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Abstract
Tuning configurations is essential for operating modern
cloud systems, but the difficulty arises from the cloud
system’s diverse workloads, large system scale, and vast
parameter space. Building on previous space exploration
efforts of searching for the optimal system configura-
tion, we argue that cloud systems introduce challenges
to the robustness of auto-tuning. First, performance
metrics such as tail latencies can be sensitive to non-
trivial noises. Second, while treating target systems as a
black box promotes applicability, it complicates the goal
of balancing exploitation and exploration. To this end,
Metis is an auto-tuning service used by several Microsoft
services, and it implements customized Bayesian opti-
mization to robustly improve auto-tuning: (1) diagnostic
models to find potential data outliers for re-sampling, and
(2) a mixture of acquisition functions to balance exploita-
tion, exploration and re-sampling. This paper uses Bing
Ads key-value store clusters as the running example –
compared to weeks of manual tuning by human experts,
production results show that Metis reduces the overall
tuning time by 98.41%, while reducing the 99-percentile
latency by another 3.43%.

1 Introduction

For many web-scale cloud systems, main evaluation met-
ric is tail latencies (e.g., 99 and 99.9-percentile laten-
cies) of serving a request [9]. While tail latencies seem
rare, the probability of a user request experiencing the
tail latency in an end-to-end system can be high, espe-
cially that most web-scale applications employ a multi-
stage architecture. Imagine a web-scale application with
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a five-stage processing pipeline, the probability of a re-
quest encountering 99-percentile latency at least is∼5%.
Furthermore, tail latencies can be more than 10 times
higher, as compared to the average latency [9].

Recently, advances in machine learning have spawned
strong interests in automating system customizations,
where auto-tuning system configuration of parameters is
a popular scenario [2, 3, 20]. Notably, cloud systems
exhibit two motivating characteristics for auto-tuning.
First, the overhead of operating cloud systems is in-
creasingly larger, due to the increasingly more dynamic
and variable system workloads, and the scale of mod-
ern cloud systems. In many read-intensive web applica-
tions such as news sites and advertisement networks, data
queries are tied to end-user personal interests and current
contexts, which can exhibit temporal dynamics. Further-
more, even within one cloud system, there can be sev-
eral components that individually impose different data
requirement and handle different types of meta data and
user data. Second, as cloud systems become more com-
plicated, both design space and parameter space grow
significantly. The optimal system configuration is be-
yond what human operators can efficiently and effec-
tively reason about, and the cost to naı̈vely benchmark
all possible system configurations is exorbitant.

Bayesian optimization (BO) with Gaussian process
(GP) has emerged as a powerful black-box optimization
framework for system customizations [2, 3, 19]. Math-
ematically, we model the configuration-vs-performance
space by regressing over data points already collected,
i.e., system configurations benchmarked. And, this re-
gression model allows us to estimate the global optimum,
or the best-performing system configuration. While col-
lecting more data points can improve the regression
model, benchmarking one system configuration of pa-
rameters can be time-consuming due to system warm-up
and stabilization. Fortunately, BO offers a way to iter-
atively build up the training data by suggesting system
configurations to benchmark, with the goal to maximally
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improve the regression model accuracy.

1.1 Contributions

In this paper, we report the design, implementation, and
deployment of Metis, an auto-tuning service used by sev-
eral Microsoft services for robust system tuning. While
Metis is inspired by previous efforts to leverage BO to
train the GP regression model, we address the following
factors to improve the robustness of optimizing system
customizations.

First, since the GP regression model is trained
with data points from benchmarking some system con-
figurations, how well these data points capture the
configuration-vs-performance space’s global optimum
determines the auto-tuning effectiveness. At the same
time, we should avoid unnecessarily over-sampling the
space, as system benchmarking can be resource-intensive
and time-consuming. To this end, at each iteration,
BO’s strategy for picking the next system configuration
to benchmark should balance exploitation (i.e., regions
with high probability of containing optimum) and explo-
ration (i.e., regions with high uncertainty of containing
optimum). Specifically, inadequate exploration reduces
the chance of moving away from a local optimum, and
inadequate exploitation impacts the efficiency of identi-
fying the global optimum. In contrast to related efforts
that rely on simple-to-implement strategies [2, 3], Metis
strongly decouples exploitation and exploration, so that
it can independently evaluate each action’s expected im-
provement and anticipated regret.

Second, the theory behind BO and GP mostly assumes
the data collection is reasonably noise-free, or suscepti-
ble to only the Gaussian noise. Unfortunately, many sys-
tem performance metrics (e.g., tail latencies) are sensi-
tive to non-Gaussian or unstructured noise sources in the
wild, e.g., CPU scheduling and OS updates. In contrast
to related efforts [2, 3], not only does Metis consider ex-
ploitation and exploration, but it also weighs the benefit
of re-sampling existing data points. Key enabler is the
diagnostic model that Metis creates to identify potential
outliers.

To demonstrate the usefulness of Metis for real-world
system black-box optimizations, this paper showcases
one of our production deployments as the running ex-
ample – optimizing tail latencies of Microsoft Bing Ads
key-value (KV) stores. We present measurements and
experiences from two KV clusters that handle ∼4.14 bil-
lion and∼3.18 billion key-value queries per day, respec-
tively. Compared to weeks of manual tuning by human
experts, production results show that Metis reduces the
overall tuning time by 98.41%, while reducing the 99-
percentile latency by another 3.43%.

