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Abstract
Query-aware synthetic data generation is an essential and
highly challenging task, important for database manage-
ment system (DBMS) testing, database application test-
ing and application-driven benchmarking. Prior studies
on query-aware data generation suffer common problems
of limited parallelization, poor scalability, and excessive
memory consumption, making these systems unsatisfac-
tory to terabyte scale data generation. In order to fill
the gap between the existing data generation techniques
and the emerging demands of enormous query-aware test
databases, we design and implement our new data gener-
ator, called Touchstone. Touchstone adopts the random
sampling algorithm instantiating the query parameters
and the new data generation schema generating the test
database, to achieve fully parallel data generation, linear
scalability and austere memory consumption. Our exper-
imental results show that Touchstone consistently outper-
forms the state-of-the-art solution on TPC-H workload
by a 1000× speedup without sacrificing accuracy.

1 Introduction
The applications of query-aware data generators in-
clude DBMS testing, database application testing and
application-driven benchmarking [5, 15]. For example,
during the database selection and performance optimiza-
tion, the internal databases in production are hard to be
shared for performance testing due to the privacy consid-
erations, so we need to generate synthetic databases with
the similar workload characteristics of the target queries.
A bulk of existing data generators, e.g., [12, 11, 4, 20],
generate test databases independent of the test queries,
which only consider the data distribution of inter- and
intra-attribute. They fail to guarantee the similar work-
load characteristics of the test queries, therefore it’s dif-
ficult to match the overheads of the query execution en-
gine for real world workloads. A number of other stud-
ies, e.g., [6, 14, 5, 15], attempt to build query-aware data
generators. But the performance of the state-of-the-art
solution MyBenchmark [15] still remains far from sat-
isfactory, due to the lack of parallelization, scalability
and memory usage control, as well as the narrow sup-
port of non-equi-join workload. In order to generate the
enormous query-aware test databases, we design and im-
plement Touchstone, a new query-aware data generator,
based on the following design principles:
∗Rong Zhang is the corresponding author.

Full Parallelization: With the explosive growth of data
volume in the industrial applications, the database sys-
tem is expected to support storage and access services
for terabyte or even petabyte scale data. So the synthetic
data generator must be fully parallel for generating such
extremely large test databases.
Linear Scalability: The single machine has been far
from meeting the requirements of generating large test
databases, and the data scales may be unbelievably big
for the future applications, therefore the data generator
needs to be well scalable to multiple nodes and data size.
Austere Memory Consumption: When generating the
synthetic database for multiple queries, memory could
easily be the bottleneck, because massive information is
maintained by the data generator in order to guarantee
the dependencies among columns. The memory usage
needs to be carefully controlled and minimized.

Since [6, 14, 5, 15] are closest to the target of this
work, we list the following key insufficiencies of these
studies for elaborating the necessity of proposing Touch-
stone. In particular, all of these approaches do not sup-
port fully parallel data generation in a distributed envi-
ronment due to the primitive data generation algorithms
over the huge shared intermediate state, limiting the effi-
ciency of data generation over target size at terabytes.
Moreover, their memory consumptions, e.g., symbolic
databases of QAGen [6], constrained bipartite graphs
of WAGen [14] and MyBenchmark [15], caching refer-
enced tables for generating foreign keys of DCGen [5],
strongly depend on the size of generation outputs. Once
the memory is insufficient to host the complete interme-
diate state, vast computational resources are wasted on
disk I/O operations. In addition, one key advantage of
our work is the support of non-equi-join workload, which
is important for real world applications but not supported
by any of the existing approaches.

In query-aware data generation, we need to handle
the extremely complicated dependencies among columns
which are caused by the complex workload characteris-
tics specified on the target test queries, as well as the
data characteristics specified on the columns. Touch-
stone achieves fully parallel data generation, linear scal-
ability and austere memory consumption for supporting
the generation of enormous query-aware test databases.
There are two core techniques employed by Touchstone
beneath the accomplishments of all above enticing fea-
tures. Firstly, Touchstone employs a completely new
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query instantiation scheme adopting the random sam-
pling algorithm, which supports a large and useful class
of queries. Secondly, Touchstone is equipped with a new
data generation scheme using the constraint chain data
structure, which easily enables thread-level paralleliza-
tion on multiple nodes. In summary, Touchstone is a scal-
able query-aware data generator with a wide support to
complex queries of analytical applications, and achieves
a 1000× performance improvement against the state-of-
the-art work MyBenchmark [15].

2 Preliminaries
2.1 Problem Formulation
The input of Touchstone includes database schema H,
data characteristics D and workload characteristics W , as
illustrated in Figure 1. H defines data types of columns,
primary key and foreign key constraints. In Figure 1,
there are three tables R, S, and T . For example, table S
has 20 tuples and three columns. Data characteristics D
of columns are defined in a meta table, in which the user
defines the percentage of Null values, the domain of the
column, the cardinality of unique values and the average
length and maximum length for varchar typed columns.
In our example, the user expects to see 5 unique values on
column R.r2 in the domain [0, 10], and 8 different strings
with an average length of 20 and a maximum length of
100 for column T.t3 with 20% Null values. Workload
characteristics W are represented by a set of parameter-
ized queries which are annotated with several cardinality
constraints. In Figure 1, our sample input consists of four
parameterized queries, i.e., Q = {Q1, Q2, Q3, Q4}. These
four queries contain 11 variable parameters, i.e., P = {P1,
P2, ..., P11}. Each filter/join operator in the queries is as-
sociated with a size constraint, defining the expected car-
dinality of the processing outcomes. Therefore, there are
14 filter/join operators and corresponding 14 cardinality
constraints in our example, i.e., C = {c1, c2, ..., c14}. Our
target is to generate the three tables and instantiate all the
variable query parameters. In the following, we formu-
late the definition of cardinality constraints.

