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Abstract
Multi-core virtual machines (VMs) are now a norm
in data center environments. However, one of the
well-known problems that VMs suffer from is the vCPU
scheduling problem that causes poor scalability behav-
iors. More specifically, the symptoms of this problem
appear as preemption problems in both under- and over-
committed scenarios. Although prior research efforts
attempted to alleviate these symptoms separately, they
fail to address the common root cause of these problems:
the missing semantic gap that occurs when a guest OS
is preempted while executing its own critical section,
thereby leading to degradation of application scalability.

In this work, we strive to address all preemption prob-
lems together by bridging the semantic gap between
guest OSes and the hypervisor: the hypervisor now
knows whether guest OSes are running in critical sec-
tions and a guest OS has hypervisor’s scheduling context.
We annotate all critical sections by using the lightweight
para-virtualized APIs, so we called enlightened critical

sections (eCS), that provide scheduling hints to both the
hypervisor and VMs. The hypervisor uses the hint to
reschedule a vCPU to fundamentally overcome the double
scheduling problem for these annotated critical sections
and VMs use the hypervisor provided hints to further
mitigate the blocked-waiter wake-up problem. Our eval-
uation results show that eCS guarantees the forward
progress of a guest OS by 1) decreasing preemption
counts by 85–100% while 2) improving the throughput
of applications up to 2.5× in an over-committed scenario
and 1.6× in an under-committed scenario for various
real-world workloads on an 80-core machine.

1 Introduction
Virtualization is now the backbone of every cloud-based
organization to run and scale applications horizontally
on demand. Recently, this scalability trend is also ex-
tending towards vertical scaling [2, 11], i.e., a virtual ma-
chine (VM) has up to 128 virtual CPUs (vCPUs) and 3.8 TB
of memory to run large in-memory databases [24, 35]
and data processing engines [47]. At the same time,
cloud providers strive to oversubscribe their resources
to improve hardware utilization and reduce energy con-
sumption, without imposing any permissible overhead
on the application [38, 46]. However, over subscription
requires multiplexing of physical CPUs among VMs to
equally distribute physical CPU cycles. Thus, the multi-
plexing of these VMs introduces the double scheduling
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Figure 1: Impact of exposing some of the semantic information
from the VM to the hypervisor and vice-versa, which leads to
better scalability of Psearchy and Apache web server bench-
mark, in a scenario in which two VMs are running with the
same benchmark. Here, PVM and HVM denote with and without
para-virtualization support, while eCS represents our approach.
Psearchy mostly suffers from LHP and BWW. Similarly, Apache
suffers from LHP and ICP.

problem [40]: 1) the guest OS schedules processes on
vCPUs and 2) the hypervisor schedules vCPUs on physical
CPUs. Some of the prior works address this problem by
adopting co-scheduling approaches [17, 41, 45], which
can suffer from priority inversion, CPU fragmentation,
and may mitigate the double scheduling symptoms [40].
Such symptoms, that have mostly been addressed indi-
vidually, are lock-holder preemption (LHP) [8, 15, 42, 44],
lock-waiter preemption (LWP) [44], and blocked-waiter
wakeup (BWW) [5, 39], problems.

The root cause of this double scheduling phenomenon
is a semantic gap between a hypervisor and guest OSes,
in which the hypervisor is agnostic of not only the
scheduling of VMs but also guest OS-specific critical code
that deter the scalability of applications. Furthermore,
LHP/LWP are not only limited to spinlocks [15, 19, 42], but
are also possible in blocking primitives such as mutex
and rwsem as well as readers of the rwsem. Moreover, be-
cause of their non work-conserving nature, these block-
ing primitives inherently suffer from the BWW problem
(refer Psearchy in Figure 1 (a)). Besides these, none of
the prior works have identified the preemption of an
interrupt context that happens in interrupt-intensive ap-
plications such as Apache web-server (Figure 1 (b)). We
define this problem as interrupt context preemption (ICP).
Our key observation is that these symptoms occur

