
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Accelerating PageRank using
Partition-Centric Processing

Kartik Lakhotia, University of Southern California; Rajgopal Kannan, US Army Research Lab;
Viktor Prasanna, University of Southern California

https://www.usenix.org/conference/atc18/presentation/lakhotia

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Accelerating PageRank using Partition-Centric Processing
Kartik Lakhotia1, Rajgopal Kannan2, Viktor Prasanna1

1Ming Hsieh Department of Electrical Engineering, University of Southern California
2US Army Research Lab

1{klakhoti, prasanna}@usc.edu, 2rajgopal.kannan.civ@mail.Mil

Abstract
PageRank is a fundamental link analysis algorithm that
also functions as a key representative of the performance
of Sparse Matrix-Vector (SpMV) multiplication. The tra-
ditional PageRank implementation generates fine granu-
larity random memory accesses resulting in large amount
of wasteful DRAM traffic and poor bandwidth utiliza-
tion. In this paper, we present a novel Partition-Centric
Processing Methodology (PCPM) to compute PageRank,
that drastically reduces the amount of DRAM commu-
nication while achieving high sustained memory band-
width. PCPM uses a Partition-centric abstraction cou-
pled with the Gather-Apply-Scatter (GAS) programming
model. By carefully examining how a PCPM based
implementation impacts communication characteristics
of the algorithm, we propose several system optimiza-
tions that improve the execution time substantially. More
specifically, we develop (1) a new data layout that signif-
icantly reduces communication and random DRAM ac-
cesses, and (2) branch avoidance mechanisms to get rid
of unpredictable data-dependent branches.

We perform detailed analytical and experimental eval-
uation of our approach using 6 large graphs and demon-
strate an average 2.7× speedup in execution time and
1.7× reduction in communication volume, compared to
the state-of-the-art. We also show that unlike other GAS
based implementations, PCPM is able to further reduce
main memory traffic by taking advantage of intelligent
node labeling that enhances locality. Although we use
PageRank as the target application in this paper, our ap-
proach can be applied to generic SpMV computation.

1 Introduction
Graphs are the preferred choice of data representation
in many fields such as web and social network analy-
sis [9, 3, 29, 10], biology [17], transportation [15, 4] etc.
The growing scale of problems in these areas has gen-
erated substantial research interest in high performance
graph analytics. A large fraction of this research is fo-
cused on shared memory platforms because of their low
communication overhead compared to distributed sys-
tems [26]. High DRAM capacity in modern systems fur-
ther allows in-memory processing of large graphs on a
single server [35, 33, 37]. However, efficient utilization

of compute power is challenging even on a single node
because of the (1) low computation-to-communication
ratio and, (2) irregular memory access patterns of graph
algorithms. The growing disparity between CPU speed
and DRAM bandwidth, termed memory wall [42], has
become a key issue in high performance graph analytics.

PageRank is a quintessential algorithm that exem-
plifies the performance challenges posed by graph
computations. It iteratively performs Sparse Matrix-
Vector (SpMV) multiplication over the adjacency ma-
trix of the target graph and the current PageRank vec-
tor
−→
PR to generate new PageRank values. The irregu-

larity in adjacency matrices leads to random accesses to−→
PR with poor spatial and temporal locality. The result-
ing cache misses and communication volume become
the performance bottleneck for PageRank computation.
Since many graph algorithms can be similarly modeled
as a series of SpMV operations [37], optimizations on
PageRank can be easily generalized to other algorithms.

Recent works have proposed the use of Gather-Apply-
Scatter (GAS) model to improve locality and reduce
communication for SpMV and PageRank [43, 11, 5].
This model splits computation into two phases: scatter
current source node values on edges and gather propa-
gated values on edges to compute new values for des-
tination nodes. The 2-phased approach restricts access
to either the current

−→
PR or new

−→
PR at a time. This pro-

vides opportunities for cache-efficient and lock-free par-
allelization of the algorithm.

We observe that although this approach exhibits sev-
eral attractive features, it also has some drawbacks lead-
ing to inefficient memory accesses, both quantitative as
well as qualitative. First, we note that while scattering, a
vertex repeatedly writes its value on all outgoing edges,
resulting in large number of reads and writes. We also
observe that the Vertex-centric graph traversal in [11, 5]
results in random DRAM accesses and the Edge-centric
traversal in [34, 43] scans edge list in coordinate format
which increases the number of reads.

Our premise is that by changing the focus of compu-
tation from a single vertex or edge to a cacheable group
of vertices (partition), we can effectively identify and re-
duce redundant edge traversals as well as avoid random
accesses to DRAM, while still retaining the benefits of
GAS model. Based on these insights, we develop a new

USENIX Association 2018 USENIX Annual Technical Conference 427

Partition-Centric approach to compute PageRank. The
major contributions of our work are:

1. We propose a Partition-Centric Processing Method-
ology (PCPM) that propagates updates from nodes
to partitions and reduces the redundancy associated
with GAS model.

2. By carefully evaluating how a PCPM based imple-
mentation impacts algorithm behavior, we develop
several system optimizations that substantially ac-
celerate the computation, namely, (a) a new data
layout that drastically reduces communication and
random memory accesses, (b) branch avoidance
mechanisms to remove unpredictable branches.

3. We demonstrate that PCPM can take advantage of
intelligent node labeling to further reduce the com-
munication volume. Thus, PCPM is suitable even
for high locality graphs.

4. We conduct extensive analytical and experimental
evaluation of our approach using 6 large datasets.
On a 16-core shared memory system, PCPM
achieves 2.1×−3.8× speedup in execution time and
1.3×−2.5× reduction in main memory communi-
cation over state-of-the-art.

5. We show that PCPM can be easily extended
to weighted graphs and generic SpMV computa-
tion (section 3.5) even though it is described in the
context of PageRank algorithm in this paper.

2 Background and Related Work

2.1 PageRank Computation
In this section, we describe how PageRank is calculated
and what makes it challenging for the conventional im-
plementation to achieve high performance. Table 1 lists
a set of notations that we use to mathematically represent
the algorithm.

Table 1: List of graph notations

G(V,E) Input directed graph
A adjacency matrix of G(V,E)

Ni(v) in-neighbors of vertex v
No(v) out-neighbors of vertex v
−→
PRi PageRank value vector after ith iteration
−−→
SPR scaled PageRank vector

(
SPR(v) = PRi(v)

|No(v)|
)

d damping factor in PageRank algorithm

PageRank is computed iteratively. In each iteration,
all vertex values are updated by the new weighted sum
of their in-neighbors’ PageRank, as shown in equation 1.

PRi+1(v) =
1−d
|V |

+ d ∑
u∈Ni(v)

PRi(u)∣∣No(u)
∣∣ (1)

PageRank is typically computed in pull direction [35,
38, 37, 30] where each vertex pulls the value of its in-
neighbors and accumulates into its own value, as shown
in algorithm 1. This corresponds to traversing A in a
column-major order and computing the dot product of
each column with the scaled PageRank vector

−−→
SPR.