2 Background and Motivation

As a black-box optimization service, Metis tunes the
configuration of several Microsoft services and network-
ing infrastructure. This section describes one deploy-
ment as the running example in this paper – Microsoft
Bing Ads key-value (KV) store cluster, BingKV. Then,
we motivate optimally customizing cloud systems.

2.1 Running Example: BingKV

Individual stages of the ads query processing pipeline,
e.g., selection and ranking, host separate KV store clus-
ters. Within the cluster, each KV server is responsible for
one non-overlapping dataset partition. Therefore, each
server can experience different workload, as defined by
the frequency distribution and the size distribution of top
queried key-value objects. Manually tuning each server
is difficult as a cluster can have thousands of servers.

The configuration space consists of parameters of the
local caching mechanism, which decides what KV ob-
jects should be cached in the in-memory cache or served
from the persistent data store. Main evaluation metric is
tail latencies of serving key queries after the in-memory
cache is full. We describe these parameters and their typ-
ical value ranges next.

First, both the recency and frequency distribution are
well-known foundation for cache eviction. BingKV sup-
ports NumCacheLevels (1 - 10) levels of LRU (Least
Recently Used) or LFU (Least Frequently Used) based
caches – a cached object can move up a level if it has
been queried CachePromotionThreshold (1 - 1,000)
times. Since cached objects at higher levels have been
queried more than those at lower levels, locality principle
implies that they should not be easily evicted. Therefore,
we allow NumInevictableLevels (0 - 9) levels to be
specified as being inevictable.

Second, many cache designs incorporate a shadow
buffer that stores the key only, instead of the entire key-
value object. BingKV implements a shadow buffer with
a capacity of ShadowCapacity (1 - 10) MB, to hold keys
with an object size larger than AdmissionThreshold

(1 - 1,000) bytes. Then, keys in the shadow buffer are
moved to the cache only if they have been queried more
than ShadowPromotionFreq (1 - 1,000) times.

Finally, CacheCapacity (1 - 10,000) specifies the
cache capacity (excluding the shadow buffer) in MB,
and the dataset partition on each server is divided into
NumShards (1 - 64) shards.

2.2 Impacts of Suboptimal Configurations
To illustrate impacts of suboptimal configurations, we
empirically measure BingKV’s 99-percentile latency un-
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Figure 1: Motivating example – suboptimal configu-
rations can impact the system performance. We use
BingKV as the running example, and compare the tail
latency increase with respect to the optimal system con-
figuration.

der different parameter configurations, and quantify the
tail latency increase with respect to the best-performing
system configuration. Experiments use two 12-day
pre-recorded production workload traces of BingKV,
Prod Trace1 and Prod Trace2, and replay these work-
load traces to benchmark system configurations.

Suboptimal configurations can happen when system
tuning does not consider machine-specific setup. To il-
lustrate, we vary the cache capacity between 32 MB
and 512 MB – we find the best-performing configuration
(e.g., AdmissionThreshold ranging from 1 to 1,000)
for each capacity, and then we compare the latency of the
best-performing configuration to 100 configurations uni-
formly sampled from the parameter space. Results show
that the average 99-percentile latency increase can range
from 15.34% (for 256-MB cache) to 22.74% (for 512-
MB cache), with more than 34.14% increase in the worst
case. For Prod Trace2, the average 99-percentile latency
increase can range from 10.21% (for 32-MB cache) to
13.89% (for 64-MB cache), with more than 13% increase
in the worst case.

Suboptimal configurations can also happen when
system tuning does not consider temporal dynamics.
For each day of Prod Trace1, we compare the best-
performing configuration to that of the other 11 days.
Figure 1 shows that the average 99-percentile latency in-
crease can be as high as more than 5.58% (day 5).

2.3 Strawman Solutions
Manual tuning. Manual tuning can leverage adminis-
trators’ knowledge and prior experience about the tar-
get system. Unfortunately, as modern systems get larger
and more complicated, reasoning the system behavior
in a high-dimensional configuration space becomes in-
creasingly difficult. Furthermore, real-world workload
can have dynamics across machines and time, and man-
ual tuning does not scale. To illustrate this argument,
our experience shows that manually tuning a subset of
BingKV can take weeks. And, in some cases, it is not

Figure 2: Architecture of Metis service.

certain whether the manual tuned configuration is indeed
the best-performing one.

Naı̈ve Bayesian optimization. OtterTune [2] and Cher-
ryPick [3] demonstrated the potential of Bayesian opti-
mization in adaptively finding the best-performing con-
figuration for databases and data analytics systems, re-
spectively. Both approaches adopt common BO selection
strategies such as Expected-Improvement (EI). While
these strategies are easy-to-implement, they do not con-
sider factors impacting the robustness of tuning system
customizations: the balance of exploitation and explo-
ration [14], and data outliers.

3 Our Approach

Given a workload of a system, Metis has the objec-
tive of predicting the best-performing configuration by
selectively exploring the configuration-vs-performance
space. Through system benchmarking, Metis can col-
lect data points that describe system inputs (e.g., sys-
tem workload and parameter values) and outputs (e.g.,
performance metrics of interests) for training its model.
When Metis does not change its prediction of the best-
performing configuration with additional data points, we
say the model has converged. Maximizing the prediction
accuracy and minimizing the model convergence time
are two evaluation metrics for Metis. The former relates
to the auto-tuning correctness, and the latter relates to the
service scalability.