because 1) the hypervisor is scheduling out a vCPU at a
time when the vCPU is executing a critical code, and 2) a
vCPU, waiting to acquire a lock, is either uncooperative
or sleeping [16], leading to LWP and BWW issues. Thus,
we propose an alternative perspective, i.e., instead of
devising a solution for each symptom, we use four key
ideas that allows a VM to hint the hypervisor for mak-
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ing an effective scheduling decision to allow its forward
progress. First, we consider all of the locks and interrupt
contexts as critical components. Second, we devise a
set of para-virtualized APIs that annotate these critical
components as enlightened critical sections (eCS). These
APIs are lightweight in nature and notify a hypervisor
from the VM and vice-versa with memory operations
via shared memory, while avoiding the overhead of hy-
percall and interrupt injection. Third, the hypervisor
now can figure out whether a vCPU is executing an eCS
and can reschedule it. We empirically found that an
extra schedule (one millisecond [27]) is sufficient as it
decreases preemptions by 85–100%; and these critical
sections are shorter (in µs [42]) than one schedule. How-
ever, by rescheduling a vCPU, we introduce unfairness
in the system. We tackle this issue with the OS’s fair
scheduling policy [27], which compensates for that addi-
tional schedule by allowing other tasks to run for extra
time, thereby maintaining the eventual fairness in the
system. Lastly, we leverage our APIs to design a virtual-
ized schedule-aware spinning strategy (eSchdSpin) that
enables lock waiters to be work conserving as well as co-
operative inside a VM. That is, a vCPU now cooperatively
spins for the lock, if a physical CPU is under-committed,
else it yields the vCPU.
Thus, our approach improves the scalability of real-

world applications by 1.2–1.6× in an under-committed
case. Moreover, our eCS annotation, combined with
eSchdSpin, avoids preemption by 85–100% while im-
proving the scalability of applications by 1.4–2.5× in an
over-committed scenario on an 80-core machine.
In summary, we make the following contributions:
• We identify similarities among various subproblems
that stem from the double scheduling phenomenon.
Moreover, we identify three new problems: 1) LHP in
blocking locks, 2) readers preemption (RP) in read-
write locks and semaphores, and 3) vCPU preemption
while processing an interrupt context (ICP).

• We address these subproblems with eCS, which we
annotate with six new APIs that bridge the seman-
tic gap between a hypervisor and a VM, and even
among vCPUs inside a VM.

• Our annotation approach, along with eSchdSpin,
improves the scalability of applications in both
under- and over-committed scenarios up to 2.5×
with only 0–15% preemptions, while maintaining
eventual fairness with merely one extra schedule.

2 Background and Motivation
We first describe the problem of double scheduling and
highlight its implications. Later, we summarize the prior
attempts to solve this problem, and then motivate our
approach.

2.1 Symptoms of Double Scheduling
In a virtualized environment, a hypervisor multiplexes
the hardware resources for a VM, such as assigning vCPUs
to physical CPUs (pCPUs). In particular, it runs a vCPU to
execute by its fair share [27], which is a general policy
of commodity OSes such as Linux, and preempts it be-
cause of either vCPUs of other VM or of the intermittent
processes of the OS and bookkeeping tasks of the hyper-
visor such as I/O threads. Hence, there is a possibility
that the hypervisor can preempt a vCPU while executing
some critical task inside a VM that leads to an application
performance anomaly, which we enumerate below:
Lock holder preemption (LHP) problem occurs when a
vCPU holding a lock gets preempted and all waiters waste
CPU cycles for the lock. Most of the prior works [8, 14,
42, 44] have focused on non-blocking primitives such
as spinlocks.1 On the other hand, LHP also occurs in
blocking primitives such as mutex [28] and rwsem [26, 31],
which the prior works have not identified. However, LHP
accounts up to 90% preemptions for blocking primitives
in some of the memory intensive applications that have
short critical sections.
Lock waiter preemption (LWP) problem stems when
the very next waiter is preempted just before acquiring
the lock, which occurs due to the strict FIFO ordering
of spinlocks [14, 42]. Fortunately, this problem has been
mostly mitigated in existing spinlock design [19, 20], as
the current implementation allows waiters to steal the
lock before joining the waiter queue. We do not see such
a problem in blocking primitives because the current
implementation is based on the test-and-set (TAS) lock—
an unfair lock, which inherently mitigates LWP.
Blocked-waiter wakeup (BWW) problem occurs mostly
for blocking primitives in which the latency to wake up
a waiter to pass the lock is quite high. This issue severely
degrades the throughput of applications running on a
high core count [16], even in a native environment. More-
over, it is evident in both under- and over-committed VM
scenarios. For example, the BWW problem degrades the
application scalability up to 1.6× (refer Figure 6).
Readers preemption (RP) problem is a new class of
problem that occurs when a vCPU holding a read lock
amongmultiple readers gets preempted. This problem im-
pedes the forward progress of a VM and also increases the
latency of the write lock. For instance, various memory-
intensive workloads have sub-optimal throughput as RP
accounts to at most 20% of preemptions. We observe
this issue in various read-dominated memory-intensive
workloads in which the readers are scheduled out.
RCU reader preemption (RRP) problem is a type of RP