Definition 1 Cardinality Constraint: Given a filter (σ )
or join (./) operator, a cardinality constraint c is denoted
as a triplet c = [Q, p, s], where Q indicates the involving
query, p gives the predicate on the incoming tuples, and
s is the expected cardinality of operator outcomes.

The cardinality constraint c1 in Figure 1, for example,
is written as [Q1, R.r2 < P1, 4], indicating that the op-
erator with predicate R.r2 < P1 in query Q1 is expected
to output 4 tuples. For conjunctive and disjunctive op-
erators, their cardinality constraints can be split to mul-
tiple cardinality constraints for each basic predicate us-
ing standard probability theory. These cardinality con-
straints generally characterize the computational work-

load of query processing engines, because the computa-
tional overhead mainly depends on the size of the data in
processing. This hypothesis is verified in our experimen-
tal evaluations.

While the focus of cardinality constraints is on fil-
ter and join operators, Touchstone also supports com-
plex queries with other operators, including aggregation,
groupby and orderby. For example, the query Q2 in Fig-
ure 1 applies groupby operator on T.t3 and summation
operator on S.s3 over the grouped tuples. The cardinal-
ity of the output tuples from these operators, however, is
mostly determined, if it does not contain a having clause.
And such operators are usually engaged on the top of
query execution tree, hence the output result cardinali-
ties generally do not affect the total computational cost
of query processing. Based on these observations, it is
unnecessary to pose explicit cardinality constraints over
these operators [14, 5] in Touchstone.

Based on the target operators (filter or join) and
the predicates with equality or non-equality conditional
expressions, we divide the cardinality constraints into
four types, i.e., C = Cσ

= ∪Cσ

6= ∪C./
= ∪C./

6= . Accord-
ingly, we classify the example constraints in Figure 1 as
Cσ
= = {c2,c5,c8,c10}1, Cσ

6= = {c1,c4,c7,c12,c13}, C./
= =

{c3,c6,c9,c11} and C./
6= = {c14}. Following the common

practice in [5, 24, 25], the equi-join operator is always
applied on the pair of primary and foreign keys.

Then we formulate the problem of query-aware data
generation as follows.

Definition 2 Query-Aware Data Generation Problem:
Given the input database schema H, data characteris-
tic D and workload characteristics W, the objective of
data generation is to generate a database instance (DBI)
and instantiated queries, such that 1) the data in the ta-
bles strictly follows the specified data characteristics D;
2) the variable parameters in the queries are appropri-
ately instantiated; and 3) the executions of the instanti-
ated queries on the generated DBI produce exactly the
expected output cardinality specified by workload char-
acteristics W on each operator.

While the general solution to query-aware data gen-
eration problem is NP-hard [21], we aim to design a
data generator, by relaxing the third target in the defi-
nition above. Specifically, the output DBI is expected
to perform as closely as the cardinality constraints in C.
Given the actual/expected cardinalities of processing out-
puts, i.e., {ŝ1, ŝ2, . . . , ŝn}, corresponding to constraints on
the queries in C = {c1,c2, . . . ,cn}, we aim to minimize

the global relative error
∑ci∈C |ci.s−ŝi|

∑ci∈C ci.s
. Even if the user

specified workload in W contains conflicted constraints,

1If the relational operator in a selection predicate belongs to {=, !=,
in, not in, like, not like}, then the corresponding cardinality constraint
is classified to Cσ

=.
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Figure 1: Example inputs of database schema, data characteristics and workload characteristics to Touchstone

Touchstone still attempts to generate a DBI with the best
effort.

2.2 Overview of Touchstone
The infrastructure of Touchstone is divided into two com-
ponents, which are responsible for query instantiation
and data generation respectively, as shown in Figure 2.
Query Instantiation: Given the inputs including
database schema H, data characteristics D, Touchstone
builds a group of random column generators for non-key
columns, denoted by G, each Gi in which corresponds to
a column of the target tables. Given the input workload
characteristics W , Touchstone instantiates the parameter-
ized queries by adjusting the related column generators
if necessary and choosing appropriate values for the vari-
able parameters in the predicates of c ∈ Cσ

= ∪Cσ

6= ∪C./
6= .

The instantiated queries Q̄ are output to the users for
reference, while the queries Q̄ and the adjusted column
generators Ḡ are fed into the data generation component.
The technical details are available in Section 3.
Data Generation: Given the inputs including instan-
tiated queries Q̄ and constraints over the equi-join op-
erators C./

= specified in W , Touchstone decomposes the
query trees annotated with constraints into constraint
chains, in order to decouple the dependencies among
columns, especially for primary-foreign-key pairs. Data
generation component generally deploys the data gener-
ators over a distributed platform. The random column
generators and constraint chains are distributed to all data
generators for independent and parallel tuple generation.
The technical details are available in Section 4.

2.3 Random Column Generator
The basic elements of Touchstone system are a group of
random column generators G = {G1,G2, . . . ,Gn}, which
determine the data distributions of all non-key columns
to be generated. A random column generator Gi in G

Figure 2: The overall architecture of Touchstone

is capable of generating values for the specified column,
while meeting the required data characteristics in expec-
tation. In the following, we give the detailed description
of the random column generator.

A random column generator Gi contains two parts,
a random index generator and a value transformer as
shown in Figure 3. In the random index generator, the
output index domain is the integers from 0 to n−1 while
n is the specified cardinality of unique values in corre-
sponding column. Given an index, the transformer de-
terministically maps it to a value in the specified domain
of the column. We adopt different transformers based
on the type of the column. For numeric types, e.g., In-
teger, we simply pick up a linear function which uni-
formly maps the index to the value domain. For string
types, e.g., Varchar, there are some seed strings pre-
generated randomly, which satisfy the specified length
requirements. We first select a seed string based on the
input index as shown in Figure 3, and then concatenate
the index and the selected seed string as the output value.
This approach allows us to easily control the cardinality
of string typed columns with tiny memory consumption.