Algorithm 1 Pull Direction PageRank (PDPR) Iteration

1: for v ∈V do
2: temp = 0
3: for all u ∈ Ni(v) do
4: temp+= PR[u]

5: PRnext [v] =
(1−d)×|V |−1 + d×temp

|No(v)|
6: swap(PR,PRnext)

In the pull direction implementation, each column
completely owns the computation of the corresponding
element in the output vector. This enables all columns of
A to be traversed asynchronously in parallel without the
need to store partial sums in memory. On the contrary, in
the push direction, each node updates its out-neighbors
by adding its own value to them. This requires a row-
major traversal of A and storage for partial sums since
each row contributes partially to multiple elements in the
output vector. Further, synchronization is needed to en-
sure conflict-free processing of multiple rows that update
the same output element.
Performance Challenges: Sparse matrix layouts like
Compressed Sparse Column (CSC) store all non-zero el-
ements of a column sequentially in memory allowing fast
column-major traversal of A [36]. However, the neigh-
bors of a node can be scattered anywhere in the graph
and reading their values results in random accesses (sin-
gle or double word) to

−−→
SPR in pull direction computa-

tion. Similarly, the push direction implementation uses
a Compressed Sparse Row (CSR) format for fast row-
major traversal of A but suffers from random accesses
to the partial sums vector. These low locality and fine
granularity accesses incur high cache miss ratio and con-
tribute a large fraction to the overall memory traffic as
shown in fig. 1.

2.2 Related Work

The performance of PageRank depends heavily on the
locality in memory access patterns of the graph (which
we refer to as graph locality). Since node labeling has
significant impact on graph locality, many prior works
have investigated the use of node reordering or cluster-
ing [7, 22, 6, 2] to improve the performance of graph
algorithms. Reordering based on spatial and tempo-
ral locality aware placement of neighbors [39, 20] has

428 2018 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

gplus pld web kron twitter sd1

Pe
rc

en
ta

ge
 o

f
D

R
A

M
 C

o
m

m
u

n
ic

at
io

n

Datasets

Figure 1: Percentage contribution of vertex value ac-
cesses to the total DRAM traffic in a PageRank iteration.

been shown to further outperform the well known clus-
tering and tree-based techniques. However, such so-
phisticated algorithms also introduce substantial pre-
processing overhead which limits their practicability. In
addition, scale-free graphs like social networks are less
tractable by reordering transformations because of their
skewed degree distribution.

Cache Blocking (CB) is another technique used to ac-
celerate graph processing [41, 32, 45]. CB induces local-
ity by restricting the range of randomly accessed nodes
and has been shown to reduce cache misses [24]. CB
partitions A along rows, columns or both into multiple
block matrices. However, SpMV computation with CB
requires the partial sums to be re-read for each block.
The extremely sparse nature of these block matrices also
reduces the reuse of cached vertex data [31].

Gather-Apply-Scatter (GAS) is another popular model
incorporated in many graph analytics frameworks [23,
34, 13]. It splits the analytic computation into scatter
and gather phases. In the scatter phase, source vertices
transmit updates on all of their outgoing edges and in the
gather phase, these updates are processed to compute
new values for corresponding destination vertices. The
updates for PageRank algorithm correspond to scaled
PageRank values defined earlier in section 2.1.

Binning exploits the 2-phased computation model by
storing the updates in a semi-sorted manner. This in-
duces spatio-temporal locality in access patterns of the
algorithm. Binning can be used in conjunction with
both Vertex-centric or Edge-centric paradigms. Zhou
et al. [43, 44] use a custom sorted edge list with Edge-
centric processing to reduce DRAM row activations and
improve memory performance. However, their sorting
mechanism introduces a non-trivial pre-processing cost
and imposes the use of COO format. This results in
larger communication volume and execution time than
the CSR based Vertex-centric implementations [5, 11].

GAS model is also inherently sub-optimal when used
with either Vertex-centric or Edge-centric abstractions.
This is because it traverses the entire graph twice in

each iteration. Nevertheless, Binning with Vertex-centric
GAS (BVGAS) is the state-of-the-art methodology on
shared memory platforms [5, 11] and we use it as base-
line for comparison in this paper.

3 Partition-Centric Processing

We propose a new Partition-Centric Processing Method-
ology (PCPM) that significantly improves the efficiency
of processor-memory communication over that achiev-
able with current Vertex-centric or Edge-centric meth-
ods. We define partitions as disjoint sets of contigu-
ously labeled nodes. The Partition-Centric abstraction
then perceives the graph as a set of links from each node
to the partitions corresponding to the neighbors of the
node. We use this abstraction in conjunction with the
2-phased Gather-Apply-Scatter (GAS) model.

During the PCPM scatter phase, each thread processes
one partition at a time. Processing a partition p means
propagating messages from nodes in p to the neighbor-
ing partitions. A message to a partition p′ comprises of
the update value of source node (PR[v]) and the list of
out-neighbors of v that lie in p′. PCPM caches the vertex
data of p and streams the messages to the main memory.
The messages from p are generated in a Partition-centric
manner i.e. messages from all nodes in p to a neighbor-
ing partition p′ are generated consecutively and are not
interleaved with messages to any other partition.

During the gather phase, each thread scans all mes-
sages destined to one partition p at a time. A message
scan applies the update value to all nodes in the neighbor
list of that message. Partial sums of nodes in p are cached
and messages are streamed from the main memory. Af-
ter all messages to p are scanned, the partial sums (new
PageRank values) are written back to DRAM.

With static pre-allocation of distinct memory spaces
for each partition to write messages, PCPM can asyn-
chronously scatter or gather multiple partitions in paral-
lel. In this section, we provide a detailed discussion on
PCPM based computation and the required data layout.

3.1 Graph Partitioning

We employ a simple approach to divide the vertex set
V into partitions. We create equisized partitions of size
q where partition Pi owns all the vertices with index
∈ [i ∗ q,(i + 1) ∗ q) as shown in fig. 2a. As discussed
later, the PCPM abstraction is built to easily take ad-
vantage of more sophisticated partitioning schemes and
deliver further performance improvements (the trade-off
is time complexity of partitioning versus performance
gains). As we show in the results section, even the sim-
ple partitioning approach described above delivers sig-
nificant performance gains over state-of-the-art methods.

USENIX Association 2018 USENIX Annual Technical Conference 429

Each partition is also allocated a contiguous memory
space called bin to store updates (update bins) and cor-
responding list of destination nodes (destID bins) in the
incoming messages. Since each thread in PCPM scat-
ters or gathers only one partition at a time, the random
accesses to vertex values or partial sums are limited to
address range equal to the partition size. This improves
temporal locality in access pattern and in turn, overall
cache performance of the algorithm.

Before beginning PageRank computation, each parti-
tion calculates the offsets (address in bins where it must
start writing from) into all update bins and destID bins.
Our scattering strategy dictates that the partitions write
to bins in the order of their IDs. Therefore, the offset for
a partition Pi into any given bin is the sum of the number
of values that all partitions with ID < i are writing into
that bin. For instance, in fig. 2, the offset of partition P2
into update bins[0] is 0 (since partitions P0 and P1 do not
write to bin 0). Similarly, its offset into update bins[1]
and update bins[2] is 1 (since P1 writes one update to
bin 1 and P0 writes one update to bin 2). Offset compu-
tation provides each partition fixed and disjoint locations
to write messages. This allows PCPM to parallelize par-
tition processing without the need of locks or atomics.