This section first outlines the usage flow of Metis.
Then, we formulate auto-tuning as an optimization prob-
lem, and highlight practical challenges to motivate cus-
tomizations proposed in subsequent sections.

3.1 Architectural Overview

Figure 2 shows the architecture of Metis containing com-
ponents for model training and system tuning.

Model training. The Progressive Sampling Engine
solves the optimization problem of robustly construct-
ing the predictive regression model, which models the
configuration-vs-performance space. Each model corre-
sponds to one performance metric, and the model dimen-
sionality depends on the number of parameters.
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Users start by providing the Progressive Sampling En-
gine their requirements (e.g., parameters and metric of
interest) and workload traces (e.g., production or synthe-
sized traces). The engine bootstraps BO by picking a set
of system configurations as bootstrapping trials, for the
Trial Manager to benchmark. Benchmarking can happen
in simulators or real machines. Then, using performance
metrics collected as the training data points, the engine
picks subsequent system configuration of parameters to
benchmark. Ideally, each iteration should improve the
regression model’s estimation of the space’s global opti-
mum. We formulate this iterative process as an optimiza-
tion problem in the next subsection (c.f. §3.2).

When a stopping criterion is met, the Progressive Sam-
pling Engine stops collecting more data points, and it
outputs the GP regression model trained so far. Stopping
criteria can include training time budget and so on. As
we show in §6, the system benchmarking time dominates
training, rather than the model computation time.

System tuning. The Tuning Manager periodically re-
ceives status reports from individual servers of the tar-
get system. These status reports contain current work-
load characterizations and logged performance metrics.
If performance degradation is detected (e.g., a significant
increase in the tail latency), the Tuning Manager uses the
workload characterization to select the nearest regression
model. We use DNNs to classify workloads, which mini-
mizes the burden of weighing workload features for clas-
sification.

3.2 Optimization Problem Formulation
Formally, for a workload w, we want to find the k-
dimensional configuration c∗ (representing k system pa-
rameters), which has the highest probability of being the
best-performing configuration, cw. The overall problem
objective is as follows:

c∗ = argmax
c ∈ con f igs

P(c = cw | w)

Given the k-dimensional parameter space can be too
large for exhaustive searches, Metis opts the regression
model to predict with limited amount of data points col-
lected. While more training data will help reducing the
regression uncertainty, the training objective should also
consider the training overhead:

minimize ∑
w ∈ workloads

(con f idence interval(cw))

subject to ∑T (c) ≤ Tbudget

T (c) denotes the time necessary to sample a configura-
tion c, and Tbudget denotes the maximum amount of time
cost allocated for model training.

Predictive regression model formulation. Regression
allows Metis to model the expected configuration-vs-
performance space, with data points already collected
from benchmarking some configurations. The regression
model captures the conditional distribution of a target
performance metric given a system configuration. We
pick Gaussian process (GP) [13] as the model, which ex-
tends multivariate Gaussian distributions to infinite di-
mensionality, such that observations for an unsampled
data point are assumed to follow a multivariate Gaussian
distribution. In other words, assuming a stochastic func-
tion f where every input x has an output f (x), each f (x)
is defined as a mean µ and a standard deviation σ of a
Gaussian distribution.

GP exhibits a number of desirable properties. First,
it does not assume a certain mathematical relationship
between model inputs and outputs, e.g., the linear rela-
tionship. Second, for any x, GP can return the expected
value of f (x) and uncertainty (i.e., standard deviation).

Optimization framework. A proven approach to train
the GP model is Bayesian optimization (BO) [17]. At
each iteration, based on the current GP model, BO se-
lects a system configuration to benchmark next to fur-
ther train the GP model. The selected configuration is
expected to maximally improve the accuracy predicting
the global optimum of the configuration-vs-performance
space. The logic behind selecting the next trial is im-
plemented by BO’s acquisition function, and its de-
sign traditionally aims to balance exploitation (i.e., sam-
pling regions with high probability of containing op-
timum) and exploration (i.e., sampling regions with
high uncertainty). The model converges when BO be-
lieves that the GP model has sufficiently captured the
configuration-vs-performance space global optimum, or
the best-performing system configuration in our case.

BO conceptually realizes a form of progressive sam-
pling, and it is suitable for scenarios where collecting
system performance metrics of a single trial is resource-
intensive or time-consuming (e.g., waiting for a system
to warm up and stabilize).

3.3 Practical Challenges of Robustness

Running BO with GP requires the following practical
considerations for robust system tuning.

Sampling configuration-vs-performance space with-
out strong assumptions on the target system behav-
ior. Given that system behavior can be difficult to be
properly reasoned, Metis tries to learn the configuration-
vs-performance space from selective sampling. In other
words, based on system configurations already bench-
marked, Metis selects the next system configuration to
benchmark, which is expected to maximally improve the
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regression accuracy. To this end, we believe that existing
efforts leave the following two gaps to fill.

First, balancing exploitation and exploration is still a
non-trivial problem. Many proposed acquisition func-
tions evaluate the potential improvement of a trial [19],
and the community has shown their limitations in bal-
ancing exploitation and exploration [4, 17]. Expected
Improvement (EI) is a widely popular choice of acqui-
sition functions. It improves upon Maximum Probability
of Improvement, by estimating the best-case improve-
ment with both the mean and the uncertainty around a
sampling point. However, Ryzhov et al. [14] showed that
EI allocates only O(log n) samples to regions that are ex-
pected to be suboptimal, where n is the total number of
trials. In other words, n needs to be significantly large
for EI to balance exploitation and exploration.