1Non-blocking locks, both holders and waiters, do not schedule out.
However, the para-virtualized interface converts spinlocks to blocking
locks (only waiters) with hypercalls [6, 20] to overcome LHP/LWP issues.
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problem that occurs when an RCU reader is preempted,
while holding the RCU read lock [33]. Because of RRP,
the guest OS suffers from an increased quiescence pe-
riod. This issue can increase the memory footprint of the
application, and is responsible for 5% of preemptions.
Interrupt context preemption (ICP) problem hap-
pens when a vCPU that is executing an interrupt con-
text gets preempted. In particular, this problem is dif-
ferent from prior works that focus on interrupt deliv-
ery [12, 43] rather than interrupt handling. This issue
occurs in cases such as TLB shootdowns, function call
interrupts, rescheduling interrupts, IRQ work interrupts,
etc. in every commodity OS. For example, we found that
Apache web server, an interrupt-intensive workload, suf-
fers from the ICP problem as it accounts to almost 18%
of preemptions for evaluated workloads (refer Figure 3).
2.2 Prior Approaches
Some of the prior studies mitigate LHP and LWP prob-
lems by relaxed co-scheduling [45], balancing vCPUs to
physical CPUs [41] with IPIs as a heuristic [17], or using
hardware features [34]. Meanwhile, others designed a
para-virtualized interface [8, 14, 42, 44] to only tackle
the LHP and LWP problem for spinlocks. Besides these,
one radical design focused on scheduling VM’s processes
than vCPUs by hot plugging vCPUs on the basis of load on
the VM [3, 40]. Unfortunately, all of these prior works
address the double scheduling problem either partially
that misses other preemption problems, or take a radical
path that is not only difficult to adopt in practice but
can have significant overhead, in terms of scaling for
machines with almost 100 physical cores. Because their
approach involves 1) the detection of response to the dou-
ble scheduling in the form of hypercalls and interrupt in-
jection [3], and 2) explicit task migration from idle vCPUs
to active vCPUs. On the contrary, our approach does sim-
ple memory operations and exploits the vCPU scheduling
boundary to notify the hypervisor for scheduling deci-
sions without any explicit task and vCPU migration: a
lightweight approach even at high core count.
2.3 The Case for An Extra Schedule
As mentioned before, OS critical sections are the ones
that define the forward progress of an application for
which the OS is responsible. For instance, let us take an
example of two threads competing to acquire a lock to
update contents of a file. If the lock holder, which is up-
dating the file, is preempted, the other waiter will waste
CPU cycles. There are several critical operations that af-
fect the application scalability [16, 25], and OS performs
such operations either by acquiring a lock or executing
an interrupt context (I/O processing, TLB shootdowns,
etc.). In particular, a delay in processing of these critical
sections can result in a severe performance anomaly such
as a convoy effect [14, 16], or decreased network through-
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Figure 2: Overview of the information flow between a VM
and a hypervisor. Each vCPU has a per-CPU state that is shared
with the hypervisor, denoted as eCS state. Figure (a) shows how
the vCPU2 relays information about an eCS to the hypervisor.
On entering a critical section or an interrupt context ( 1), vCPU2

updates the non_preemptable_ecs_count ( 2 ). After a while,
before scheduling out vCPU2, the hypervisor reads its eCS state
( 3 ), and allows it run for one more schedule to mitigate any
of the double scheduling problems. Figure (b) shows how the
hypervisor shares the information whether a vCPU is preempted
or a physical CPU is overloaded, at the schedule boundary. For
instance, the hypervisor marks vcpu_preempted, while schedul-
ing out a vCPU; or updates pcpu_overloaded flag to one if the
number of active tasks on that physical CPU is more than one.
Both try to further mitigate LWP and BWW problems.

put for applications such as web servers (refer Figure 1).
Hence, unlike prior approaches, we propose a simple and
an intuitive approach, i.e., now a VM hints the hypervisor
about a critical section that enables the hypervisor to let
a vCPU execute for a pre-defined time slot (schedule). This
extra schedule is sufficient to complete a critical section
because 1) most critical sections are very fine-grained,
and have a time granularity of several microseconds [42],
while 2) the granularity of a single schedule is in the
order of milliseconds, which is sufficient enough to com-
plete a critical section. For instance, an extra schedule
decreases the preemption count by 85–100% (Figure 3).
This approach is not only practical but also critical to
apply on machines with large core count. However, the
extra schedule introduces unfairness in the system, which
we address by designing a simple, zero-overhead schedule
penalization algorithm that tries to maintain the eventual
fairness in the system by leveraging the CFS [27] that
tries to maintain fairness in the system.
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Hint Lightweight Para-virtualized API Description

VM → Hypervisor

void activate_non_preemptable_ecs(cpu_id) Increase the eCS count for a vCPU with cpu id by 1 for a non-preemptable task
void deactivate_non_preemptable_ecs(cpu_id) Decrease the eCS count for a vCPU with cpu id by 1 for a non-preemptable task

void activate_preemptable_ecs(cpu_id) Increase the eCS count for a vCPU with cpu id by 1 for a preemptable task
void deactivate_preemptable_ecs(cpu_id) Decrease the eCS count for a vCPU with cpu id by 1 for a preemptable task