6

5

4

3

2

1

07

8

0
1
2

3
4
5

6
7
8

Partitions

P0 P1 P2

(a) Example graph with partitions of size 3

PR[3]

PR[6]

PR[6]

PR[7]

2

0

1

2

Bin 0

Updates Dest. ID

4

3

4

5

Bin 1

Updates Dest. ID

PR[2]

PR[7]

8

8

Updates Dest. ID

Bin 2

(b) Bins store update value and list of destination nodes

Figure 2: Graph Partitioning and messages inserted in
bins during scatter phase

Note that since the destination node IDs written in the
first iteration remain unchanged over the course of algo-
rithm, they are written only once and reused in subse-
quent iterations. The reuse of destination node IDs along
with the specific system optimizations discussed in sec-
tion 3.2 and 3.3 enables PCPM to traverse only a fraction
of the graph during scatter phase. This dramatically re-
duces the number of DRAM accesses and gets rid of the
inherent sub-optimality of GAS model.

3.2 Partition-Centric Update Propagation

The unique abstraction of PCPM naturally leads to trans-
mitting a single update from a node to a neighboring par-
tition. In other words, even if a node has multiple neigh-
bors in a partition, it inserts only one update value in
the corresponding update bins during scatter phase (al-
gorithm 2). Fig. 3 illustrates the difference between
Partition-Centric and Vertex-centric scatter for the exam-
ple graph shown in fig. 2a.

PCPM manipulates the Most Significant Bit (MSB)
of destination node IDs to indicate the range of nodes
in a partition that use the same update value. In the
destID bins, it consecutively writes IDs of all nodes
in the neighborhood of same source vertex and sets
the MSB of first ID in this range to 1 for demarca-
tion (fig. 3b). Since MSB is reserved for this function-
ality, PCPM supports graphs with upto 2 billion nodes
instead of 4 billion for 4 Byte node IDs. However, to the
best of our knowledge, this is enough to process most of
the large publicly available datasets.

Propagate Updates
on all Edges Updates

PR[6]

PR[7]

PR[7]

PR[7]

Dest. ID

2

0

1

2

Bin 0

6

7

(a) Scatter in Vertex-centric GAS

6

7

8

Updates

PR[6]

PR[7]

MSB

1

1

0

0

Non-redundant
updates only

P2

Bin 0

Dest. ID

2

0

1

2
{

(b) Scatter in PCPM

Figure 3: PCPM decouples update bins and destID bins
to avoid redundant update value propagation

The gather phase starts only after all partitions are pro-
cessed in the scatter phase. PCPM gather function se-
quentially reads updates and node IDs from the bins of
the partition being processed. When gathering partition
Pi, an update value PR[v] should be applied to all out-
neighbors of v that lie in Pi. This is done by checking the
MSB of node IDs to determine whether to apply the pre-
viously read update or to read the next update, as shown
in algorithm 2. The MSB is then masked to generate the
true ID of destination node whose partial sum is updated.

430 2018 USENIX Annual Technical Conference USENIX Association

Algorithm 2 describes PCPM based PageRank com-
putation using a row-wise partitioned CSR format for ad-
jacency matrix A. Note that PCPM only writes updates
for some edges in a node’s adjacency list, specifically the
first outgoing edge to a partition. The remaining edges to
that partition are unused. Since CSR stores adjacencies
of a node contiguously, the set of first edges to neighbor-
ing partitions is interleaved with other edges. Therefore,
we have to scan all outgoing edges of each vertex dur-
ing scatter phase to access this set, which decreases ef-
ficiency. Moreover, the algorithm can potentially switch
bins for each update insertion, leading to random writes
to DRAM. Finally, the manipulation of MSB in node
indices introduces additional data dependent branches
which hurts the performance. Clearly, CSR adjacency
matrix is not an efficient data layout for graph processing
using PCPM. In the next section, we propose a PCPM-
specific data layout.

Algorithm 2 PageRank iteration in PCPM using CSR
format. Writing of destID bins is not shown here.

q→ partition size, P→ set of partitions
1: for all p ∈ P do in parallel . Scatter
2: for all v ∈ p do
3: prev bin← ∞

4: for all u ∈ No(v) do
5: if bu/qc 6= prev bin then
6: insert PR[v] in update bins[bu/qc]
7: prev bin← bu/qc
8: PR[:]← 0
9: for all p ∈ P do in parallel . Gather

10: while destID bins[p] 6= /0 do
11: pop id from destID bins[p]
12: if MSB(id) 6= 0 then
13: pop update from update bins[p]
14: PR[id & bitmask] += update
15: for all v ∈V do in parallel . Apply
16: PR[v]← (1−d)/|V | + d×PR[v]

|No(v)|

3.3 Data Layout Optimization
In this subsection, we describe a new bipartite Partition-
Node Graph (PNG) data layout that brings out the true
Partition-Centric nature of PCPM. During the scatter
phase, PNG prevents unused edge reads and ensures that
all updates to a bin are streamed together before switch-
ing to another bin.

We exploit the fact that once destID bins are written,
the only required information in PCPM is the connectiv-
ity between nodes and partitions. Therefore, edges going
from a source to all destination nodes in a single parti-
tion can be compressed into one edge whose new desti-
nation is the corresponding partition number. This gives

P2

P2

P1

P0

P12 3
6

7
Graph between P
and nodes in P0

Graph between P
and nodes in P1

Graph between P
and nodes in P2

Figure 4: Partition-wise construction of PNG G′(P,V,E ′)
for graph G(V,E) (fig. 2a).

∣∣E ′∣∣ is much smaller than |E|.

rise to a bipartite graph G′ with disjoint vertex sets V and
P (where P = {P0, . . . ,Pk−1} represents the set of parti-
tions in the original graph), and a set of directed edges
E ′ going from V to P. Such a transformation has the
following effects:

1. Eff1→ the unused edges in original graph are removed

2. Eff2→ the range of destination IDs reduces from |V |
to |P|.

The advantages of Eff1 are obvious but those of Eff2 will
become clear when we discuss the storage format and
construction of PNG.

The compression step reduces memory traffic by elim-
inating unused edge traversal. However note that scatters
to a bin from source vertices in a partition are still in-
terleaved with scatters to other bins. This can lead to
random DRAM accesses during the scatter phase pro-
cessing of a (source) partition. We resolve this problem
by transposing the adjacency matrix of bipartite graph
G′. The rows of the transposed matrix represent edges
grouped by destination partitions which enables stream-
ing updates to one bin at a time. This advantage comes at
the cost of random accesses to source node values during
the scatter phase. To prevent these random accesses from
going to DRAM, we construct PNG on a per-partition ba-
sis i.e. we create a separate bipartite graph for each parti-
tion Pi with edges between P and the nodes in Pi (fig. 4).
By carefully choosing q to make partitions cacheable, we
ensure that all requests to source nodes are served by the
cache resulting in zero random DRAM accesses.

Eff2 is crucial for transposition of bipartite graphs in
all partitions. The number of offsets required to store a
transposed matrix in CSR format is equal to the range
of destination node IDs. By reducing this range, Eff2 re-
duces the storage requirement for offsets of each matrix
from O(|V |) to O(|P|). Since there are |P| partitions, each
having one bipartite graph, the total storage requirement
for edge offsets in PNG is O(|P|2) instead of O(|V |×|P|).

Although PNG construction looks like a 2-step ap-
proach, we actually merge compression and transposi-
tion into a single step. We first scan the outgoing edges
of all nodes in a partition and individually compute the
in-degree of all the destination partitions while discard-

USENIX Association 2018 USENIX Annual Technical Conference 431

ing unused edges. A prefix sum of these degrees is car-
ried out to compute the offsets array for CSR matrix. The
same offsets can also be used to allocate disjoint writing
locations into the bins of destination partitions. In the
next scan, the edge array in CSR is filled with source
node IDs completing both compression and transposi-
tion. PNG construction can be easily parallelized over
all partitions to accelerate the pre-processing effectively.