Second, bootstrapping trials refer to the set of sam-
pling points to initialize BO. Since BO decides the next
trial with the GP model trained with past trial data points,
prior data samples can influence how BO expects the
posterior expectation to be. The main requirement for se-
lecting bootstrapping trials should be exploration. Ran-
dom sampling is a simple approach to pick bootstrap-
ping trials, but it requires a large amount of sampling
points to ensure coverage [12]. This is not ideal for time-
consuming trials, where some systems need time to sta-
bilize (e.g., system cache warm-up).

Handling non-Gaussian data noise. Most theoretical
work on BO with GP assumes the trial data collected
are noise-free (i.e., perfectly reproducible experiments),
or susceptible to only the Gaussian noise [17]. Un-
fortunately, many system metrics such as tail latencies
are sensitive to a wide range of noise sources in the
real world, ranging from background daemons, local re-
source sharing, networking variability, etc. This is dif-
ferent from reproducible metrics such as classification
accuracy. Since real-world data noise sources can be het-
erogeneous and non-trivial to model, the auto-tuning ser-
vice should consider the benefits of removing potential
outliers.

4 Improving Auto-Tuning Robustness

Given the challenges discussed in §3.3, we now discuss
our customizations to Bayesian optimization to improve
tuning robustness.

4.1 Bootstrapping Trials

To select sampling points to bootstrap Bayesian opti-
mization for a given workload, Metis exercises Latin Hy-
percube Sampling (LHS) [12]. LHS is a type of stratified
sampling. According to some assumed probability dis-

tribution, LHS divides the range of each of M parame-
ters into I equally probable intervals, and randomly se-
lects only one single data point from each interval. Since
each interval of each parameter is selected only once, the
number of bootstrapping trials chosen by LHS is exactly
I, regardless of M. Furthermore, the maximum number
of possible combinations for bootstrapping trials is only
(∏I−1

i=0 I− i)M−1 = (I!)M−1.
LHS offers several desirable properties for bootstrap-

ping Bayesian optimization. First, it has been shown that,
compared to random sampling, stratified sampling can
reduce the sample size required to achieve the same con-
clusion [12]. Second, compared to another well-known
stratified sampling technique, Monte Carlo, LHS allows
one to obtain a stable output with less samples [7]. And,
while quasi-Monte Carlo can be an alternative approach,
its output is a low discrepancy sequence which is not
random, but uniformly deterministic [6]. Third, as LHS
does not control the sampling of combinations of dimen-
sions, the number of samples picked LHS is agnostic to
the dimensionality of the parameter space.

A well-known concern of LHS is that it may exhibit
a higher memory consumption, in order to keep track
of parameter intervals that have already been sampled.
However, we note that only a few sampling points are
necessary to bootstrap Metis, and our current running
system sets I to be 5.

4.2 Customized Acquisition Function

After obtaining bootstrapping sampling trials with LHS,
Metis then runs Bayesian optimization to iteratively train
the Gaussian process model. At each iteration, BO out-
puts the system configuration that is expected to offer
the most improvement to the GP model, in terms of pre-
dicting the best-performing system configuration. This
output represents the system configuration that Metis
should sample in the next iteration of training. To pro-
duce this output, Metis customizes the acquisition func-
tion to balance three goals: exploitation, exploration, and
re-sampling.

Our customized acquisition function works as a mix-
ture of three separate sub-acquisition functions (c.f.
§4.2.1) corresponding to each goal. At each iteration
of BO, based on the GP model constructed so far, in-
dividual sub-acquisition functions compute the next sys-
tem configuration to sample to maximize their own goal.
Then, the acquisition function evaluates these candi-
dates in terms of the improvement of the expected best-
performing system configuration, and selects the candi-
date with the highest gain to sample next (c.f. §4.2.2).

Compared to related efforts, our acquisition func-
tion exhibits two differences. First, by introducing re-
sampling as a possible action, we allow Metis to re-
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sample a trial whose previous results might be suscep-
tible to non-Gaussian noise. Second, Metis decouples all
three actions and runs separate acquisition functions for
each action. This decoupling allows Metis to indepen-
dently evaluate the potential information gain and regret
aversion from taking each action in the next iteration.

4.2.1 Sub-acquisition functions

Metis decouples exploitation, exploration, and re-
sampling into three separate sub-acquisition functions.
Given past trials, each sub-acquisition function outputs
a system configuration to maximize its own goal. These
system configurations become candidates for the acqui-
sition function.

Exploration. This sub-acquisition function looks for the
sampling point whose expected observation would have
with the highest uncertainty. Formally, in the GP regres-
sion model, this sampling point would exhibit the largest
confidence interval.

Exploitation. This sub-acquisition function looks for the
sampling point whose expected observation would most
likely be the system optimum. While one simple ap-
proach is to consider the absolute observation of a sam-
pling point as expected by the GP regression model, its
accuracy can be impacted by GP’s uncertainty of that
sampling point. Therefore, Metis takes an approach in-
spired by TPE [5], and tries to estimate the probability of
a sampling point giving near-optimum observation.