Hypervisor → VM bool is_vcpu_preempted(cpu_id)† Return whether a vCPU with cpu id is preempted by the hypervisor
bool is_pcpu_overcommitted(cpu_id) Return whether a physical CPU, running a vCPU with cpu id, is over-committed

Table 1: Set of para-virtualized APIs exposed by the hypervisor to a VM for providing hints to the hypervisor to mitigate double
scheduling. These APIs provide hints to the hypervisor and VM via shared memory. A vCPU relies on the first four APIs to ask for
an extra schedule to overcome LHP, LWP, RP, RRP, and ICP. Meanwhile, a vCPU gets hints from the hypervisor by using the last two
APIs to mitigate LWP and BWW problems. The cpu_id is the core id that is used by tasks running inside a guest OS.
†Currently, is_vcpu_preempted() is already exposed to the VM in Linux.

3 Design
A hypervisor can mitigate various preemption problems,
if it is aware of a vCPU executing a critical section. We
denote such a hypervisor-aware critical section as an
enlightened critical section (eCS), that can be executed for
one more schedule. eCS is applicable to all synchroniza-
tion primitives and mechanisms such as RCU and inter-
rupt contexts. We now present our lightweight APIs that
act as a cross-layer interface for annotating an eCS and
later focus on our notion of an extra schedule and our
approach to maintain eventual fairness in the system.
3.1 Lightweight Para-virtualized APIs
We propose a set of six lightweight para-virtualized APIs
to bridge the semantic gap that both VM and hypervisor
use for conveying information between them. These APIs
rely on four variables (refer Figure 2) that are local to
each vCPU. They are exposed via shared memory between
the hypervisor and a VM and the notification happens
via simple read and write memory operations. A simple
memory read is sufficient for the hypervisor to decide
on scheduling because 1) it tries to execute each vCPU
on a separate pCPU, 2) and it requires knowing about an
eCS only at the schedule boundary, thereby removing the
cost of polling and other synchronous notifications [3].
To consider an OS critical section as an eCS, we mark the
start and unmark the end of a critical section, which lets
the hypervisor know about an eCS. However, a process in
an OS can be of two types. First is the non-preemptable
process that can never be scheduled out. Such a process
is either an interrupt or a kernel thread running after
acquiring a spinlock. Another one is the preemptable
task such as a user process or a process with blocking
lock. Hence, we introduce four APIs (VM→ Hypervisor)
to separately handle these two types of tasks. The last
two APIs (Hypervisor → VM) provide the hypervisor
context to the VM,which a lockwaiter can use tomitigate
the LWP problem or yield the vCPU to other hypervisor
tasks or vCPUs in an over-committed scenario. Figure 2
illustrates those four states:

• non_preemptable_ecs_count maintains the count
of active non-preemptable eCSs, such as non-
blocking locks, RCU reader, and interrupt contexts.

It is similar to the preemption count of the OS.
• preemptable_ecs_count is similar to the preemp-
tion count variable of the OS, but it only maintains
the count of active preemptable eCSs, such as block-
ing primitives, namely, mutex and rwsem.

• vcpu_preempted denotes whether a vCPU is running.
It is useful for handling the BWW problem in both
under- and over-committed scenarios.

• pcpu_overloaded denotes whether a physical CPU,
executing that particular vCPU, is over-committed.
Lock waiters can use this information to address
the BWW problem in an over-committed scenario.

Figure 2 presents two scenarios in which the sched-
ule context information is shared between a vCPU
and the hypervisor. Figure 2 (a) shows how a vCPU,
i.e., entering an eCS, shares information with the hy-
pervisor. During entry ( 1 ), vCPU2 first updates its
corresponding state (non_preemptable_ecs_count or
preemptable_ecs_count) ( 2 ) and continues to execute
its critical section. Meanwhile, the hypervisor, before
scheduling out vCPU2, checks vCPU2’s eCS states ( 3) and al-
lows it to run for extra time if certain criteria are fulfilled
(§3.2); otherwise, it schedules out vCPU2 with other wait-
ing tasks. When vCPU2 exits the eCS, it decreases the eCS
state count, denoting the end of critical section. Figure 2
(b) illustrates another scenario that addresses the BWW
problem. in which the hypervisor updates the eCS states:
pcpu_overloaded and vcpu_preempted while schedul-
ing in and out vCPU2, respectively, at each schedule
boundary ( 1 ). We devise a simple approach—virtualized
scheduling-aware spinning (eSchdSpin)—that enables
efficient scheduling aware waiting for both blocking
and non-blocking locks (§4). That is, vCPU2 reads both
states ( 2) and decides whether to keep spinning until the
lock is acquired if the pCPU is not overloaded ( 3 ), else it
yields, which allows the other vCPU (in VM2) or a hypervi-
sor’s task to progress forward by doing some useful task,
thereby mitigating the double scheduling problems.
3.2 Eventual Fairness with Selective Scheduling
As mentioned before, the hypervisor relies on its sched-
uler to figure out whether a vCPU is executing an eCS.
That is, when a vCPU with a marked eCS is about to be
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scheduled out, the hypervisor scheduler checks the value
of eCS count variables (Figure 2). If any of these values are
greater than zero, the hypervisor lets the vCPU run for an
extra schedule. However, vCPU rescheduling introduces
two problems: 1) How does the hypervisor handles a task
with eCS, which the guest OS can preempt or schedule
out? 2) How does it ensure the system fairness?
We handle an eCS preemptable task with