Algorithm 3 shows the pseudocode for PCPM scatter
phase using PNG layout. Unlike algorithm 2, the scat-
ter function in algorithm 3 does not contain data depen-
dent branches to check and discard unused edges. Using
PNG provides drastic performance gains in PCPM scat-
ter phase with little pre-processing overhead.

Algorithm 3 PCPM scatter phase using PNG layout

G′(P,V,E ′)→ PNG, N p
i (p′)→ in-neighbors of par-

tition p′ in bipartite graph of partition p
1: for all p ∈ P do in parallel . Scatter
2: for all p′ ∈ P do
3: for all u ∈ N p

i (p′) do
4: insert PR[u] into update bins[p′]

3.4 Branch Avoidance
Data dependent branches have been shown to have sig-
nificant impact on performance of graph algorithms [14]
and PNG removes such branches in PCPM scatter phase.
In this subsection, we propose a branch avoidance mech-
anism for the PCPM gather phase. Branch avoidance en-
hances the sustained memory bandwidth but does not im-
pact the amount of DRAM communication.

Note that the pop operations shown in algorithm 2 are
implemented using pointers that increment after read-
ing an entry from the respective bin. Let destID ptr
and update ptr be the pointers to destID bins[p] and
update bins[p], respectively. Note that the destID ptr
is incremented in every iteration whereas the update ptr
is only incremented if MSB[id] 6= 0.

To implement the branch avoiding gather function, in-
stead of using a condition check over MSB(id), we add it
directly to update ptr. When MSB(id) is 0, the pointer
is not incremented and the same update value is read
from cache in the next iteration; when MSB(id) is 1,
the pointer is incremented executing the pop operation
on update bins[p]. The modified pseudocode for gather
phase is shown in algorithm 4.

3.5 Weighted Graphs and SpMV
PCPM can be easily extended for computation on
weighted graphs by storing the edge weights along with
destination IDs in destID bins. These weights can be
read in the gather phase and applied to the source node
value before updating the destination node. PCPM can

Algorithm 4 Branch Avoiding gather function in PCPM

1: PR[:] = 0
2: for all p ∈ P do in parallel . Gather
3: {destID ptr, update ptr}← 0
4: while destID ptr < size(destID bins[p]) do
5: id← destID bins[p][destID ptr ++]
6: update ptr += MSB(id)
7: id← id & bitmask
8: PR[id] += update bins[p][update ptr]

also be extended to generic SpMV with non-square ma-
trices by partitioning the rows and columns separately.
In this case, the outermost loops in scatter phase (algo-
rithm 3) and gather phase (algorithm 4) will iterate over
row partitions and column partitions of A, respectively.

4 Comparison with Vertex-centric GAS

The Binning with Vertex-centric GAS (BVGAS)
method allocates multiple bins to store incoming mes-
sages ((update,destID) pairs). If bin width is q, then
all messages destined to v ∈ [i ∗ q,(i+ 1) ∗ q) are writ-
ten in bin i. The scatter phase traverses the graph in
a Vertex-centric fashion and inserts the messages in re-
spective bins of the destination vertices. Number of bins
is kept small to allow insertion points for all bins to fit in
cache, providing good spatial locality. The gather phase
processes one bin at a time as shown in algorithm 5, and
thus, enjoys good temporal locality if bin width is small.

Algorithm 5 PageRank Iteration using BVGAS

q→ bin width, B→ no. of bins
1: for v ∈V do . Scatter
2: PR[v] = PR[v]/

∣∣No(v)
∣∣

3: for all u ∈ No(v) do
4: insert (PR[v],u) into bins[bu/qc]
5: PR[:] = 0
6: for b = 0 to B−1 do . Gather
7: for all (update,dest) in bins[b] do
8: PR[dest] = PR[dest]+update
9: for all v ∈V do . Apply

10: PR[v] = (1−d)
|V | + d×PR[v]

Unlike algorithm 5, in our BVGAS implementation,
we write the destination IDs only in the first iteration.
We also use small cached buffers to store updates before
writing to DRAM. This ensures full cache line utilization
and reduces communication during scatter phase [5].

Irrespective of all the locality advantages and opti-
mizations, BVGAS inherently suffers from redundant
reads and writes of a vertex value on all of its outgoing

432 2018 USENIX Annual Technical Conference USENIX Association

Table 2: List of model parameters

Original Graph G(V,E) PNG layout G′(P,V,E ′)
n no. of vertices (|V |) k no. of partitions (|P|)
m no. of edges (|E|) r compression ratio (|E|/

∣∣E ′∣∣)
Architecture Software

cmr
cache miss ratio for source

value reads in PDPR dv sizeof (updates/PageRank value)

l sizeof (cache line) di sizeof (node or edge index)

edges. This redundancy manifests itself in the form of
BVGAS’ inability to utilize high locality in graphs with
optimized node labeling. PCPM on the other hand, uses
graph locality to reduce the fraction of graph traversed in
scatter phase. Unlike PCPM, the Vertex-centric traversal
in BVGAS can also insert consecutive updates into dif-
ferent bins. This leads to random DRAM accesses and
poor bandwidth utilization. We provide a quantitative
analysis of these differences in the next section.

5 Analytical Evaluation

We derive performance models to compare PCPM
against conventional Pull Direction PageRank (PDPR)
and BVGAS. Our models provide valuable insights into
the behavior of different methodologies with respect to
varying graph structure and locality. Table 2 defines the
parameters used in the analysis. We use a synthetic kro-
necker graph [28] of scale 25 (kron) as an example for
illustration purposes.

5.1 DRAM Communication

We analyze the amount of data exchanged with main
memory per iteration of PageRank. We assume that data
is accessed in quantum of one cache line and BVGAS
exhibits full cache line utilization. Since destination in-
dices are written only in the first iteration for PCPM and
BVGAS, they are not accounted for in this model.
PDPR: The pull technique scans all edges in the graph
once (algorithm 1). For a CSR format, this requires read-
ing n edge offsets and m source node indices. PDPR
also reads m source node values that incur cache misses
generating mcmrl Bytes of DRAM traffic. Outputting
new PageRank values generates ndv Bytes of writes to
DRAM. The total communication volume for PDPR is:

PDPRcomm = m(di + cmrl)+n(di +dv) (2)

BVGAS: The scatter phase (algorithm 5) scans the graph
and writes updates on all outgoing edges of the source
node, thus communicating (n+m)di +(n+m)dv Bytes.
The gather phase loads updates and destination node IDs
on all the edges generating m(di +dv) Bytes of read traf-
fic. At the end of gather phase, ndv Bytes of new PageR-

ank values are written in the main memory. Total com-
munication volume for BVGAS is therefore, given by:

BV GAScomm = 2m(di +dv)+n(di +2dv) (3)

PCPM with PNG: Number of edge offsets in bipartite
graph of each partition is k. Thus, in the scatter phase (al-
gorithm 3), a scan of PNG reads (k× k + m/r)di Bytes.
The scatter phase further reads n PageRank values and
writes updates on m/r edges. The gather phase (algo-
rithm 4) reads m destination IDs and m/r updates followed
by n new PageRank value writes. Net communication
volume in PCPM is given by:

PCPMcomm = m

(
di

(
1+

1
r

)
+

2dv

r

)
+ k2di +2ndv

(4)
Comparison: Performance of pull technique depends
heavily on cmr. In the worst case, all accesses are
cache misses i.e. cmr = 1 and in best case, only cold
misses are encountered to load the PageRank values in
cache i.e. cmr = ndv/ml. Assuming k2 � n� m, we get
PDPRcomm ∈ [mdi,m(di + l)]. On the other hand, com-
munication for BVGAS stays constant. With θ(m) addi-
tional loads and stores, BV GAScomm can never reach the
lower bound of PDPRcomm. Comparatively, PCPMcomm
achieves optimality when for every vertex, all outgoing
edges can be compressed into a single edge i.e. r = m/n.
In the worst case when r = 1, PCPM is still as good as
BVGAS and we get PCPMcomm ∈ [mdi,m(2di + 2dv)].
Unlike BVGAS, PCPMcomm achieves the same lower
bound as PDPRcomm.