To manipulate the distribution of the column values,
there is a probability table in the random index generator.
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Figure 3: An example generator for column T.t3
The probability table consists of a number of entries and
each entry corresponds to an index. Specifically, each en-
try in the table (ki, pi,ci) specifies an index ki, the prob-
ability pi of occurrence, and the cumulative probability
ci for all indexes no larger than ki. In order to save the
memory space, we compress the table by keeping only
the entries with non-uniform probabilities. If an index
does not appear in the probability table, its probability is
automatically set by the uniform probability. The entries
in the table are ordered by ki. In Figure 3, we present an
example of random column generator designed for col-
umn T.t3 from example inputs in Figure 1. The spec-
ified data characteristics request this column to contain
8 unique strings with average length 20 and maximum
length 100. In the result generator, based on the indexes
in [0,7] generated by random index generator, the trans-
former outputs random strings with the desired lengths,
at probabilities {p0,2,3,5,7 = 0.1, p1 = 0.2, p4,6 = 0.15}.
The details of probability assignment will be discussed
in Section 3.
Value Generation: Given the random column genera-
tor, firstly, a Null value is output with the probability of
the specified percentage. If Null value is not chosen, the
index generator picks up an index based on the probabil-
ities by running binary search over CDF (ci) in the prob-
ability table with a random real number in (0,1], and the
transformer outputs the corresponding column value.

3 Query Instantiation
There are two general objectives in query instantiation,
targeting to 1) construct the random column generators
for each non-key column in the tables; and 2) find con-
crete values for the variable parameters in the queries.

Generally speaking, the query instantiation compo-
nent is responsible for handling three types of con-
straints, i.e., Cσ

=, Cσ

6= and C./
6= . Note that the fourth type of

constraints C./
= involves matching between primary and

foreign keys, which is taken care of by the data genera-
tion process at runtime. In Algorithm 1, we list the gen-
eral workflow of query instantiation. The algorithm iter-
atively adjusts the data distribution adopted by the ran-
dom column generators and the concrete values of the
variable parameters, in order to meet the constraints as
much as possible. The distribution adjustment on the
column generator is accomplished by inserting entries in
its probability table. In each iteration, the algorithm re-

initializes the column generators (line 3) such that there
is no entry in the probability table, namely the proba-
bilities of candidate values are uniform. The algorithm
then attempts to adjust the column generators in Ḡ and
the concrete values of the variable parameters in queries
Q̄ (lines 4-11). Specifically, it firstly adjusts the column
generators and instantiates the variable parameters based
on the equality constraints over filters (lines 4-6). It then
follows to revise the variable parameters in the queries
in order to meet the non-equality constraints on filter and
join operators (lines 7-11). The details of the adjustment
on column generators and the parameter instantiation are
presented in the following subsections. The algorithm
outputs the new (adjusted) generators Ḡ and the instanti-
ated queries Q̄, when the global relative error for all con-
straints is within the specified threshold θ or the number
of iterations reaches its maximum I.

Algorithm 1 Query instantiation
Input: Initial generators G, input queries Q, error threshold θ

and maximum number of iterations I
Output: New generators Ḡ and instantiated queries Q̄
1: Initialize Q̄← Q
2: for all iteration i = 1 to I do
3: Initialize Ḡ← G
4: for all constraint c ∈Cσ

= do
5: Adjust the generator in Ḡ for the column within c
6: Instantiate the corresponding parameter in Q̄
7: for all c ∈Cσ

6= do
8: Instantiate the corresponding parameter in Q̄
9: for all c ∈C./

6= do
10: Obtain constraints from all descendant nodes
11: Instantiate the corresponding parameter in Q̄
12: Calculate the global relative error e
13: if e≤ θ then return Ḡ and Q̄
14: return Ḡ and Q̄ (historical best solution with minimum e)

In the rest of the section, we discuss the processing
strategies for these three types of constraints respectively.

Filters with Equality Constraint always involve a sin-
gle non-key column at a time like the workloads of stan-
dard benchmarks. Given all these equality constraints on
the filter operators, i.e., Cσ

=, the system groups the con-
straints according to the involved column. In our run-
ning example in Figure 1, there are four such constraints
Cσ
= = {c2,c5,c8,c10}, among which, c2 and c8 target col-

umn S.s3, and c5 and c10 target column T.t3. Note that
all relational operators in equality constraints are handled
by treating them as ’=’. For example, c5 = [Q2,T.t3 NOT
LIKE P4,32]⇒ [Q2,T.t3 LIKE P4,8]⇒ [Q2,T.t3 = P4,8].

The processing strategy for equality constraints on fil-
ters runs in three steps. Firstly, the algorithm randomly
selects an index and obtains the corresponding value
from the transformer of the column generator, for in-
stantiating each variable parameter in the equality con-
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Figure 4: An example of parameter searching procedure for
constraint c7. Given the predicate in c7, our algorithm attempts
to cut the space by revising the parameter P5. For a concrete P5,
the expected number of tuples meeting the predicate is evalu-
ated by the random sampling algorithm. The best value for P5
is returned, after the binary search identifies the optimal value
at desired precision or reaches the maximum iterations.

straints. Secondly, the algorithm updates the occurrence
probability of the selected index in the column genera-
tor by inserting an entry in the probability table, in or-
der to meet the required intermediate result cardinality.
Whether the filter is the leaf node of the query execution
tree or not, the probability of the inserted entry is calcu-
lated as sout

sin
, where sin is the size of input tuples and sout

is the expected size of output tuples. After the above two
steps for all equality constraints, the algorithm calculates
the cumulative probabilities in the probability table of
adjusted column generators. In Figure 3, there are three
entries in the probability table for generating data with
the distribution that satisfies the constraints c5 and c10.
For example, the entry with index 1 is inserted for in-
stantiating parameter P4 in the predicate of c5, while the
two entries with indexes 4 and 6 are inserted for instanti-
ating parameters P7 and P8 in the predicate of c10.

