsyncStackTraceEx/, 2017.

[12] Async programming async causality chain
tracking. https://msdn.microsoft.com/en-us/
magazine/jj891052.aspx, 2017.

[13] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang,
Michael R Lyu, and Dongmei Zhang. Learning
to log: Helping developers make informed log-
ging decisions. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Confer-
ence on, volume 1, pages 415–425. IEEE, 2015.

[14] Thomas E. Anderson and Edward D. Lazowska.
Quartz: a tool for tuning parallel program perfor-
mance. In Acm Sigmetrics Conference on Measure-
ment & Modeling of Computer Systems, pages 115–
125, 1990.

[15] Jeffrey K. Hollingsworth and Barton P. Miller.
Slack: A new performance metric for parallel pro-
grams. University of Wisconsin-Madison Depart-
ment of Computer Sciences, 1970.

[16] B. P. Miller, M. Clark, J. Hollingsworth, S. Kier-
stead, S. S. Lim, and T. Torzewski. Ips-2: The
second generation of a parallel program measure-
ment system. Parallel & Distributed Systems IEEE
Transactions on, 1(2):206–217, 1990.

[17] Charlie Curtsinger and Emery D. Berger. Coz:
Finding code that counts with causal profiling. In
Proceedings of the 25th Symposium on Operat-
ing Systems Principles, SOSP ’15, pages 184–197,
New York, NY, USA, 2015. ACM.

332 2018 USENIX Annual Technical Conference USENIX Association

https://www.nuget.org/packages/AsyncStackTraceEx/
https://www.nuget.org/packages/AsyncStackTraceEx/
https://msdn.microsoft.com/en-us/magazine/jj891052.aspx
https://msdn.microsoft.com/en-us/magazine/jj891052.aspx

[18] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman,
Shan Lu, and Haryadi S. Gunawi. Taxdc: A taxon-
omy of non-deterministic concurrency bugs in data-
center distributed systems. SIGARCH Comput. Ar-
chit. News, 44(2):517–530, March 2016.

[19] Retry pattern. https://docs.microsoft.com/en-us/
azure/architecture/patterns/retry, 2017.

[20] Cleanest way to write retry logic? https:
//stackoverflow.com/questions/1563191/
cleanest-way-to-write-retry-logic.

[21] Matthew Merzbacher and Dan Patterson. Measur-
ing end-user availability on the web: Practical ex-
perience. In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Con-
ference on, pages 473–477. IEEE, 2002.

[22] Jennifer Widom and Stefano Ceri. Active database
systems: Triggers and rules for advanced database
processing. Morgan Kaufmann, 1996.

[23] Ifttt. http://ifttt.com.

[24] Rodrigo Fonseca, George Porter, Randy H Katz,
Scott Shenker, and Ion Stoica. X-trace: A perva-
sive network tracing framework. In Proceedings of
the 4th USENIX conference on Networked systems
design & implementation, pages 20–20. USENIX
Association, 2007.

[25] Raja R. Sambasivan, Alice X. Zheng, Michael De
Rosa, Elie Krevat, Spencer Whitman, Michael
Stroucken, William Wang, Lianghong Xu, and Gre-
gory R. Ganger. Diagnosing performance changes
by comparing request flows. In Proceedings of the
USENIX Conference on Networked Systems Design
and Implementation, NSDI ’11, 2011.

[26] Eno Thereska, Brandon Salmon, John Strunk,
Matthew Wachs, Michael Abd-El-Malek, Julio
Lopez, and Gregory R Ganger. Stardust: track-
ing activity in a distributed storage system. In
ACM SIGMETRICS Performance Evaluation Re-
view, volume 34, pages 3–14. ACM, 2006.

[27] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer,
and Gregory R Ganger. So, you want to trace your
distributed system? key design s from years of
practical experience. Technical report, Technical
Report, CMU-PDL-14, 2014.

[28] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The Good, the Bad, and
the Differences: Better Network Diagnostics with
Differential Provenance. In Proceedings of ACM
SIGCOMM 2016, August 2016.

[29] Vara Prasad, William Cohen, FC Eigler, Martin
Hunt, Jim Keniston, and J Chen. Locating system
problems using dynamic instrumentation. In 2005
Ottawa Linux Symposium. Citeseer, 2005.

[30] What is callback hell? https://www.quora.com/
What-is-callback-hell,, 2017.

[31] Asynchronous programming with the aws sdk
for java. https://aws.amazon.com/articles/
5496117154196801.

[32] Amazon web services asynchronous apis for
.net. http://docs.aws.amazon.com/sdk-for-net/
v3/developer-guide/sdk-net-async-api.html.