Analyzing equations 2 and 3, we see that BVGAS is
profitable compared to PDPR when:

cmr >
di +2dv

l
(5)

In comparison, PCPM offers a more relaxed constraint
on cmr (by a factor of 1/r) becoming advantageous when:

cmr >
di +2dv

rl
(6)

The RHS in eq. 5 is constant indicating that BVGAS
is advantageous for low locality graphs. With optimized
node ordering, we can reduce cmr and outperform BV-
GAS. On the contrary, r ∈ [1,m/n] in the RHS of eq. 6
is a function of locality. With an optimized node label-
ing, r also increases and enhances the performance of
PCPM. Fig. 5 shows the effect of r on predicted DRAM
communication for the kron graph. Obtaining an optimal
nodel labeling that makes r = m/n might be very difficult
or even impossible for some graphs. However, as can
be observed from fig. 5, DRAM traffic decreases rapidly
for r ≤ 5 and converges slowly for r > 5. Therefore, a
node reordering that can achieve r≈ 5 is good enough to
optimize communication volume in PCPM.

USENIX Association 2018 USENIX Annual Technical Conference 433

r=3.13 for
original labeling

0

4

8

12

16

20

24

0 5 10 15 20 25 30 35

D
R

A
M

 c
o

m
m

u
n

ic
at

io
n

 (
G

B
)

Compression Ratio r

Figure 5: Predicted DRAM traffic for kron graph with
n= 33.5 M, m= 1070 M, k = 512 and di = dv = 4 Bytes.

5.2 Random Memory Accesses
We define a random access as a non-sequential jump in
the address of memory location being read from or writ-
ten to DRAM. Random accesses can incur latency penal-
ties and negatively impact the sustained memory band-
width. In this subsection, we model the amount of ran-
dom accesses performed by different methodologies in a
single PageRank iteration.
PDPR: Reading edge offsets and source node IDs in pull
technique is completely sequential because of the CSR
format. However, all accesses to source node PageRank
values served by DRAM contribute to potential random
accesses resulting in:

PDPRra = O(mcmr) (7)

BVGAS: In scatter phase of algorithm 5, updates can
potentially be inserted at random memory locations. As-
suming full cache line utilization for BVGAS, for every
l Bytes written, there is at most 1 random DRAM access.
In gather phase, all DRAM accesses are sequential if we
assume that bin width is smaller than the cache. Total
random accesses for BVGAS are then given by:

BV GASra = O
(

mdv

l

)
(8)

PCPM: With the PNG layout (algorithm 3), there are
at most k bin switches when scattering updates from a
partition. Since there are k such partitions, total number
of random accesses in PCPM is bound by:

PCPMra = O(k ∗ k) = O(k2) (9)

Comparison: BVGAS exhibits less random accesses
than PDPR. However, PCPMra is much smaller than
both BV GASra and PDPRra. For instance, in the kron
dataset with dv = 4 Bytes, l = 64 Bytes and k = 512,
BV GASra ≈ 66.9 M whereas PCPMra ≈ 0.26 M.

Although it is not indicated in algorithm 5, the num-
ber of data dependent unpredictable branches in cache

bypassing BVGAS implementation is also O(m). For
every update insertion, the BVGAS scatter function has
to check if the corresponding cached buffer is full (sec-
tion 4). In contrast, the number of branch mispredictions
for PCPM (using branch avoidance) is O(k2) with 1 mis-
prediction for every destination partition (p′) switch in
algorithm 3. The derivations are similar to random ac-
cess model and for the sake of brevity, we do not provide
a detailed deduction.

6 Experimental Evaluation

6.1 Experimental Setup and Datasets

We conduct experiments on a dual-socket Ivy Bridge
server equipped with two 8-core Intel Xeon E5-2650
v2 processors@2.6 GHz running Ubuntu 14.04 OS. Ta-
ble 3 lists important characteristics of our machine.
Memory bandwidth is measured using STREAM bench-
mark [25]. All codes are written in C++ and compiled
using G++ 4.7.1 with the highest optimization -O3 flag.
The memory statistics are collected using Intel Perfor-
mance Counter Monitor [40]. All data types used for
indices and PageRank values are 4 Bytes.

Table 3: System Characteristics

Socket no. of cores 8
shared L3 cache 25MB

Core L1d cache 32 KB
L2 cache 256 KB

Memory
size 128 GB

Read BW 59.6 GB/s
Write BW 32.9 GB/s

We use 6 large real world and synthetic graph datasets
coming from different applications, for performance
evaluation. Table 4 summarizes the size and sparsity
characteristics of these graphs. Gplus and twitter are fol-
lower graphs on social networks; pld, web and sd1 are
hyperlink graphs obtained by web crawlers; and kron is
a scale 25 graph generated using Graph500 Kronecker
generator. The web is a very sparse graph but has high
locality obtained by a very expensive pre-processing of
node labels [6]. The kron graph has higher edge density
as compared to other datasets.

Table 4: Graph Datasets

Dataset Description # Nodes (M) # Edges (M) Degree
gplus [12] Google Plus 28.94 462.99 16
pld [27] Pay-Level-Domain 42.89 623.06 14.53
web [6] Webbase-2001 118.14 992.84 8.4

kron [28] Synthetic graph 33.5 1047.93 31.28
twitter [19] Follower network 61.58 1468.36 23.84

sd1 [27] Subdomain graph 94.95 1937.49 20.4

434 2018 USENIX Annual Technical Conference USENIX Association

6.2 Implementation Details

We use a simple hand coded implementation of algo-
rithm 1 for PDPR and parallelize it over vertices with
static load balancing on the number of edges traversed.
Our baseline does not incur overheads associated with
similar implementations in frameworks [35, 30, 37] and
hence, is faster than framework based programs [5].

To parallelize BVGAS scatter phase (algorithm 5), we
give each thread a fixed range of nodes to scatter. Work
per thread is statically balanced in terms of the num-
ber of edges processed. We also give each thread dis-
tinct memory spaces corresponding to all bins to avoid
atomicity concerns in scatter phase. We use the Intel
AVX non-temporal store instructions [1] to bypass the
cache while writing updates and use 128 Bytes cache line
aligned buffers to accumulate the updates for streaming
stores [5]. BVGAS gather phase is parallelized over bins
with load balanced using OpenMP dynamic scheduling.
The optimal bin width is empirically determined and set
to 256 KB (64K nodes). As bin width is a power of 2,
we use bit shift instructions instead of integer division to
compute the destination bin from node ID.

The PCPM scatter and gather phases are parallelized
over partitions and load balancing in both the phases is
done dynamically using OpenMP. Partition size is empir-
ically determined and set to 256 KB. A detailed design
space exploration of PCPM is discussed in section 6.3.2.