preemptable_ecs_count counter APIs, which differenti-
ate between a preemptable task and a non-preemptable
task. We do so because the guest OS can schedule out a
preemptable task. In this case, the hypervisor should
avoid rescheduling that vCPU because 1) it will result
in false rescheduling, and 2) it can hamper the VM
performance. We address this issue inside the guest OS,
i.e., before scheduling out an eCS-marked task inside a
guest OS, we save the value of preemptable_ecs_count
to a task-specific structure and reset the counter to zero.
Later, when the task is rescheduled again by the guest
OS, we restore the preemptable_ecs_count with the
saved value from the task-specific structure, thereby
mitigating the false scheduling.
With vCPU rescheduling, we introduce unfairness at

two levels: 1) An eCS marked vCPU will always ask
for rescheduling on every schedule boundary.2 2) By
rescheduling a vCPU, the hypervisor is unfair to other
tasks in the system. We resolve the first issue by allowing
the hypervisor to reschedule an eCS-marked vCPU only
once during that schedule boundary as rescheduling ex-
tends the boundary. At the end of schedule boundary, the
hypervisor schedules other tasks to avoid the starving
other tasks or VMs and addresses indefinite rescheduling.
In addition, the hypervisor also keeps track of this extra
reschedule information and runs other vCPUs for longer
duration and inherently balances the running time, an
equivalent to vCPU penalization. Thus, our approach se-
lectively reschedules and penalizes a vCPU rather than bal-
ancing the extra reschedule information across all cores,
which will result in an unnecessary overhead of synchro-
nizing all runtime information of rescheduling. We call
our approach as the local CPU penalization approach, as
we only penalize a vCPU that executed an eCS, thereby
ensuring eventual fairness in the system. Moreover, our
local vCPU scheduling is a form of selective-relaxed co-
scheduling of vCPUs depending on what kind of tasks are
being executed, while without maintaining any synchro-
nization among vCPUs, unlike prior approaches [41, 45].

4 Use Case
The double scheduling phenomenon introduces the se-
mantic gap in three places: 1) from a vCPU to a physical
CPU that results in LHP, RP, and ICP problems; 2) from a

2Such a VM can be either an I/O or an interrupt-intensive VM that
spends most of its time in the kernel, or even a compromised VM.

API LHP RP RRP ICP LWP BWW

activate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
deactivate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
activate_preemptable_vcs() ✓ ✓ - - - -
deactivate_preemptable_vcs() ✓ ✓ - - - -
is_vcpu_preempted() - - - - ✓ ✓
is_pcpu_overcommitted() - - - - - ✓

Table 2: Applicability of our six lightweight para-virtualized
APIs that strive to address the symptoms of double scheduling.

Component Lines of code

eCS annotation 60
eCS infrastructure 800
Scheduler extension 150
Total 1,010

Table 3: eCS requires small modifications to the existing Linux
kernel, and the annotation effort is also minimal: 60 LoC
changes to support the 10 million LoC Linux kernel that has
around 12,000 of lock instances with 85,000 lock invocations.

pCPU to a vCPU; and 3) from one vCPU to another in a VM,
both suffer from LWP and BWW problems. Table 2 shows
how to use our APIs to address these problems.

LHP, RP, RRP, and ICP problem. To circumvent these
problems, we rely on the VM → hypervisor notifica-
tion because a vCPU running any spinlocks, read-write
locks, mutex, rwsem, or an interrupt context is already
inside the critical section. Thus, we call activate_*()
and deactivate_*()APIs for annotating critical sections.
For example, the first two APIs are applicable to spin-
locks, read-write locks, RCU, and interrupts, and the next
two are for mutex and rwsem. (refer Table 2).