Suppose there are k variable parameters in the equality
constraints over filters. The total complexity of the pro-
cessing strategy is O(k logk), because the algorithm only
needs to instantiate the parameters one by one, and ac-
cordingly it inserts an entry into the probability table in
order of selected index for each parameter instantiation.
Filters with Non-Equality Constraint could involve
multiple non-key columns. In Figure 1, some constraints,
e.g., c1 = [Q1,R.r2 < P1,4] and c4 = [Q2,S.s3 ≥ P3,7],
apply on one column only, while other constraints, e.g.,
c7 = [Q3,R.r2−R.r3 > P5,6] and c12 = [Q4,2×R.r2 +
R.r3 < P9,7], involve more than one column with more
complex mathematical operators. Our underlying strat-
egy handling these non-equality constraints is to find the
concrete parameters generating the best matching output
cardinalities against the constraints, based on the data
distributions adopted by the random column generators.

Since the cardinality of tuples satisfying the con-
straints is monotonic with the growth of the variable pa-
rameter, it suffices to run a binary search over the pa-
rameter domain to find the optimal concrete value for
the variable parameter. In Figure 4, we present an ex-
ample to illustrate the parameter searching procedure.
The cutting line in the figure represents the parameter

Figure 5: An example of parameter instantiation for non-
equality constraints on join operator

in the constraint, which decides the ratio of tuples in the
shadow area, i.e., satisfying the constraint. By increasing
or decreasing the parameter, the likelihood of tuples in
the shadow area changes correspondingly. The technical
challenge behind the search is the hardness of likelihood
evaluation over the satisfying tuples, or equivalently the
probability of tuples falling in the shadow area in our ex-
ample. To tackle the problem, we adopt the random sam-
pling algorithm, which is also suited for the non-uniform
distribution of the involved columns. Note that the bi-
nary search may not be able to find a parameter with the
desired precision, based on the determined data distribu-
tion of columns after processing equality constraints over
filters. Therefore, in Algorithm 1, we try to instantiate
the parameters for non-equality constraints upon differ-
ent data distributions by iteration.

The complexity of the approach is the product of two
components, the number of iterations in parameter value
search and the computational cost of probability evalua-
tion using random sampling algorithm in each iteration.
The number of iterations for the binary search is loga-
rithmic to the domain size of the parameter, decided by
the minimal and maximal value that the expression with
multiple columns could reach. The cost of random sam-
pling depends on the complexity of the predicate, which
usually only involves a few columns.
Joins with Non-Equality Constraint are slightly dif-
ferent from the filters with non-equality constraints, be-
cause the columns involved in their predicates may over-
lap with the columns in the predicates of their child nodes
as query Q4 in Figure 1, which usually does not happen
to filters in the query execution tree. Therefore, we must
process the constraints in a bottom-up manner without
the premise of probability independence, such that the
precedent operators are settled before the join operator
with non-equality constraint is handled. In Figure 5, we
present the processing flow on query Q4. After Touch-
stone concretizes the parameters P9 and P10 in constraints
c12 and c13, the input data to the join operator with con-
straint c14 is determined. Based on the characteristics of
the inputs, we apply the same binary search strategy de-
signed for filter operator to construct the optimal parame-
ter, e.g., P11 in Figure 5, for the desired result cardinality.
Since the algorithm is identical to that for filter operator,
we hereby skip detailed algorithm descriptions as well as
the complexity analysis.
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4 Data Generation
Given the generators of all non-key columns and the in-
stantiated queries, the data generation component is re-
sponsible for assembling tuples based on the outputs of
the column generators. The key technical challenge here
is to meet the equality constraints over the join oper-
ators, i.e., C./

= , which involve the dependencies among
primary and foreign keys from multiple tables. To tackle
the problem, we design a new tuple generation schema,
which focuses on the manipulation of foreign keys only.

The tuple generation consists of two steps. In the first
compilation step, Touchstone orders the tables as a gener-
ation sequence and decomposes the query trees into con-
straint chains for each target table. In the second assem-
bling step, the working threads in Touchstone indepen-
dently generate tuples for the tables based on the result
order from compilation step. For each tuple, the work-
ing thread fills values in the columns by calling the ran-
dom column generators independently and incrementally
assigns a primary key, while leaving the foreign keys
blank. By iterating the constraint chains associated with
the table, the algorithm identifies the appropriate candi-
date keys for each foreign key based on the maintained
join information of the referenced primary key, and ran-
domly assigns one of the candidate keys to the tuple.
Compilation Step: The generation order of the tables is
supposed to be consistent with the dependencies between
primary keys and foreign keys, because the primary key
must be generated before the adoption of its join in-
formation for generating corresponding foreign keys of
other tables. Since such primary-foreign-key dependen-
cies form a directed acyclic graph (DAG), Touchstone
easily constructs a topological order over the tables. In
Figure 6, we illustrate the result order over three tables,
R→ S→ T , based on the database schema H in Figure 1.

In order to decouple the dependencies among columns
and facilitate parallelizing, Touchstone decomposes the
query trees annotated with constraints into constraint
chains. A constraint chain consists of a number of con-
straints corresponding to the cardinality constraints over
the operators in query trees. There are three types of con-
straints included in the constraint chains, namely FIL-
TER, PK and FK, which are associated with the types of
related operators. The constraint chains with respect to
a table are defined as the sequences of constraints with
descendant relationship in the query trees. In Figure 6,
we present all the constraint chains for tables R, S and T .
For example, table R has two constraint chains extracted
from queries Q1 and Q3. And the constraint chains of
table S are marked in Figure 1 for easily understanding.