All the implementations mentioned in this section ex-
ecute 20 PageRank iterations on 16 cores. For accuracy
of the collected information, we repeat these algorithms
5 times and report the average values.

6.3 Results
6.3.1 Comparison with Baselines

Execution Time: Fig. 6 gives a comparison of the
GTEPS (computed as the ratio of giga edges in the graph
to the runtime of single PageRank iteration) achieved by
different implementations. We observe that PCPM is
2.1− 3.8× faster than the state-of-the-art BVGAS im-
plementation and upto 4.1× faster than PDPR. BVGAS
achieves constant throughput irrespective of the graph
structure and is able to accelerate computation on low
locality graphs. However, it is worse than PDPR for high
locality (web) and dense (kron) graphs. PCPM is able to
outperform PDPR and BVGAS on all datasets, though
the speedup on web graph is minute because of high per-
formance of PDPR. Detailed results for execution time of
BVGAS and PCPM during different phases of computa-
tion are given in table 5. PCPM scatter phase benefits
from a multitude of optimizations to achieve a dramatic
5× speedup over BVGAS scatter phase.
Communication and Bandwidth: Fig. 7 shows the

0

1

2

3

4

5

gplus pld web kron twitter sd1

G
TE

P
S

Datasets

PDPR

BVGAS

PCPM

Figure 6: Performance in GTEPS. PCPM provides sub-
stantial speedup over BVGAS and PDPR.

Table 5: Execution time per iteration of PageRank for
PDPR, BVGAS and PCPM

PDPR BVGAS PCPM

Dataset
Total

Time(s)
Scatter
Time(s)

Gather
Time(s)

Total
Time(s)

Scatter
Time(s)

Gather
Time(s)

Total
Time(s)

gplus 0.44 0.26 0.12 0.38 0.06 0.1 0.16
pld 0.68 0.33 0.15 0.48 0.09 0.13 0.22
web 0.21 0.58 0.23 0.81 0.04 0.17 0.21
kron 0.65 0.5 0.22 0.72 0.07 0.18 0.25

twitter 1.83 0.79 0.32 1.11 0.18 0.27 0.45
sd1 1.97 1.07 0.42 1.49 0.24 0.35 0.59

amount of data communicated with main memory nor-
malized by the number of edges in the graph. Average
communication in PCPM is 1.7× and 2.2× less than
BVGAS and PDPR, respectively. Further, PCPM mem-
ory traffic per edge for web and kron is lower than other
graphs because of their high compression ratio (table 6).
The normalized communication for BVGAS is almost
constant and therefore, its utility depends on the effi-
ciency of pull direction baseline.

0

10

20

30

40

50

60

gplus pld web kron twitter sd1

B
yt

es
 a

cc
es

se
d

 p
er

 E
d

ge

Datasets

PDPR

BVGAS

PCPM

Figure 7: Main memory traffic per edge. PCPM commu-
nicates the least for all datasets except the web graph.

Note that the speedup obtained by PCPM is larger
than the reduction in communication volume. This is be-
cause by avoiding random DRAM accesses and unpre-
dictable branches, PCPM is able to efficiently utilize the
available DRAM bandwidth. As shown in fig. 8, PCPM
can sustain an average 42.4 GB/s bandwidth compared

USENIX Association 2018 USENIX Annual Technical Conference 435

to 33.1 GB/s and 26 GB/s of PDPR and BVGAS, re-
spectively. For large graphs like sd1, PCPM achieves
≈ 77% of the peak read bandwidth (table 3) of our sys-
tem. Although both PDPR and BVGAS suffer from ran-
dom memory accesses, the former executes very few in-
structions and therefore, has better bandwidth utilization.

0

10

20

30

40

50

gplus pld web kron twitter sd1

M
em

o
ry

 B
an

d
w

id
th

 (
G

B
/s

)

Datasets

PDPR

BVGAS

PCPM

Figure 8: Sustained Memory Bandwidth for different
methods. PCPM achieves highest bandwidth utilization.

Table 6: Locality vs compression ratio r. GOrder im-
proves locality in neighbors and increases compression

Original Labeling GOrder Labeling

Dataset
#Edges in
Graph (M)

#Edges in
PNG (M) r

#Edges in
PNG (M) r

gplus 463 243.8 1.9 157.4 2.94
pld 623.1 347.7 1.79 166.7 3.73
web 992.8 118.1 8.4 126.8 7.83
kron 104.8 342.7 3.06 169.7 6.17

twitter 1468.4 722.4 2.03 386.2 3.8
sd1 1937.5 976.9 1.98 366.2 5.29

The reduced communication and streaming access pat-
terns in PCPM also enhance its energy efficiency result-
ing in lower µJ/edge consumption as compared to BV-
GAS and PDPR, as shown in fig. 9. Energy efficiency is
important from an eco-friendly computing perspective as
highlighted by the Green Graph500 benchmark [16].
Effect of Locality: To assess the impact of locality
on different methodologies, we relabel the nodes in our
graph datasets using the GOrder [39] algorithm. We refer
to the original node labeling in graph as Orig and GOrder
labeling as simply GOrder. GOrder increases spatial lo-
cality by placing nodes with common in-neighbors closer
in the memory. As a result, outgoing edges of the nodes
tend to be concentrated in few partitions which increases
the compression ratio r as shown in table 6. However, the
web graph exhibits near optimal compression (r = 8.4)
with Orig and does not show improvement with GOrder.

Table 7 shows the impact of GOrder on DRAM com-
munication. As expected, BVGAS communicates a con-
stant amount of data for a given graph irrespective of the

0

0.2

0.4

0.6

0.8

1

1.2

gplus pld web kron twitter sd1

En
e

rg
y

(μ
J)

Datasets

PDPR

BVGAS

PCPM

Figure 9: DRAM energy consumption per edge. PCPM
benefits from reduced communication and random mem-
ory accesses.

Table 7: DRAM data transfer per iteration (in GB).
PDPR and PCPM benefit from optimized node labeling

PDPR BVGAS PCPM
Dataset Orig GOrder Orig GOrder Orig GOrder

gplus 13.1 7.4 9.3 9.3 6.6 5.1
pld 24.5 10.7 12.6 12.5 9.4 6.1
web 7.5 7.6 21.6 21.3 8.5 8.4
kron 18.1 10.8 19.9 19.5 10.4 7.5

twitter 68.2 31.6 28.8 28.2 19.4 13.4
sd1 65.1 23.8 37.8 37.8 26.9 15.6

labeling scheme used. On the contrary, memory traf-
fic generated by PDPR and PCPM decreases because
of reduced cmr and increased r, respectively. These ob-
servations are in complete accordance with the perfor-
mance models discussed in section 5.1. The effect on
PCPM is not as drastic as PDPR because after r be-
comes greater than a threshold, PCPM communication
decreases slowly as shown in fig. 5. Nevertheless, for al-
most all of the datasets, the net data transferred in PCPM
is remarkably lesser than both PDPR and BVGAS for
either of the vertex labelings.

6.3.2 PCPM Design Space Exploration

Partition size represents an important tradeoff in PCPM.
Large partitions force neighbors of each node to fit in
fewer partitions resulting in better compression but poor
locality. Small partitions on the other hand ensure high
locality random accesses within partitions but reduce
compression. We evaluate the impact of partition size on
the performance of PCPM by varying it from 32 KB (8K
nodes) to 8 MB (2M nodes). We observe a reduction in
DRAM communication volume with increasing partition
size (fig. 10). However, increases partition size beyond
what cache can accommodate results in cache misses and
a drastic increase in the DRAM traffic. As an exception,
the performance on web graph is not heavily affected by
partition size because of its high locality.