The exploitation sub-acquisition function works as
follows. It first separates the past trials into two groups:
the first group has best observations, and the second
group has the rest. Then, we construct two Gaussian
mixture models (GMM) to describe each group. With
these two GMMs, we can evaluate the likelihood of a
system configuration, c, being in either group, i.e., P1(c)
and P2(c). The ratio of these two likelihood, or P1(c)

P2(c)
,

would give us a score of how likely a sampling point is
in the first group, instead of second group.

Re-sampling. This sub-acquisition function looks for
outliers in past trials, and suggest trials that should be
re-sampled (i.e., system configurations that should be re-
benchmarked).

The re-sampling sub-acquisition function works by
creating the diagnostic model. To examine a data point,
the diagnostic model quantifies the difference between
the measured value and the expected value. To do so, the
diagnostic model is a GP regression model trained with-
out the examined data point. Then, the diagnostic model
can calculate the expected value and 95% confidence in-
terval. If the measured value falls outside the confidence
interval, it is probable that the examined data point could
be an outlier. The sub-acquisition function repeats the

Figure 3: Components of Metis service implementation.

evaluation for all past trials, and it selects the trial that is
farthest from the expected confidence interval.

4.2.2 Evaluation of Candidates

Taking sub-acquisition function outputs as candidate
configurations, our acquisition function computes their
information gain with respect to how the prediction of
optimal configuration changes. Conceptually, for each
candidate, the GP model bounds the expected observa-
tion with a confidence interval. And, the upper and lower
bound of this interval can help us estimate the potential
information gain (if we were to actually select the corre-
sponding candidate for benchmark).

The acquisition function starts by predicting the cur-
rently best-performing system configuration, ccur best ,
and this step searches for the sampling point with the
lowest expected observation in the GP regression model.
Then, to evaluate a candidate, ccandidate, we add its
lower-bound confidence interval (i.e., best-case) to the
GP regression model, and predict the would-be best-
performing system configuration, cnew best . The different
between the expected observation of ccur best and cnew best
is the improvement, and 0 if the improvement is negative.
Then, we repeat the process for upper-bound confidence
interval (i.e., worst-case).

Finally, the acquisition function outputs the ccandidate
with the highest sum of improvement calculated with the
lower-bound and the upper-bound confidence interval.

5 Implementation

Figure 3 illustrates the Metis system components imple-
mented. Our current implementation is in Python, and
this language choice allows us to use the popular Scikit-
learn library for Gaussian process regression [16]. We
choose the summation of Matern (3/2) and white noise
as the covariance kernel [19].

Separation of logic and execution. Metis consists of a
centralized web service and client stubs that sit on servers
hosting the target system. Network communications hap-
pen over TCP, and the message format is JSON. Con-
ceptually, the client stub hooks up to the target system,
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and it abstracts away system-specific interfaces and ex-
ecution from the web services. While an alternative im-
plementation is to place both the logic and execution in
a local service on each server, the separation provides
several benefits. First, the computation-intensive logic
of Metis does not contend for resources on production
servers. Second, being centralized, Metis has the global
view of all status reports from all servers. This allows
Metis to continuously improve the predictive model with
new data points.

Metis web service. The web service trains one pre-
dictive regression model for each workload trace. And,
these traces can be recorded in the production environ-
ment, or synthesized with tools such as YCSB [8]. Trial
Manager replays each workload trace in simulators or
real servers, and each replay represents one trial bench-
marking one selected system configuration. Then, the
training dataset consists of system configurations and
corresponding performance benchmarks. In the case of
BingKV, we built a simulator wrapping the production
KV code binaries, to run trials.

From status reports uploaded by client stubs, if Tuning
Manager detects that a server is experiencing a perfor-
mance degradation above some user-specified thresholds
(e.g., tail latencies have increased by more than 10% in
the last six hours), it computes a new configuration and
sends a command to the server’s client stub.

Metis client stubs. The client stub deals with system-
specific interfaces, (1) to periodically upload recent sys-
tem performance measurements and workload character-
ization, and (2) to execute configuration change com-
mands from the web service.

Most web-scale cloud systems already have an ex-
tensive logging mechanism for continuous performance
monitoring, and Metis client stubs periodically retrieve
relevant performance measurements from the same log-
ging mechanism. While different systems have different
workload characterization features, these features are ei-
ther already available in the logging mechanism, or re-
quire additional code instrumentation. In the case of
BingKV, our workload features are the size and query
frequency of the top queried KV objects, and the incom-
ing query traffic rate.

Upon receiving a configuration change command,
Metis does not try to aggressively re-configure servers.
Instead, it employs a guard time following a re-
configuration to allow the target system to warm up and
stabilize. Other than time durations, this guard time can
also be values of system states, e.g., cache occupancy.

Selection of Configs Modeling DO
Random Random No
iTuned [10] LHS + EI BO w/ GP No
CherryPick [3] Random + EI BO w/ GP No
TPE [5] Random + EI GMM No
Metis LHS + Customized BO w/ GP Yes

Table 1: This table highlights differences among com-
parison baselines and Metis. The ”DO” column shows
whether data outlier removal is considered.

6 Evaluation

Our major results include – (1) compared to baselines,
Metis picks better configurations 84.67% of times in the
presence of low data noises. (2) In the presence of data
outliers, Metis has 56.77% more chance of picking better
configuration. (3) Metis has a faster convergence time in
searching for the best-performing configuration.