Each FILTER constraint keeps the predicate with the
instantiated parameters. Each PK constraint in the chain
records the column name of the primary key. Each
FK constraint maintains a triplet, covering two column

Figure 6: Results of constraint chain decomposition

names of the foreign key and the referenced primary
key, and the expected ratio of tuples satisfying the pred-
icate on the join operator. The second constraint in
the first chain for table S in Figure 6, for example, is
FK[S.s2,R.r1,

2
3 ], indicating the foreign key is S.s2, the

referenced primary key is R.r1 and two out of three tuples
in table S are expected to meet the predicate S.s2 = R.r1
of join operator in the case of satisfying the predicate
S.s3 = P2 of previous filter. The expected ratios in FK
constraints are calculated based on the cardinality re-
quirements of the specified cardinality constraints.
Assembling Step: For simplicity, we assume that there
is a single-column primary key and one foreign key in the
table. Note that our algorithm can be naturally extended
to handle tables with composite primary key and multiple
foreign keys. The result constraint chains are distributed
to all working threads on multiple nodes for parallel tu-
ple generation. When generating tuples for a specified
table, each working thread maintains two bitmap data
structures at runtime, i.e., φ f k and φpk. They are used
to keep track of the status of joinability, e.g., whether the
generating tuple satisfies individual predicates over join
operators, for primary key and foreign key, respectively.
The length of the bitmap φ f k (resp. φpk) is equivalent to
the number of FK (resp. PK) constraints in all chains of
the target table. Each bit in the bitmap corresponds to
a FK/PK constraint. It has three possible values, T , F
and N, indicating if the join status is successful, unsuc-
cessful or null. In Figure 6, for example, table S has two
FK constraints and two PK constraints, resulting in 2-bit
representations for both φ f k and φpk.

Touchstone also maintains the join information table
to track the status of joinability of primary keys based
on the bitmap representation φpk. In Figure 7, we show
two join information tables of primary keys R.r1 and S.s1
respectively. The join information table of R.r1 is main-
tained in the generation of table R, which is ready for
generating the foreign key S.s2 of table S. During the
generation of table S, the join information table of S.s1
is maintained for generating the foreign key T.t2 of table
T . There are two attributes in the entry of join informa-
tion table, i.e., bitmap and keys, indicating the status of
joinability and the corresponding satisfying primary key
values. Note that the keys in the entry may be empty
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(such entries will not be stored in practice), which means
there is no primary key with the desired joinability status.

Algorithm 2 Tuple generation
Input: Column generators Ḡ, constraint chains of the target

table Ω, join information tables of referenced primary key and
current primary key trpk and tpk
Output: Tuple r and join information table tpk

1: r.pk← a value assigned incrementally
2: r.columns← values output by column generators Ḡ
3: φ f k← N...N, φpk← N...N
4: for all constraint chain ω ∈Ω do
5: f lag← True
6: for all constraint c ∈ ω do
7: if (c is FILTER) && (c.predicate is False) then
8: f lag← False
9: else if c is PK then

10: φpk[i]← f lag // i is the bit index for c
11: else if (c is FK) && f lag then
12: if random[0,1)≥ c.ratio then f lag← False
13: φ f k[i]← f lag // i is the bit index for c

14: r. f k← a value selected from trpk satisfying φ f k
15: Add r.pk in the entry of tpk with bitmap φpk
16: return r and tpk

The tuple generation algorithm is listed in Algorithm
2. We present a running example of tuple generation in
Figure 7. A new tuple for table S is initialized as (S.s1 =
7,S.s2 =?,S.s3 = 16), φ f k = NN and φpk = NN (lines
1-3). The f lag is set to True before traversing each con-
straint chain (line 5), which is used to track if the predi-
cates from the precedent constraints of current chain are
fully met. On the first constraint chain, since the pred-
icate in the first FILTER constraint is S.s3 = 4, f lag is
then set to False (line 8), and algorithm does not need to
handle the next FK constraint (line 11). On the second
chain, the tuple satisfies the predicate S.s3≥ 15, resulting
in the update of bitmap representation as φpk = NT (line
10). On the third chain, after passing the first FILTER
constraint, the corresponding bit of next FK constraint
in φ f k is randomly flipped to F at the probability of 2

5
(lines 12-13), because the expected ratio of satisfying
tuples is 3

5 . The f lag is set to False (line 12) to reflect
the failure of full matching of precedent constraints for
later PK constraint. Then, the bit corresponding to next
PK constraint in φpk is set as F according to the value of
f lag (line 10). Therefore, the two bitmaps are finalized
as φ f k = FN and φpk = FT . Then the algorithm iden-
tifies (line 14) two entries matching φ f k = FN, namely
satisfying the T /F requirements on the corresponding
bits of φ f k, with bitmaps FT and FF respectively, in
the join information table of R.r1. Given these two en-
tries, it randomly selects (line 14) a foreign key, e.g., 6,
from four candidate referenced primary keys {2,7,6,8},
which are all appropriate as the foreign key S.s2. That
there is no entry in trpk satisfying the T /F requirements

Figure 7: Running example of tuple generation for table S

of φ f k, which is called mismatch case, is dealt in the rest
of the section. Finally, the algorithm updates (line 15)
the join information table of S.s1 by adding the primary
key S.s1 = 7 into the entry with bitmap FT .