[33] Etw tracing. https://msdn.microsoft.com/en-us/
library/ms751538.aspx.

[34] Nodej̇s v84̇0̇ documentation. https://nodejs.org/
api/async hooks.html, 2017.

[35] Asyncio decorator. https:
//gist.github.com/Integralist/
77d73b2380e4645b564c28c53fae71fb#
file-python-asyncio-timing-decorator-py-L28,
2017.

[36] Rxjava debug plugin. https://github.com/
ReactiveX/RxJavaDebug.

[37] Long stacktraces. https://github.com/tlrobinson/
long-stack-traces,, 2017.

[38] Appdomain.firstchanceexception event.
https://msdn.microsoft.com/en-us/library/
system.appdomain.firstchanceexception(v=
vs.110).aspx, 2017.

[39] Thread.uncaughtexceptionhandler (java plat-
form se 7) - oracle. http://docs.oracle.
com/javase/7/docs/api/java/lang/Thread.
UncaughtExceptionHandler.html.

[40] Detect and log all java security exceptions.
https://freckles.blob.core.windows.net/sites/
marketing/media/assets/partners/brixbits/
securityanalyzer datasheet 2015 02.pdf.

[41] rejectionhandled event reference — mdn.
https://developer.mozilla.org/en-US/docs/
Web/Events/rejectionhandled.

[42] .net reference source. https://referencesource.
microsoft.com/, 2017.

[43] tasklocals 0.2. https://pypi.python.org/pypi/
tasklocals/.

USENIX Association 2018 USENIX Annual Technical Conference 333

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://stackoverflow.com/questions/1563191/cleanest-way-to-write-retry-logic
https://stackoverflow.com/questions/1563191/cleanest-way-to-write-retry-logic
https://stackoverflow.com/questions/1563191/cleanest-way-to-write-retry-logic
http://ifttt.com
https://www.quora.com/What-is-callback-hell
https://www.quora.com/What-is-callback-hell
https://aws.amazon.com/articles/5496117154196801
https://aws.amazon.com/articles/5496117154196801
http://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-net-async-api.html
http://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-net-async-api.html
https://msdn.microsoft.com/en-us/library/ms751538.aspx
https://msdn.microsoft.com/en-us/library/ms751538.aspx
https://nodejs.org/api/async_hooks.html
https://nodejs.org/api/async_hooks.html
https://gist.github.com/Integralist/77d73b2380e4645b564c28c53fae71fb#file-python-asyncio-timing-decorator-py-L28
https://gist.github.com/Integralist/77d73b2380e4645b564c28c53fae71fb#file-python-asyncio-timing-decorator-py-L28
https://gist.github.com/Integralist/77d73b2380e4645b564c28c53fae71fb#file-python-asyncio-timing-decorator-py-L28
https://gist.github.com/Integralist/77d73b2380e4645b564c28c53fae71fb#file-python-asyncio-timing-decorator-py-L28
https://github.com/ReactiveX/RxJavaDebug
https://github.com/ReactiveX/RxJavaDebug
https://github.com/tlrobinson/long-stack-traces
https://github.com/tlrobinson/long-stack-traces
https://msdn.microsoft.com/en-us/library/system.appdomain.firstchanceexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.appdomain.firstchanceexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.appdomain.firstchanceexception(v=vs.110).aspx
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
https://freckles.blob.core.windows.net/sites/marketing/media/assets/partners/brixbits/securityanalyzer_datasheet_2015_02.pdf
https://freckles.blob.core.windows.net/sites/marketing/media/assets/partners/brixbits/securityanalyzer_datasheet_2015_02.pdf
https://freckles.blob.core.windows.net/sites/marketing/media/assets/partners/brixbits/securityanalyzer_datasheet_2015_02.pdf
https://developer.mozilla.org/en-US/docs/Web/Events/rejectionhandled
https://developer.mozilla.org/en-US/docs/Web/Events/rejectionhandled
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://pypi.python.org/pypi/tasklocals/
https://pypi.python.org/pypi/tasklocals/

[44] Bryan Cantrill, Michael W Shapiro, Adam H Lev-
enthal, et al. Dynamic instrumentation of produc-
tion systems. In USENIX Annual Technical Confer-
ence, General Track, pages 15–28, 2004.

[45] Mrcms/mrcms. https://github.com/MrCMS/
MrCMS, 2017.

[46] Orckestra/cms-foundation. https://github.com/
Orckestra/CMS-Foundation, 2017.