6.1 Methodology

We use the Bing Ads KV store (c.f. §2) as the target
system. Our testbed machines have two 2.1 GHz CPUs
(with 16 cores), 16 GB RAM, and a 256 GB SSD. These
machines host the target system binaries, and simulate
configurable key-value query arrival rates (or queries per
second) for the given workload trace. We log perfor-
mance metrics with asynchronous I/Os to minimize any
artifact introduced by logging.

Datasets and workload traces. We obtained two 12-day
key-value query traces, Prod Trace1 and Prod Trace2,
from two Bing Ads KV store clusters, BingKV 1 and
BingKV 2. These two real-world traces exhibit following
characteristics – the average size of top 500 frequently
queried KV objects can have a difference up to 9.49%
from one week to another, and that of Prod Trace1 is
approximately two-times larger than Prod Trace2.

For more controlled experiments, we also synthesized
three workload traces containing ∼0.5 million query re-
quests. Our workload generation tool is based on the Ya-
hoo! Cloud Serving Benchmark (YCSB) [8]. However,
while YCSB considers the key-value frequency distri-
bution, it does not consider the key-value size distribu-
tion. To fill this gap, given a list of unique keys from
YCSB (sorted in descending order of frequency), we as-
sign key-value sizes according to some distributions. For
Synth Trace1, Synth Trace2 and Synth Trace3, we fix
their size distribution to be Zipf, and we generate keys
following the frequency distribution of Zipf, normal, and
linear. Doing so allows us to examine different size dis-
tributions.

Comparison baselines. In addition to random search,
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Figure 4: Chance that each approach picks the best con-
figuration. Each experiment allows each approach to run
25 trials, and we repeat the experiment 30 times.

we take state-of-the-art BO-driven approaches including
iTuned [10], CherryPick [3], and TPE [5]. We config-
ure these comparison baselines with the recommended
setting, e.g., the Matern(5/2) kernel for CherryPick. At
each iteration, these approaches output the configuration
they expect to have lowest tail latency. Table 1 lists their
differences. For the ground truth, we brute-force all pos-
sible configurations for Prod Trace1.

6.2 Effectiveness of Metis

This section quantifies the likelihood that the system
configuration selected by Metis outperforms those of
other approaches. This relates to the auto-tuning correct-
ness. We also discuss factors including time budgets (i.e.,
number of trials allowed) and data outliers.

Metis has a higher chance in picking system config-
urations that outperforms those of other approaches.
Assuming a fixed time budget, we allow each approach
to run 25 trials. We then rank approaches by the 99-
percentile latency of their expectedly best-performing
system configurations. We clean-install the machine to
ensure minimal noise in measurements, and evaluate the
case of data outliers later in this section. Experiments are
repeated 30 times, to compensate for the randomness in
some approaches. For random search, we take the best
of all 25 trials for evaluation. We note that TPE requires
at least 20 bootstrapping trials (from random sampling),
and we allocate five bootstrapping trials to CherryPick,
iTuned and Metis.

Figure 4 summarizes results when system bench-
marks, or training data, are relatively noise-free. It shows
that Metis has a higher chance of picking the winning
configuration, i.e., the system configuration that out-
performs those selected by comparison baselines. De-
pending on the synthesized workload trace, Metis can
outperform 48.97% (for Synth Trace2) to 84.67% (for
Prod Trace2) of times.

Furthermore, taking a closer look into cases where
Metis failed to win, we note that Metis 99-percentile la-
tency is within 1% of the winner. In addition, Metis ob-
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Figure 5: Chance that each approach picks the best con-
figuration for Prod Trace1, while changing the number
of sampling points allowed.

serves the lowest difference of 99-percentile latency to
the optimal, on average. This difference is 0.44% for
Metis, which is 67.16% lower than CherryPick.

Metis has a faster convergence time than other ap-
proaches. Regardless of the parameter tuning approach,
the effectiveness in finding the optimal configuration
should ideally increase with the number of data points
already sampled, or configurations benchmarked. One
natural question is how Metis converges to the optimal
system configuration, as compared to other approaches.
To this end, we try to answer two questions: (1) at each
iteration, what is the likelihood that Metis selects the
system configuration that outperforms those of other ap-
proaches? (2) how fast does Metis converge to the opti-
mal system configuration?

Figure 5 shows that the chance for Metis to pick the
winning configurations is high at all iteration. We repeat
this experiment 30 times, due to the randomness in some
approaches. This result is desirable for auto-tuning under
limited time budget, as system benchmarks can consume
a long time. In addition, the figure shows that, as the
number of sampled data points increase, Metis is able
to better model the configuration-vs-performance space,
which increases the likelihood of picking the winning
configuration. Furthermore, looking at configurations
that CherryPick and iTuned pick, we observe that they
lean towards exploitation. On the other hand, Metis inde-
pendently evaluates the potential information gain from
exploitation and exploration.

Following Figure 5, Figure 6 illustrates how each
approach converges to the global optimum of the
configuration-vs-performance space. The figure calcu-
lates the average 99-percentile latency of selected con-
figurations from 30 repeated experiments. Compared to
other approaches, Metis has a faster convergence time,
as it is able to benchmark system configurations that
would iteratively improve modeling the configuration-
vs-performance space. We note that the effectiveness
of TPE significantly improves after 20 iterations, as its
Gaussian Mixture Models require many training data. Fi-
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Figure 6: The search path visualizes the tail latency of
system configurations that BO-driven approaches select
at each iteration.
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Figure 7: Chance that each approach picks the winning
configuration for Prod Trace1. The test machine has in-
termittent background activities that result in data out-
liers. The red line marks when Metis has sufficient data
points for re-sampling.

nally, we also note that Figure 6 suggests that iTuned and
CherryPick have a higher chance of exploiting local op-
timum, and thus their acquisition function would require
more iterations to find the global optimum.