For a table, suppose there are k non-key columns, m
constraints in the related constraint chains and n entries
in the join information table of referenced primary key.
The complexity of tuple generation mainly consists of
three parts, k times of calling random column generators
for filling the values of non-key columns, the traversing
over m constraints within chains for determining the join-
ability statuses of foreign key and primary key, and the
comparing with n bitmaps in the join information table
for searching the appropriate foreign key candidates. For
practical workloads, k, m and n are all small numbers,
e.g., k≤ 12, m≤ 20 and n≤ 40 for TPC-H [3] workload,
so our tuple generation is highly efficient.
Handling Mismatch Cases: For the data generation
of big tables, if a joinability status of the primary key
may occur, its occurrence can be considered as inevitable
based on the probability theory. However, there are still
some joinability statuses of the primary key that never
occur. For example, in Figure 7, the bitmap φpk for pri-
mary key S.s1 can not be T F due to the constraints, i.e.,
Filter[S.s3 = 16] and Filter[S.s3 ≥ 15]. Therefore, in the
tuple generation, it should be avoided to generate the
bitmap φ f k that does not have any matching entry in the
join information table of the referenced primary key. In
order to achieve this objective, the main idea is to add
rules to manipulate relevant FK constraints.

Figure 8 gives an example of adjustments to FK con-
straints for handling the mismatch case. There are three
FK constraints with the serial numbers of 1, 2 and 3 in the
three constraint chains, respectively. Since there are four
bitmaps, i.e., FTT, TTT, TFT, FTF, that are not presented
in the join information table of the referenced primary
key rpk corresponding to the foreign key f k of the target
table, three rules are added in two FK constraints to avoid
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Figure 8: An example of adjustments to FK constraints

producing any φ f k triggering the mismatch case. For ex-
ample, there is a rule [FT ← T ] added in the second FK
constraint, which indicates that the status of the second
FK constraint must be F if the status of the first FK con-
straint is T in the tuple generation. Since there are extra
F statuses forcibly generated by the added rule for the
second FK constraint, the actual ratio of tuples satisfy-
ing the corresponding predicate could be lower than the
expected ratio 0.6. Consequently, it is necessary to ad-
just the ratio in the second FK constraint for eliminating
the impact of the added rule. In this example, we adjust
the ratio as 0.65 = 0.6×0.4

0.4−0.1×0.3 , in which 0.4 is the ratio
of tuples satisfying the predicate in the second FILTER
constraint, 0.6× 0.4 is the cumulative probability of the
status T for the second FK constraint, 0.1 is the ratio of
tuples satisfying the two predicates in the first two FIL-
TER constraints, 0.3 is the ratio in the first FK constraint
and 0.1× 0.3 is the cumulative probability of the extra
F status generated by the rule. The general algorithm
of adjustments to FK constraints and the corresponding
analyses are presented in our online technical report [2].

To reflect the adjustments to FK constraints in the tu-
ple generation, minor modification is applied on the orig-
inal tuple generation algorithm on lines 12-13 in Algo-
rithm 2. Specifically, the updated algorithm first checks
all existing rules in current FK constraint. If there is a
rule which can be applied to the statuses of previous con-
straints, φ f k and f lag are updated according to the rule.
Otherwise, the algorithm updates φ f k and f lag by the
probability based on the adjusted ratio.
Management of Join Information: For generation of
a table, it can be completely parallel on multiple nodes
with multiple working threads on each node. Each work-
ing thread maintains its own join information table of the
primary key to avoid contention. But the join informa-
tion table of referenced primary key can be shared among
multiple working threads on each node. After the gener-
ation of the table, we merge the join information tables
maintained by the multiple working threads in distributed
controller as in Figure 2. But there are serious memory
and network problems for the space complexity of the
join information table is O(s) with s as the table size.

Since the relationship of foreign key and primary key
can be many to one and the intermediate result cardinal-
ity is the main factor that affects the query performance,

we design a compression method by storing less primary
key values in the join information table but still promise
the randomness of remaining values. Assuming the size
of keys in an entry of join information table is N, which
is hard to know in advance and may be very large. We
aim to store only L (L << N) values in the keys and
promise the approximately uniform distribution of these
L ones among all N values. The compression method is
implemented as follows: we store the first L arriving val-
ues in the keys, if any; and for the i-th (i > L) arriving
value, we randomly replace a value stored previously in
the keys with the probability of L/i. By such a method,
the space complexity of the join information table is re-
duced to O(n ∗ L), where n is the number of entries in
the join information table and L is the maximum allowed
size of keys in each entry. Since n is generally small, e.g.,
n≤ 40 for TPC-H workload, and L usually can be set to
thousands, the memory consumption and network trans-
mission of the join information table are acceptable.

5 Experiments
Environment. Our experiments are conducted on a clus-
ter with 8 nodes. Each node is equipped with 2 Intel
Xeon E5-2620 @ 2.0 GHz CPUs, 64GB memory and 3
TB HDD disk configured in RAID-5. The cluster is con-
nected using 1 Gigabit Ethernet.
Workloads. The TPC-H [3] is a decision support bench-
mark which contains the most representative queries of
analytical applications, while the transactional bench-
marks, e.g., TPC-C and TPC-W, do not contain queries
for analytical processing. So we take the TPC-H work-
load for our experiments. We compare Touchstone with
the state-of-the-art work MyBenchmark [15] with source
codes from the authors.2 The workloads for comparison
consist of 6 queries from TPC-H, including Q2,3,6,10,14,16.
Note that these queries are selected based on the per-
formance of MyBenchmark, which drops significantly
when other queries are included in the workloads. Touch-
stone, on the other hand, can easily handle all of the first
16 queries, i.e., Q1 to Q16, in TPC-H with excellent per-
formance. To the best of our knowledge, Touchstone pro-
vides the widest support to TPC-H workload, among all
the existing studies [6, 14, 5, 15].
Input Generation. To build valid inputs for experi-
ments, we generate the DBI and queries of TPC-H us-
ing its tools dbgen and qgen, respectively. And the DBI
of TPC-H is imported into the MySQL database. The
database schema of TPC-H is used as the input H. We
can easily obtain the input data characteristics D for all
columns from the DBI in MySQL. Given the TPC-H
queries, their physical query plans are obtained from
MySQL query parser and optimizer over the DBI. The