LWP and BWW problem. The LWP problem occurs in
the case of FIFO-based locks such as MCS and Ticket
locks [23]. However, unfair locks, such as qspinlock [6],
mutex [29], and rwsem [37], do not suffer from this prob-
lem, and are currently used in Linux. The reason is that
they allow other waiters to steal the lock, while suffering
from the issue of starvation. On the other hand, all of
these locks suffer from the BWW problem because the cost
to wake up a sleeping in a virtualized environment varies
from 4,000–10,000 cycles. as a wake-up call results in a
VMexit, which adds an extra overhead to notify a vCPU
to wake up a process. This problem is severe for blocking
primitives because they are non-work conserving in na-
ture [16], i.e., the waiters schedule out themselves, even
if a single task is present in the run queue of the guest OS.
We partially mitigate this issue by allowing the waiters to
spin rather than sleep if a single task is present in the run
queue of the guest scheduler (SchdSpin). However, this
approach is non-cooperative when multiple VMs are run-
ning. Thus, to avoid unnecessary spinning of waiters, we
rely on our is_pcpu_overcommitted() API that notifies
a waiter to only spin if the pCPU is not over-committed.
We call this approach the virtualized scheduling-aware
spinning approach (eSchdSpin).
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5 Implementation
We realized the idea of eCS by implementing it on the
Linux kernel version 4.13. Besides annotating various
locks and interrupt contexts with eCS, we specifically
modified the scheduler and the para-virtual interface of
the KVMhypervisor. Our changes are portable enough to
apply on the Xen hypervisor too. Thewhole modification
consists of 1,010 lines of code (see Table 3).
Lightweight para-virtualized APIs. We share the
information between the hypervisor and a VM with a
shared memory between them, which is similar to the
kvm_steal_time [4] implementation. For instance, each
VM maintains a per-core eCS states, and the hypervisor
maintains per-vCPU eCS states for each VM.
Scheduler extension. We extend a scheduler-to-
task notification mechanism, preempt_notifier [18], for
identifying an eCS-marked vCPU at the schedule boundary.
Our extension allows the scheduler to know about the
task scheduling requirement and decide scheduling strat-
egy at the schedule boundary. For example, in our case,
the extension reads the non_preemptable_ecs_count
and preemptable_ecs_count to decide the scheduling
strategy for the vCPU. Besides this, we rely on the noti-
fier’s in and out APIs to set the value of vcpu_preempted
and pcpu_overloaded variables.

We implemented our vCPU rescheduling decision in the
schedule_tick function [36]. The schedule_tick func-
tion performs two tasks: 1) It does the bookkeeping of
the task runtime, which is used for ensuring the fairness
in the system. 2) It also is responsible for setting the
rescheduling flag (TIF_NEED_RESCHED) if there is more
than one task on that run queue, which is used by the
scheduler to schedule out the task if the reschedule flag
is set. We implemented the rescheduling strategy by by-
passing the setting up of the reschedule flag in case the
preempt_notifier check function returned true, mean-
while updating the runtime statistics of the vCPU.
Annotating locks for eCS. We mark eCS by using the
non-preemptable APIs for non-blocking primitives, pre-
emptable ones for mutex and rwsem. Our annotation
comprises only 60 LoC that covers around 12,000 lock
instances with 85,000 lock API calls in the Linux kernel
that has 10 million LoC for the kernel version 4.13.

6 Evaluation
We evaluate our approaches by answering the following
questions:

• What is the overhead of an eCS annotation and the
scheduler overhead to read the values? (§6.1)

• Does eCS helps in an over-committed case? (§6.2)
• How does eCS impact the scalability of a VM? (§6.3)
• How do our APIs address the BWW problem? (§6.4)
• Does our schedule penalization approach maintain

the eventual fairness of the system? (§6.5)
Experimental setup. We extended VBench [13] for
our evaluation. We chose four benchmarks: Apache
web server [7], Metis [21], Psearchy from Mosbench,
and Pbzip2 [9]. The Apache web server serves a 300
bytes static page for each request that is generated by
WRK [10]. Both of them are running inside the VM to
remove the network wire overhead and only stress the
VM’s kernel components. We choose Apache to stress
the interrupt handler to emphasize the importance of
eCS for an interrupt context. Metis is a map-reduce li-
brary for a single multi-core server that mostly stresses
the memory allocator (spinlock) and the page-fault han-
dler (rwsem) of the OS. Similar to Metis, Psearchy is an
in-memory parallel search and indexer that stresses the
writer side of the rwsem design. In addition, we also
choose Pbzip2—a parallel compression and decompres-
sion program—because we wanted to use a minimally
kernel-intensive application. Moreover, none of these
workloads suffer from performance degradation from
any known user space bottleneck in a non-virtualized
environment. We use memory-based file system, tmpfs,
to isolate the effect of I/O. We further pin the cores to
circumvent vCPU migration at the hypervisor level to
remove the jitter from our evaluation.
We evaluate our eCS approach against the following