436 2018 USENIX Annual Technical Conference USENIX Association

8

16

32

64

32K 64K 128K 256K 512K 1M 2M 4M 8M

D
R

A
M

 c
o

m
m

u
n

ic
at

io
n

 p
er

 e
d

ge
 (

B
yt

es
)

Partition Size (in Bytes)

gplus

pld

web

kron

twitter

sd1

Figure 10: Impact of partition size on communication
volume. Very large partitions result in cache misses and
increased DRAM traffic.

The execution time (fig. 11) also benefits from com-
munication reduction and is penalized by cache misses
for large partitions. Note that for partition sizes >
256 KB and <= 1 MB, communication volume de-
creases but execution time increases. This is because
in this range, many requests are served from the larger
shared L3 cache which is slower than the private L1 and
L2 caches. This phenomenon decelerates the computa-
tion but does not add to DRAM traffic.

0

0.2

0.4

0.6

0.8

1

1.2

32K 64K 128K 256K 512K 1M 2M 4M 8M

N
o

rm
ai

ze
d

 T
im

e

Partition Size (in Bytes)

gplus

pld

web

kron

twitter

sd1

Figure 11: Impact of partition size on execution time.

Table 8: Pre-processing time of different methodologies.
PNG construction increases the overhead of PCPM

Dataset PCPM BVGAS PDPR
gplus 0.25s 0.1s 0s
pld 0.32s 0.15s 0s
web 0.26s 0.18s 0s
kron 0.43s 0.22s 0s

twitter 0.7s 0.27s 0s
sd1 0.95s 0.32s 0s

6.3.3 Pre-processing Time

We assume that adjacency matrix in CSR and CSC for-
mat is available and hence, PDPR does not need any pre-
processing. Both BVGAS and PCPM however, require a

beforehand computation of bin size and write offsets in-
curring non-zero pre-processing time as shown in table 8.
In addition, PCPM also constructs the PNG layout. For-
tunately, the computation of write offsets can be easily
merged with PNG construction (section 3.3) to reduce
the overhead. The pre-processing time also gets amor-
tized over multiple iterations of PageRank.

7 Conclusion and Future Work

In this paper, we formulated a Partition-Centric Process-
ing Methodology (PCPM) that perceives a graph as a set
of links between nodes and partitions instead of nodes
and their individual neighbors. We presented several fea-
tures of this abstraction and developed data layout and
system level optimizations to exploit them.

We conducted extensive analytical and experimental
evaluation of our approach. Using a simple index based
partitioning, we observed an average 2.7× speedup in
execution time and 1.7× reduction in DRAM communi-
cation volume over state-of-the-art. In the future, we will
explore edge partitioning models [21, 8] to further reduce
communication and improve load balancing for PCPM.

Although we demonstrate the advantages of PCPM
on PageRank, we show that it can be easily extended
to generic SpMV computation. We believe that PCPM
can be an efficient programming model for other graph
algorithms or graph analytics frameworks. In this con-
text, there are many promising directions for further ex-
ploration. For instance, the streaming memory access
patterns of PNG enabled PCPM are highly suitable for
High Bandwidth Memory (HBM) and disk-based sys-
tems. Exploring PCPM as a programming model for het-
erogenous memory or processor architectures is an inter-
esting avenue for future work.

PCPM accesses nodes from only one graph partition
at a time. Hence, G-Store’s smallest number of bits rep-
resentation [18] can be used to reduce the memory foot-
print and DRAM communication even further. Devising
novel methods for enhanced compression can also make
PCPM amenable to be used for large-scale graph pro-
cessing on commodity PCs.

Acknowledgements: This material is based on work supported
by the Defense Advanced Research Projects Agency (DARPA) un-
der Contract Number FA8750-17-C-0086, National Science Founda-
tion (NSF) under Contract Numbers CNS-1643351 and ACI-1339756
and Air Force Research Laboratory under Grant Number FA8750-15-
1-0185. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessar-
ily reflect the views of DARPA, NSF or AFRL. The U.S. Government
is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here on.

USENIX Association 2018 USENIX Annual Technical Conference 437

References

[1] Intel c++ compiler 17.0 developer
guide and reference, 2016. Available
at https://software.intel.com/

en-us/intel-cplusplus-compiler-17.

0-user-and-reference-guide.

[2] ABOU-RJEILI, A., AND KARYPIS, G. Multilevel
algorithms for partitioning power-law graphs. In
Proceedings of the 20th International Conference
on Parallel and Distributed Processing (2006),
IPDPS’06, IEEE Computer Society, pp. 124–124.

[3] ALBERT, R., JEONG, H., AND BARABÁSI, A.-L.
Internet: Diameter of the world-wide web. nature
401, 6749 (1999), 130.

[4] ALDOUS, J. M., AND WILSON, R. J. Graphs
and applications: an introductory approach, vol. 1.
Springer Science & Business Media, 2003.

[5] BEAMER, S., ASANOVIĆ, K., AND PATTERSON,
D. Reducing pagerank communication via propa-
gation blocking. In Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2017 IEEE Interna-
tional (2017), IEEE, pp. 820–831.

[6] BOLDI, P., ROSA, M., SANTINI, M., AND VI-
GNA, S. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing so-
cial networks. In Proceedings of the 20th interna-
tional conference on World wide web (2011), ACM,
pp. 587–596.

[7] BOLDI, P., SANTINI, M., AND VIGNA, S. Permut-
ing web and social graphs. Internet Mathematics 6,
3 (2009), 257–283.

[8] BOURSE, F., LELARGE, M., AND VOJNOVIC, M.
Balanced graph edge partition. In Proceedings of
the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2014),
KDD ’14, ACM, pp. 1456–1465.

[9] BRODER, A., KUMAR, R., MAGHOUL, F.,
RAGHAVAN, P., RAJAGOPALAN, S., STATA, R.,
TOMKINS, A., AND WIENER, J. Graph structure
in the web. Computer networks 33, 1-6 (2000),
309–320.

[10] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS,
J., GIARDULLO, A., KULKARNI, S., LI, H. C.,
ET AL. Tao: Facebook’s distributed data store for
the social graph. In USENIX Annual Technical
Conference (2013), pp. 49–60.

[11] BUONO, D., PETRINI, F., CHECCONI, F., LIU,
X., QUE, X., LONG, C., AND TUAN, T.-C.
Optimizing sparse matrix-vector multiplication for
large-scale data analytics. In Proceedings of the
2016 International Conference on Supercomputing
(2016), ACM, p. 37.

[12] GONG, N. Z., XU, W., HUANG, L., MITTAL, P.,
STEFANOV, E., SEKAR, V., AND SONG, D. Evo-
lution of social-attribute networks: measurements,
modeling, and implications using google+. In Pro-
ceedings of the 2012 Internet Measurement Confer-
ence (2012), ACM, pp. 131–144.

[13] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. Powergraph: Distributed
graph-parallel computation on natural graphs. In
Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12) (2012), USENIX, pp. 17–30.

[14] GREEN, O., DUKHAN, M., AND VUDUC, R.
Branch-avoiding graph algorithms. In Proceedings
of the 27th ACM symposium on Parallelism in Al-
gorithms and Architectures (2015), ACM, pp. 212–
223.