Metis maintains high chance of picking the winning
configuration in the presence of data outliers. Build-
ing on the discussion so far, we now demonstrate the ro-
bustness of Metis to data outliers. We repeat the previous
experiment where we allow each approach to iteratively
select 25 trials to benchmark. The machine is a pro-
duction Bing Ads server, which runs intermittent back-
ground activities for software updates, monitoring, and
periodic database updates. Resulting noises in the mea-
surement can not reasonably modeled by normal distri-
bution. Unlike comparison baselines, Metis proactively
looks for potential data outliers after a sufficient amount
of data points is collected, or 10 in our case.

Figure 7 illustrates that Metis has a higher chance of
picking the optimal configuration in the presence of data
outliers. The red line shows when Metis stops marking
all sampled data points as potential data outliers (due to
insufficient data collected). The effectiveness of Metis
improves after the red line. The figure also shows the ef-
fectiveness of Metis without re-sampling, and removing
outliers improves Metis’s winning rate by 33.33%.
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Figure 8: Impact of training data size on the training time
of GP models.

6.3 Overhead of Metis

It is known that benchmarking configurations can be
time-consuming due to system warm-up and stabiliza-
tion. Another potential source of overhead is the predic-
tive regression model – both in training and configuration
selection. To quantify this overhead, we randomly gener-
ate the training data for individual experiment runs, and
repeat each experiment 50 times.

Model training time. This is the time for Metis to fit
a Gaussian process model over all sampled data points.
We note that the community has shown that training
the Gaussian process model can exhibit a complexity
of O(N3 +N2D) [21], where N and D are the number
and the dimensionality of training data points, respec-
tively. This suggests that the number of training data
points largely determines the training time. Our goal is
to understand whether the training complexity will limit
Metis’s practicality in the real-world. Figure 8 shows that
the training time increases with the number of sampled
data points (for a training data set with a dimension of 20,
and parameter values range between 1 and 1,000). When
the number of sampled data points increases to 500, the
training time reaches 12.33 seconds. However, this train-
ing time is still practical in real-world deployments.

Configuration selection time. This is the time for Metis
to predict a sampling point that is expected to maximize
the given acquisition function. It has been shown that the
time complexity for prediction with the Gaussian pro-
cess model is O(N2 +ND) [21], where N and D are the
number and the dimensionality of training data points,
respectively. When the training data size increases to
500, predicting the observation of an unsampled point
takes ∼10.25 msec. This time suggests that the predic-
tive model is feasible for real-world usages.

7 Case Study: BingKV

With a year of Metis operational experience, there are
observations and lessons learned from adopting auto-
tuning in Microsoft services. This section presents
measurements and experiences from our running ex-
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Figure 9: Performance comparison between the previ-
ous LRU-based data store and the Metis-tuned BingKV,
based on 14-day hourly performance logs.

ample, Bing Ads KV store clusters (c.f. §2.1). The
KV store evolved from LRU, expert-tuned BingKV, to
Metis-tuned BingKV. We study measurements from two
KV store clusters – BingKV 1 (∼700 servers handling
∼4.14 billion key queries per day) and BingKV 2 (∼1,700
servers handling ∼3.18 billion key queries per day).
Each server of clusters has an in-memory cache capac-
ity of 512 MB, and an SSD as the persistent data store.

Metis-tuned BingKV reduces the 99-percentile query
lookup latency by an average of 20.4%, as compared
to LRU. We start by comparing Metis-based KV store
with the previously LRU-based KV store, under Bing
Ads BingKV 1 production workload. The comparison is
based on 14-day hourly logs of the 99-percentile query
lookup latency and the cache hit rate (CHR). Figure 9
presents results for BingKV 1 – Figure 9a shows that
Metis helps to reduce the 99-percentile latency by 20.4%
on average (with a standard deviation of 8.4), and Fig-
ure 9b shows a CHR improvement of 60.6% (with a stan-
dard deviation of 11.7). This translates to a 22.76% re-
duction in disk I/O reads.

Metis-tuned BingKV reports a 3.43% lower 99-
percentile latency, as compared to expert-tuned
BingKV. Our human expert is one of the lead program-
mers for Bing Ads key-value store, with years of expe-
rience operating the system. As it is infeasible for the
human expert to continuously tune the KV store, this
subsection focuses on picking a single best-performing
configuration. We note that the human expert did not
have any time budget limitations, and manual tuning took
about four weeks in a testing environment. The next sub-
section delves into the system tuning time comparison.

Perf metrics Differences
BingKV 1 BingKV 2

99-percentile latency -2.99% -3.43%
Cache hit rate 2.43% 0.49%

Table 2: Performance comparison of expert-tuned and
Metis-tuned BingKV-based data store, under 14-day
Bing Ads workloads. Metis-tuned configurations out-
perform expert-tuned configurations, while reducing the
tuning time from weeks to hours.
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Figure 10: On average, Metis reduces the configuration
tuning time by 98.41% for BingKV. For illustration, this
figure shows a one-dimensional case of sampling points
selected by Metis, as compared to brute-force.