configurations: 1) PVM is a para-virtualized VM that in-
cludes unfair qspinlock implementation, which miti-
gates LWP and BWW issues, and it is the default config-
uration since Linux v4.5. 2) HVM is the one without para-
virtualization support and also includes unfair qspinlock
implementation. Both PVM and HVM are not eCS annotated.
Note that we could not compare other prior works be-
cause they are not open sourced [3, 45] and are very
specific to the Xen hypervisor [42]. We evaluate these
configuration on an eight socket, 80-core machine with
Intel E7-8870 processors. Another point is that the cur-
rent version of KVM partially addresses the BWW problem
that can occur from the user space [22].
6.1 Overhead of eCS

We evaluate the cost of our lightweight para-virtualized
APIs on various blocking and non-blocking locks, and
RCU. Table 4 enumerates the overhead of the sole API
cost including the cost of executing a critical section
with a simple microbenchmark that executes an empty
critical section to quantify the impact of eCS API on
these primitives in both lowest (1 core) and highest con-
tention (80 core) scenarios. 1 core denotes that a thread
is trying to acquire a critical section, whereas 80 core

denotes that 80 threads are competing. We observe that
eCS adds an overhead of almost 0.9–18.4 ns in low con-
tention, whereas negligible overhead in high contention
scenario, except RCU. For RCU, the empty critical section
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Critical sections

Time (ns)

1 core 80 core

W/o eCS W/ eCS W/o eCS W/ eCS

API cost – 16.4 – 16.4

spinlock 31.2 44.8 4,782.3 4,772.9
rwlock (read) 32.0 38.8 2,418.2 2,519.4
rwlock (write) 27.4 45.8 4,363.3 4,784.5
mutex 33.5 34.4 49,116.4 48,125.7
rwsem (read) 35.6 36.6 2,588.8 2,737.0
rwsem (write) 33.3 38.1 7,055.7 7,150.1
RCU 9.8 19.7 9.8 19.8

Table 4: Cost of using our lightweight para-virtualized APIs
with various synchronization primitives and mechanism. 1 core
and 80 core denote the time (in ns) to execute an empty critical
section with one and 80 threads, respectively. Although, our
approach slightly adds an overhead on a single core count, there
is no performance degradation for our evaluated workloads.

suffers from almost twice the overhead because both
RCU’s lock/unlock operations do a single memory update
on the preempt_count variable for a preemptable ker-
nel. Even though our APIs add an overhead in the low
contended scenario, we do not observe any performance
degradation for any of our evaluated workloads.
6.2 Performance in an Over-committed Scenario
We evaluate the performance of the aforementioned
workloads in an over-committed scenario by running
two VMs in which each vCPU from both VMs share a
physical CPU. Figure 3 (i) shows the throughput of these
workloads for PVM, HVM, and eCS; (ii) shows the number of
unavoidable preemptions that we capture while running
these workloads when a vCPU is about to be scheduled
out for eCS; and (iii) represents the percentage of types of
observed preemptions, namely, LHP for blocking (B-LHP)
and non-blocking (NB-LHP) locks, RP, RRP, ICP problems
that we observe for the eCS configuration, including both
avoided and unavoided preemptions.
Apache. eCS outperforms both PVM and HVM by 1.2× and
1.6×, respectively (refer (t:a) in Figure 3). Moreover, our
approach reduces the number of possible preemptions
by 85.8–100% (refer (n:a)) because of our rescheduling
approach. We cannot completely avoid all preemptions
because of our schedule penalization approach, as some
of the preemptions occur consecutively. Even though
eCS adds overhead, especially to RCU, it still does not
degrade the scalability for four reasons: 1) We address
the BWW problem, which allows for more opportunities
to acquire the lock on time; 2) both hypervisor → VM
APIs allow cooperative co-scheduling of the VMs; 3) our
extra schedule approach avoids 85.8–100% of captured
preemptions with the help of our VM→ hypervisor APIs;
and 4) the APIs overhead partially mitigates the highly
contended system at higher core count by acting as a
back-off mechanism. Another interesting observation
is that we observe almost every type of preemption (re-

fer Figure 3 (p:a)) because of serving the static pages,
which involves blocking locks for the socket connec-
tion and softirq and spinlocks use for the interrupts
processing. In particular, the number of preemptions is
dominated by LHP for non-blocking and blocking locks,
followed by ICP and then RP. We believe that the ICP
problem will further exacerbate with optimized interrupt
delivery mechanisms [12, 43]. PVM is 1.36× faster than
HVM at 80 cores because of the support of para-virtualized
spinlock (qspinlock [20]) as well as the asynchronous
page fault mechanism that decreases the contention [30].