[47] Massive. https://github.com/FransBouma/
Massive,, 2017.

[48] Nancy. https://github.com/NancyFx/Nancy,
2017.

[49] Codehub issueview.cs. https://github.
com/CodeHubApp/CodeHub/blob/
ee9b2acacab461730cf946836f5dff149908f8ad/
CodeHub.iOS/Views/Issues/IssueView.cs#
L276.

[50] Blazor/src/anglesharp/extensions/documentextensions.cs.
https://github.com/
SteveSanderson/Blazor/blob/
749bae9def3ccb57006da1b155e46ea3e4c62c0f/
src/AngleSharp/Extensions/
DocumentExtensions.cs#L261.

[51] eshoponcontainer. https://github.com/
dotnet-architecture/eShopOnContainers/
search?utf8=%E2%9C%93&q=WhenAll&
type=.

[52] Massive.shared.async.cs. https://
github.com/FransBouma/Massive/blob/
d8135f6ed44f36418ab9ee78f9cb14e023778d30/
src/Massive.Shared.Async.cs#L862.

[53] Codehub whenany example. https:
//github.com/CodeHubApp/CodeHub/blob/
e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/
CodeHub.iOS/Services/
InAppPurchaseService.cs#L57.

[54] Reactivewindows whenany example. https:
//github.com/Microsoft/react-native-windows/
search?utf8=%E2%9C%93&q=whenany&
type.

[55] Polly. https://github.com/App-vNext/Polly.

[56] Implementing the retry pattern for async
tasks in c#. https://alastaircrabtree.com/
implementing-the-retry-pattern-for-async-tasks-in-c/.

[57] Retry a task multiple times based on user in-
put in case of an exception in task. https:
//stackoverflow.com/questions/10490307/
retry-a-task-multiple-times-based-on-user-input-in-case-of-an-exception-in-task.

[58] Masoud Moshref, Minlan Yu, Ramesh Govindan,
and Amin Vahdat. Trumpet: Timely and precise
triggers in data centers. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference,
pages 129–143. ACM, 2016.

[59] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin,
Hui Zhang, and Guofei Jiang. Cloudseer: Work-
flow monitoring of cloud infrastructures via inter-
leaved logs. ACM SIGOPS Operating Systems Re-
view, 50(2):489–502, 2016.

[60] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. Sherlog:
error diagnosis by connecting clues from run-time
logs. In ACM SIGARCH computer architecture
news, volume 38, pages 143–154. ACM, 2010.

[61] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan
Zhou, and Stefan Savage. Improving software diag-
nosability via log enhancement. ACM Transactions
on Computer Systems (TOCS), 30(1):4, 2012.

[62] Wei Xu, Ling Huang, Armando Fox, David Pat-
terson, and Michael I Jordan. Detecting large-
scale system problems by mining console logs. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 117–132.
ACM, 2009.

[63] Piramanayagam Arumuga Nainar and Ben Liblit.
Adaptive bug isolation. In Proceedings of the
32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 1, pages 255–264. ACM,
2010.

[64] Linhai Song and Shan Lu. Statistical debugging for
real-world performance problems. SIGPLAN Not.,
49(10):561–578, October 2014.