2We would like to thank Eric Lo for providing us the source code
of MyBenchmark.
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Figure 9: Comparison of data
generation throughput
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cardinality constraints corresponding to the operators in
query plans are then identified by running the queries
on the DBI in MySQL. The input workload character-
istics W are constructed by the parameterized TPC-H
queries and above cardinality constraints. Note that we
can generate databases with different scale factors using
the same input W by employing selectivities instead of
the absolute cardinalities in our input constraints.
Settings. As data is randomly generated according to the
column generators in Touchstone, the distribution of gen-
erated data may be difficult to satisfy the expectation for
small tables such as Region and Nation. We therefore re-
vise the sizes of Region and Nation from 5 to 500, and
from 25 to 2500 respectively. The cardinality constraints
involving these two tables are updated proportionally. In
addition, the small tables can also be pre-generated man-
ually. The error threshold (desired precision) and maxi-
mal iterations in query instantiation are set to 10−4 and
20 respectively. The default maximum allowed size L of
keys in join information table is set to 104.

5.1 Comparison with MyBenchmark
We compare Touchstone with MyBenchmark from four
aspects, including data generation throughput, scalability
to multiple nodes, memory consumption and capability
of complex workloads.

Figure 9 shows the data generation throughputs per
node of Touchstone and MyBenchmark as we vary the
number of nodes under different scale factors. Due to the
unacceptably long processing time of MyBenchmark, we
adopt smaller scale factors for it and large scale factors
for Touchstone. Overall, the data generation throughput
of Touchstone is at least 3 orders of magnitude higher
than that of MyBenchmark. This is because MyBench-
mark does not have a good parallelization or an efficient
data generation schema. Furthermore, as the number of
nodes increases from 1 to 5, the data generation through-
put per node of MyBenchmark decreases dramatically
for all three scale factors. Although the decline of data
generation throughput per node of Touchstone is obvious
too when SF = 1, Touchstone is linearly scalable (the
throughput per node is stable) when SF = 100. This is
because for small target database, e.g., SF = 1, the dis-
tributed maintenance rather than data generation dom-
inates the computational cost in Touchstone, while its

overhead comparatively diminishes by increasing the tar-
get database size.

Figure 10 reports the peak memory consumptions
of Touchstone and MyBenchmark under different data
scales. The experiment is conducted on 5 nodes with no
restriction on memory usage. The memory usage of My-
Benchmark mainly consists of two parts, namely, mem-
ory consumed by MyBenchmark Tool and memory con-
sumed by PostgreSQL for managing intermediate states.
The memory usage of Touchstone mainly includes mem-
ory for JVM itself and memory for maintaining join in-
formation. As shown in Figure 10, the memory con-
sumption of Touchstone is much lower than that of My-
Benchmark under the same scale factors. It is worth
noting that the memory consumption of Touchstone re-
mains almost constant when SF > 10. This is because for
Touchstone, the JVM itself occupies most of the mem-
ory, while the join information maintenance only spends
a tiny piece of memory.

Figure 11 and Figure 12 present the data generation
time (total running time) and global relative error sepa-
rately of Touchstone and MyBenchmark as we vary the
number of input queries with SF = 1. The input queries
are loaded in order of their serial numbers. The experi-
ment is carried out on 5 nodes. In Figure 11, it is obvious
that the data generation time of MyBenchmark increases
significantly as the number of queries increases. At
the same time, the generation time of Touchstone grows
very little when more queries are included, significantly
outperforming MyBenchmark. In Figure 12, the error
of Touchstone is much smaller than that of MyBench-
mark. Moreover, as there are more input queries, the
global relative error of Touchstone remains small with
little change, while the error of MyBenchmark has an
obvious rise. In summary, Touchstone is more capable of
supporting complex workloads than MyBenchmark.

It can be seen from previous experiments that My-
Benchmark can not be easily applied to generate the ter-
abyte scale database for complex workloads due to its
poor performance. In the following, we further demon-
strate the advantages of Touchstone by a series of exper-
iments using the workload of 16 queries, i.e., Q1 to Q16.

5.2 Performance Evaluation
In this section, we evaluate the impact of workload com-
plexity on query instantiation time and total running time
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Figure 16: Scalability to mul-
tiple nodes

in Touchstone, as well as the scalability to data scale and
multiple nodes of Touchstone.

Figure 13 shows the query instantiation time of Touch-
stone as we vary the number of queries with SF = 1 and
SF = 100, respectively. The input queries are loaded in
order of their serial numbers. The query instantiator is
deployed on a single node. As shown in Figure 13, even
when all 16 queries are used for input, query instantiation
is finished within 0.2s. And there is a minimal difference
in query instantiation time for SF = 1 and SF = 100, as
the complexity of query instantiation is independent of
data scale. Overall, the query instantiation time is only
correlated to the complexity of input workloads.

Figure 14 shows the total running time of Touchstone
as we vary the number of queries with SF = 500. Touch-
stone is deployed on 8 nodes. From the result, it can be
seen that the running time increases slowly as the number
of queries increases. For Q7 and Q8, there are relatively
more cardinality constraints over equi-join operators, so
the time increment is larger when we change from 6
queries to 8 queries. But when the number of queries
changed from 10 to 16, the time increment is almost in-
discernible, for Q11 to Q16 are simple, among which Q12
to Q15 have no cardinality constraints on equi-join oper-
ators3. Overall, the total running time increased by only
16% from 2 queries to 16 queries for 500GB data gen-
eration task, so Touchstone is insensitive to the workload
complexity.

Figure 15 presents the total running time of Touch-
stone under different scale factors with the input of 16
queries. Touchstone is deployed on 8 nodes. As shown
in Figure 15, Touchstone is linearly scalable to data size.
Because the generation of each tuple is independent and
the generated tuples need not be stored in memory, the
data generation throughput is stable for different data
scales. Moreover, the total runtime of Touchstone is less
than 25 minutes for SF = 1000 (1TB), so it is capable of
supporting industrial scale database generation.