Table 2 shows that Metis-tuning outperforms human-
tuning under two weeks of production traffic: (1) the
Metis-tuned configuration reports a 2.99% and 3.43%
lower 99-percentile latency for BingKV 1 and BingKV 2,
respectively. (2) Metis-tuned configuration reports
a 2.43% and 0.49% higher CHR for BingKV 1 and
BingKV 2, respectively.

Metis reduces the overall tuning time by 98.41%, as
compared to manual tuning by human experts. While
humans are typically guided by intuition based on their
knowledge of the system, much of the manual tuning
process mostly resembles the random search. In fact,
the problem exacerbates as the dimensionality of the pa-
rameter space increases, especially in the case where pa-
rameters have dependencies. For reference, in one sce-
nario deployment, manual-tuning took about 3 weeks,
while Metis-tuning took about 8 hours (including sam-
pling, modeling and prediction).

To illustrate how predictive modeling reduces the tun-
ing time, Figure 10 shows that Gaussian process regres-
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sion for a one-dimensional case. GP regression is able to
estimate the impact of ShadowAdmissionSize without
sampling the entire parameter space. We note that dot-
ted lines in Figure 10b mark the 95% confidence interval
for each point, which can guide both the space explo-
ration and the stopping criteria. Finally, we note that GP
regression operations are negligible as compared to sys-
tem benchmarking – training typically takes ∼1.02 sec,
and predicting the expected value of an unsampled data
points takes ∼0.53 msec.

8 Related Work

Black-box parameter tuning services. Google
Vizier [11] is an ongoing research project, and it sup-
plies core capabilities to optimize hyper-parameters of
machine learning models across Google. Similar to
Google Vizier, SigOpt [18] is a startup that tunes hyper-
parameters of ML models, but little technical details
have been disclosed. Google Slicer [1] is a sharding
service that dynamically generates the optimal resource
assignment, but its goals are not parameter space ex-
ploration and sampling. Like Metis, BestConfig [23]
uses stratified sampling. However, it heavily leans to-
wards exploitation, as it assumes a high probability of
finding better-performing configurations around the cur-
rently best-performing one.

In contrast, Metis focuses on providing a robust auto-
tuning algorithm for cloud systems, and addresses chal-
lenges that systems introduce to the optimization prob-
lem. Metis has been used to tune parameters of Microsoft
services and networking infrastructure.

Parameter tuning with Bayesian optimization. Metis
builds on previous efforts that demonstrate the poten-
tial of applying Bayesian optimization and Gaussian pro-
cess to auto-tuning. iTuned [10] uses Latin Hypercube
Sampling (LHS) to sample the parameter space, and
model the parameter space with Gaussian process mod-
els. OtterTune [2] uses a combination of supervised
and unsupervised machine learning methods to reduce
the parameter dimension, characterize observed work-
loads, and recommend configurations. CherryPick [3]
follows a similar approach to BO and GP in selecting the
best-performing cloud configuration for a given machine
learning workload.

TPE [5] uses Bayesian optimization with Gaussian
mixture model, instead of Gaussian process. It is suitable
for cases where there are some dependencies among pa-
rameters. However, since TPE trains with a subset of the
training data, it needs a larger amount of data to be col-
lected for training effectively. Smart Hill-Climbing [22]
improves Latin Hypercube Sampling, but the GP-based
approach has been shown to outperform [10].

Metis introduces customizations to the framework of
BO with GP. These include the diagnostic model to find
potential data outliers for re-sampling, and a mixture of
acquisition functions to balance exploitation, exploration
and re-sampling.

9 Discussion

We now discuss limitations concerning the applicability
of Metis to systems in general.

Support of different system parameter types. Some
types of system parameters can be non-trivial to model
with regression models – First, categorical parameters
take on one of a fixed number of non-integer values such
as boolean. Since categorical parameters are not continu-
ous in nature, it can be difficult to model the relationship
among possible values. While categorical parameters are
out of scope for this paper, our current implementation
conceptually treats each categorical value as a new target
system. Second, some systems have multi-step parame-
ters, where one single configuration requires the system
to go through a specific sequence of value changes for
one or more parameters. Metis does not currently sup-
port multi-step parameters.

Costs of changing system configurations. Applying
configuration changes can incur costs for some systems.
First, server reboots might be necessary after a configu-
ration change, thus service interruptions. To handle this
case, system administrators can decide to push a config-
uration change only if the new configuration is predicted
to offer a certain level of performance improvement (e.g.,
10% latency reduction). Administrators can also bound
the cost of reconfiguration, e.g., by performing recon-
figurations gradually over time, or by bounding the pa-
rameter space exploration by the distance from the cur-
rent running configuration. Second, mis-predictions can
result in system performance degradation. Fortunately,
Gaussian Process offers two ways to gain insights regard-
ing uncertainties – GP offers a confidence interval for
each prediction, and a log-marginal likelihood score [15]
to quantify the model fitness with respect to the training
dataset.

10 Conclusion

This paper reports the design, implementation, and de-
ployment of Metis, an auto-tuning service used by sev-
eral Microsoft services for robust system tuning. We
demonstrate the effectiveness of Metis with controlled
experiments and real-world system workloads. Further-
more, real-world deployments show that Metis can sig-
nificantly reduce the system tuning time.
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