[15] HAKLAY, M., AND WEBER, P. Openstreetmap:
User-generated street maps. IEEE Pervasive Com-
puting 7, 4 (2008), 12–18.

[16] HOEFLER, T. Green graph500. Available at http:
//green.graph500.org/.

[17] HUBER, W., CAREY, V. J., LONG, L., FALCON,
S., AND GENTLEMAN, R. Graphs in molecular
biology. BMC bioinformatics 8, 6 (2007), S8.

[18] KUMAR, P., AND HUANG, H. H. G-store: high-
performance graph store for trillion-edge process-
ing. In High Performance Computing, Networking,
Storage and Analysis, SC16: International Confer-
ence for (2016), IEEE, pp. 830–841.

[19] KWAK, H., LEE, C., PARK, H., AND MOON, S.
What is twitter, a social network or a news media?
In Proceedings of the 19th international conference
on World wide web (2010), ACM, pp. 591–600.

[20] LAKHOTIA, K., SINGAPURA, S., KANNAN, R.,
AND PRASANNA, V. Recall: Reordered cache
aware locality based graph processing. In High Per-
formance Computing (HiPC), 2017 IEEE 24th In-
ternational Conference on (2017), IEEE, pp. 273–
282.

438 2018 USENIX Annual Technical Conference USENIX Association

[21] LI, L., GEDA, R., HAYES, A. B., CHEN, Y.,
CHAUDHARI, P., ZHANG, E. Z., AND SZEGEDY,
M. A simple yet effective balanced edge parti-
tion model for parallel computing. In Proceed-
ings of the 2017 ACM SIGMETRICS / Interna-
tional Conference on Measurement and Modeling
of Computer Systems (2017), SIGMETRICS ’17
Abstracts, ACM, pp. 6–6.

[22] LIU, W.-H., AND SHERMAN, A. H. Compara-
tive analysis of the cuthill–mckee and the reverse
cuthill–mckee ordering algorithms for sparse ma-
trices. SIAM Journal on Numerical Analysis 13, 2
(1976), 198–213.

[23] MALEWICZ, G., AUSTERN, M. H., BIK, A. J.,
DEHNERT, J. C., HORN, I., LEISER, N., AND
CZAJKOWSKI, G. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data (2010), ACM, pp. 135–146.

[24] MALICEVIC, J., LEPERS, B., AND ZWAENEPOEL,
W. Everything you always wanted to know about
multicore graph processing but were afraid to ask.
In 2017 USENIX Annual Technical Conference
(USENIX ATC 17) (2017), USENIX, pp. 631–643.

[25] MCCALPIN, J. D. Stream benchmark. Link: www.
cs. virginia. edu/stream/ref. html# what 22 (1995).

[26] MCSHERRY, F., ISARD, M., AND MURRAY, D. G.
Scalability! but at what cost? In Proceedings of the
15th USENIX Conference on Hot Topics in Operat-
ing Systems (2015), HOTOS’15, USENIX Associ-
ation, pp. 14–14.

[27] MEUSEL, R., VIGNA, S., LEHMBERG, O., AND
BIZER, C. The graph structure in the web: Ana-
lyzed on different aggregation levels. The Journal
of Web Science 1, 1 (2015), 33–47.

[28] MURPHY, R. C., WHEELER, K. B., BARRETT,
B. W., AND ANG, J. A. Introducing the graph 500.
Cray Users Group (CUG) 19 (2010), 45–74.

[29] NEWMAN, M. E., WATTS, D. J., AND STRO-
GATZ, S. H. Random graph models of social net-
works. Proceedings of the National Academy of
Sciences 99, suppl 1 (2002), 2566–2572.

[30] NGUYEN, D., LENHARTH, A., AND PINGALI,
K. A lightweight infrastructure for graph analytics.
In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (2013),
ACM, pp. 456–471.

[31] NISHTALA, R., VUDUC, R. W., DEMMEL, J. W.,
AND YELICK, K. A. When cache blocking of
sparse matrix vector multiply works and why. Ap-
plicable Algebra in Engineering, Communication
and Computing 18, 3 (2007), 297–311.

[32] PENNER, M., AND PRASANNA, V. K. Cache-
friendly implementations of transitive closure.
Journal of Experimental Algorithmics (JEA) 11
(2007), 1–3.

[33] PRABHAKARAN, V., WU, M., WENG, X., MC-
SHERRY, F., ZHOU, L., AND HARADASAN, M.
Managing large graphs on multi-cores with graph
awareness. 41–52.

[34] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,
W. X-stream: Edge-centric graph processing us-
ing streaming partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (2013), ACM, pp. 472–488.

[35] SHUN, J., AND BLELLOCH, G. E. Ligra: a
lightweight graph processing framework for shared
memory. In ACM Sigplan Notices (2013), vol. 48,
ACM, pp. 135–146.

[36] SIEK, J. G., LEE, L.-Q., AND LUMSDAINE, A.
The Boost Graph Library: User Guide and Refer-
ence Manual, Portable Documents. Pearson Edu-
cation, 2001.

[37] SUNDARAM, N., SATISH, N., PATWARY, M.
M. A., DULLOOR, S. R., ANDERSON, M. J.,
VADLAMUDI, S. G., DAS, D., AND DUBEY, P.
Graphmat: High performance graph analytics made
productive. Proceedings of the VLDB Endowment
8, 11 (2015), 1214–1225.

[38] WANG, Y., DAVIDSON, A., PAN, Y., WU, Y.,
RIFFEL, A., AND OWENS, J. D. Gunrock: A high-
performance graph processing library on the gpu.
In ACM SIGPLAN Notices (2016), vol. 51, ACM,
p. 11.

[39] WEI, H., YU, J. X., LU, C., AND LIN, X.
Speedup graph processing by graph ordering. In
Proceedings of the 2016 International Conference
on Management of Data (2016), ACM, pp. 1813–
1828.

[40] WILLHALM, T., DEMENTIEV, R., AND FAY,
P. Intel performance counter monitor-a better
way to measure cpu utilization. 2012. URL:
http://software.intel.com/en-us/articles/intel-
performance-counter-monitor-a-better-way-to-
measure-cpuutilization (2016).

USENIX Association 2018 USENIX Annual Technical Conference 439

[41] WILLIAMS, S., OLIKER, L., VUDUC, R., SHALF,
J., YELICK, K., AND DEMMEL, J. Optimization
of sparse matrix–vector multiplication on emerg-
ing multicore platforms. Parallel Computing 35,
3 (2009), 178–194.

[42] WULF, W. A., AND MCKEE, S. A. Hitting
the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news 23, 1
(1995), 20–24.

[43] ZHOU, S., CHELMIS, C., AND PRASANNA, V. K.
Optimizing memory performance for fpga imple-
mentation of pagerank. In ReConFigurable Com-
puting and FPGAs (ReConFig), 2015 International
Conference on (2015), IEEE, pp. 1–6.

[44] ZHOU, S., LAKHOTIA, K., SINGAPURA, S. G.,
ZENG, H., KANNAN, R., PRASANNA, V. K.,
FOX, J., KIM, E., GREEN, O., AND BADER,
D. A. Design and implementation of parallel
pagerank on multicore platforms. In High Per-
formance Extreme Computing Conference (HPEC),
2017 IEEE (2017), IEEE, pp. 1–6.

[45] ZHU, X., HAN, W., AND CHEN, W. Gridgraph:
Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX
ATC 15) (2015), USENIX Association, pp. 375–
386.

440 2018 USENIX Annual Technical Conference USENIX Association