Figure 16 presents the data generation throughputs per
node of Touchstone as we vary the number of nodes with
SF = 500. The input workload includes 16 queries. The
result shows that the data generation throughput per node

3Depending on the physical query plans of Q12 to Q15, the primary
keys in their equi-join operators are from the original tables, so all for-
eign keys must be joined and the sizes of output tuples are determined.

is approximatively unchanged as the number of nodes in-
creases, validating the linear scalability of Touchstone.
To the best of our knowledge, Touchstone is the first
query-aware data generator which can support full par-
allel data generation on multiple nodes.

5.3 Data Fidelity Evaluation
The data fidelity of synthetic database is evaluated by
relative error on cardinality constraints and performance
deviation on query latencies. We calculate the relative
error for each query in the similar way with global rel-
ative error, which only involves its own cardinality con-
straints. We compare the latency of query processing on
base database generated by dbgen against that on syn-
thetic database generated by Touchstone to show the per-
formance deviation.

Figure 17 shows the relative errors for Q1 to Q16 with
different scale factors from 1 to 5. The maximum error
among all 16 queries is less than 4%, and there are 14
queries with errors less than 1%. Figure 18 shows the
global relative error of all 16 queries as we vary the scale
factor, which is less than 0.2% for all scale factors. And
with the increase of scale factor, the global relative error
has a sharp decrease. Since data is randomly generated
by column generators, as expected by the probability the-
ory, the larger the data size, the smaller the relative error.

Figure 19 presents the performance deviations of all
16 queries with SF = 1. We vary the maximum allowed
size L of keys in the join information table from 103 to
105. We can see that the performance deviation is in-
conspicuous for all 16 queries, and the size of L has
no significant influence on query latencies. The result
strongly illustrates the correctness and usefulness of our
work. We are the first work to give such an experiment
to verify the fidelity of the generated DBI.
More experimental results are available in our online
technical report [2], which demonstrate the effectiveness
for data generation of non-equi-join workloads, handling
mismatch cases, the compression method on join infor-
mation table, and other benchmark workloads.

6 Related Work
There are many data generators [7, 12, 11, 4, 20, 23, 1, 9]
which only consider the data characteristics of the tar-
get database. For example, Alexander et al. [4] proposes
pseudo-random number generators to realize the parallel
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data generation. Torlak [23] supports the scalable gener-
ation of test data from a rich class of multidimensional
models. However, all these data generators can not gen-
erate test databases with the specified workload charac-
teristics on target queries.

There are query-aware data generators [6, 14, 5, 15],
among which [6, 14, 15] are a series of work. QA-
Gen [6] is the first query-aware data generator, but for
each query it generates an individual DBI and its CSP
(constraint satisfaction program) has the usability limita-
tions as declared in experimental results. WAGen [14]
makes a great improvement that it generates m (≤ n)
DBIs with n input queries, but WAGen can’t guarantee
that only one DBI is generated and still has CSP perfor-
mance problem. Though MyBenchmark [15] has done
a lot of performance optimization, generating one DBI
can not be promised for multiple queries and the perfor-
mance is still unacceptable for the generation of terabyte
scale database. DCGen [5] uses a novel method to rep-
resent data distribution with ideas from the probabilistic
graphical model. But DCGen is weak in support of for-
eign key constraint, and it cannot easily support parallel
data generation in a distributed environment.

There are some interesting non-relational data genera-
tors [18, 8, 13, 19, 10]. For example, Olston et al. [18] in-
troduces how to generate example data for dataflow pro-
grams. Sara [8] generates structural XML documents.
[13, 19] are synthetic graph generators. Chronos [10] can
generate stream data for real time applications. In ad-
dition, there are query generation works [17, 16] which
are partly similar to us, but they generate queries satisfy-
ing the specified cardinality constraints over an existing
DBI. Moreover, the dataset scaling works [22, 25] can
serve part of our targets, which scale up/down a given
DBI with similar column correlations.

7 Discussion and Conclusion
Limitations. Touchstone aims to support the most com-
mon workloads in real world applications. Below we
list the scenarios that we cannot support currently. (1)

Touchstone does not support filters on key columns. Pri-
mary and foreign keys are identifiers of tuples and gen-
erally have no physical meaning, so the filters which are
representations of business logics usually do not involve
key columns. (2) Equality constraints over filters involv-
ing multiple columns are not supported in Touchstone.
The equality predicate with multiple columns for filter
is a very strict constraint, and has not been found in
workloads of standard benchmarks. (3) Equi-joins on
columns with no reference constraint are not supported
in our work. This is because the equi-join is usually ap-
plied on the pair of primary and foreign keys in prac-
tical workloads, which is also the assumption of many
works [5, 24, 25]. (4) Touchstone does not support the
database schema with cyclic reference relationship. In
our data generation process, generating foreign keys re-
quires the join information tables of corresponding refer-
enced primary keys, so the primary-foreign-key depen-
dencies must form a direct acyclic graph (DAG), which
is also the precondition of DCGen [5].

Privacy issue. Our work can help to protect privacy to
some extend by removing query parameter values or us-
ing approximate query intermediate cardinalities. How-
ever, if the database statistics and workload characteris-
tics are strictly related to privacy issues in some cases,
it will not be a good way to use this kind of workload-
aware data generators for performance testing.

In this paper we introduce Touchstone [2], a query-
aware data generator with characteristics of completely
parallelizable and bounded usage to memory. And
Touchstone is linearly scalable to computing resource
and data scale. Our future work is to support more opera-
tors, e.g., intersect and having, for covering the complex
queries of TPC-DS, which has not be well supported by
any existing query-aware data generation work.
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