334 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/MrCMS/MrCMS
https://github.com/MrCMS/MrCMS
https://github.com/Orckestra/CMS-Foundation
https://github.com/Orckestra/CMS-Foundation
https://github.com/FransBouma/Massive
https://github.com/FransBouma/Massive
https://github.com/NancyFx/Nancy
https://github.com/CodeHubApp/CodeHub/blob/ee9b2acacab461730cf946836f5dff149908f8ad/CodeHub.iOS/Views/Issues/IssueView.cs#L276
https://github.com/CodeHubApp/CodeHub/blob/ee9b2acacab461730cf946836f5dff149908f8ad/CodeHub.iOS/Views/Issues/IssueView.cs#L276
https://github.com/CodeHubApp/CodeHub/blob/ee9b2acacab461730cf946836f5dff149908f8ad/CodeHub.iOS/Views/Issues/IssueView.cs#L276
https://github.com/CodeHubApp/CodeHub/blob/ee9b2acacab461730cf946836f5dff149908f8ad/CodeHub.iOS/Views/Issues/IssueView.cs#L276
https://github.com/CodeHubApp/CodeHub/blob/ee9b2acacab461730cf946836f5dff149908f8ad/CodeHub.iOS/Views/Issues/IssueView.cs#L276
https://github.com/SteveSanderson/Blazor/blob/749bae9def3ccb57006da1b155e46ea3e4c62c0f/src/AngleSharp/Extensions/DocumentExtensions.cs#L261
https://github.com/SteveSanderson/Blazor/blob/749bae9def3ccb57006da1b155e46ea3e4c62c0f/src/AngleSharp/Extensions/DocumentExtensions.cs#L261
https://github.com/SteveSanderson/Blazor/blob/749bae9def3ccb57006da1b155e46ea3e4c62c0f/src/AngleSharp/Extensions/DocumentExtensions.cs#L261
https://github.com/SteveSanderson/Blazor/blob/749bae9def3ccb57006da1b155e46ea3e4c62c0f/src/AngleSharp/Extensions/DocumentExtensions.cs#L261
https://github.com/SteveSanderson/Blazor/blob/749bae9def3ccb57006da1b155e46ea3e4c62c0f/src/AngleSharp/Extensions/DocumentExtensions.cs#L261
https://github.com/dotnet-architecture/eShopOnContainers/search?utf8=%E2%9C%93&q=WhenAll&type=
https://github.com/dotnet-architecture/eShopOnContainers/search?utf8=%E2%9C%93&q=WhenAll&type=
https://github.com/dotnet-architecture/eShopOnContainers/search?utf8=%E2%9C%93&q=WhenAll&type=
https://github.com/dotnet-architecture/eShopOnContainers/search?utf8=%E2%9C%93&q=WhenAll&type=
https://github.com/FransBouma/Massive/blob/d8135f6ed44f36418ab9ee78f9cb14e023778d30/src/Massive.Shared.Async.cs#L862
https://github.com/FransBouma/Massive/blob/d8135f6ed44f36418ab9ee78f9cb14e023778d30/src/Massive.Shared.Async.cs#L862
https://github.com/FransBouma/Massive/blob/d8135f6ed44f36418ab9ee78f9cb14e023778d30/src/Massive.Shared.Async.cs#L862
https://github.com/FransBouma/Massive/blob/d8135f6ed44f36418ab9ee78f9cb14e023778d30/src/Massive.Shared.Async.cs#L862
https://github.com/CodeHubApp/CodeHub/blob/e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/CodeHub.iOS/Services/InAppPurchaseService.cs#L57
https://github.com/CodeHubApp/CodeHub/blob/e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/CodeHub.iOS/Services/InAppPurchaseService.cs#L57
https://github.com/CodeHubApp/CodeHub/blob/e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/CodeHub.iOS/Services/InAppPurchaseService.cs#L57
https://github.com/CodeHubApp/CodeHub/blob/e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/CodeHub.iOS/Services/InAppPurchaseService.cs#L57
https://github.com/CodeHubApp/CodeHub/blob/e8513b052ba34ab54b7d08e08adbc4dbd3ceeac1/CodeHub.iOS/Services/InAppPurchaseService.cs#L57
https://github.com/Microsoft/react-native-windows/search?utf8=%E2%9C%93&q=whenany&type
https://github.com/Microsoft/react-native-windows/search?utf8=%E2%9C%93&q=whenany&type
https://github.com/Microsoft/react-native-windows/search?utf8=%E2%9C%93&q=whenany&type
https://github.com/Microsoft/react-native-windows/search?utf8=%E2%9C%93&q=whenany&type
https://github.com/App-vNext/Polly
https://alastaircrabtree.com/implementing-the-retry-pattern-for-async-tasks-in-c/
https://alastaircrabtree.com/implementing-the-retry-pattern-for-async-tasks-in-c/
https://stackoverflow.com/questions/10490307/retry-a-task-multiple-times-based-on-user-input-in-case-of-an-exception-in-task
https://stackoverflow.com/questions/10490307/retry-a-task-multiple-times-based-on-user-input-in-case-of-an-exception-in-task
https://stackoverflow.com/questions/10490307/retry-a-task-multiple-times-based-on-user-input-in-case-of-an-exception-in-task

	Introduction
	Overview
	A motivating case study
	Transiently-recurring Problems

	AUDIT design
	AUDIT triggers
	Always-on monitoring
	Blame assignment and ranking
	Exception-related triggers
	Performance-related triggers

	Enabling and disabling logging

	Optimizations for TAP applications
	Continuous tracking of RAGs
	On-demand construction of call chains

	Implementation
	Evaluation
	Effectiveness in root-causing bugs
	Case study: Embedded Social
	Case study: MrCMS
	Case study: CMS-Foundation
	Case study: Massive
	Case study: Nancy

	Blame ranking algorithm
	Runtime overhead
	Micro benchmark results
	Overheads for real applications

	Related work
	Conclusions