The major bottleneck for this workload is the interrupt
injection, which can be mitigated by proposed optimized
methods [12, 43]. In addition, Figure 4 (b) presents the
latency CDF for the Apache workload at 80 cores in both
under- and over-compression case. We observe that eCS
not only maintains almost equivalent latency as that of
PVM in an under-committed case, but also decreases in the
over-committed case by 10.3–17% and 9.5–27.9% against
PVM and HVM, respectively.
Psearchy mostly stresses the writer side of rwsem as it
performs 20,000 small and large mmap/munmap opera-
tions along with stressing the memory allocator for inode
operations, which mostly idles the guest OS because of
the non-work conserving blocking locks [16]. Figure 3
(t:b) shows the throughput, in which eCS outperforms
both PVM and HVM by 2.3× and 1.7×, respectively. The rea-
son is that we 1) partially mitigate the BWW problem with
our eSchdSpin approach, and 2) decrease the number of
preemptions by 95.7–100% with an extra schedule (refer
(n:b)). In addition, our eSchdSpin approach decreases
the idle time from 65.4% to 45.2%, as it allows waiters
to spin than schedule out themselves, which severely
degrades the scalability in a virtualized environment, as
observed for both PVM and HVM. This workload is domi-
nated by mostly blocking and non-blocking locks, as they
account to almost 98% preemptions (refer (p:b)). We also
observe that HVM outperforms PVM by 1.33× because the
asynchronous page fault mechanism introduces more
BWW issue as it schedules out a vCPU if the page is not
available, which does not happen for HVM.
Metis is a mix of both page fault and mmap operations
that stress both the reader and the writer of the rwsem.
Hence, it also suffers from the BWW problem, as we ob-
serve in Figure 3 (t:c). eCS outperforms PVM and HVM by
1.3× at 80 cores because of the reduced BWW problem and
decreased preemptions that account to 91.4–99.5% (Fig-
ure 3 (n:c)). Note that the reader preemptions are 20%,
thereby illustrating that readers preemptions is possi-
ble for read-dominated workloads, which has not been
observed by any prior works. We do not observe any
difference in the throughput of HVM and PVM.
Pbzip2 is an efficient compression/decompression work-
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Figure 3: Analysis of real-world workloads in an over-committed scenario, i.e., two instances of VM are executing the same
workload. Column (i) represents the scalability of selected workloads in three settings: PVM, HVM, and with eCS annotations. Column
(ii) represents the number of preemptions caught and prevented by the hypervisor with our APIs. Column (iii) represents the type
of preemptions caught by the hypervisor (refer Table 4). By allowing an extra schedule, our approach reduces preemptions by
85–100% and improve scalability of applications by up to 2.5×, while observing almost all types of preemptions for each workload.
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over-committed scenarios.

load that spends only around 5% of the time in the kernel
space. Figure 3 (t:d) shows that the performance of eCS
is similar to PVM and HVM, while decreasing the number
of preemptions by 98.4–100% (refer (n:d)). We do not
observe any performance gain in this scenario because
1) these preemptions may not be too critical to affect the
application scalability, and 2) the overhead of our APIs,
which do not provide any gains even after decreasing
the preemptions. Similar to the other workloads, LHP
dominates the preemption, followed by RP, ICP, and RRP.
In summary, our APIs not only reduce preemptions

by 85–100%, but also improve the scalability of appli-
cations that use these synchronization primitives up to
2.5×, while no observable overhead on these applications.
Moreover, we found that these preemptions occur for
almost every type of primitives, specifically in the case
of blocking synchronization primitives, read locks (Metis
and Pbzip2), and interrupts (e.g., TLB operations, packet
processing etc.). In addition, most of the workloads still
suffer from the BWW problem because of them being non-
work conserving. We partially address this problem with
the help of our eSchdSpin approach. One point to note is
that we do not observe too many preemptions, as shown
by prior works [42], because the current Linux kernel
has dropped the FIFO-based Ticket spinlock and has re-
placed it with a highly optimized unfair queue-based
lock [20] that mitigates the problem of LHP and LWP.
6.3 Performance in an Under-committed Case
We evaluate our eCS approach against PVM and HVM con-
figurations in which a VM is running to show the im-
pact of both APIs and eSchdSpin approach. We also
include bare-metal configuration (Host) as a baseline

(Figure 5). We observe that eCS addresses the BWW prob-
lem, and outperforms both PVM and HVM in the case of
Apache (1.2× and 1.2×), Psearchy (1.6× and 1.9×), Metis
(1.2× and 1.3×), and Psearchy (1.2× and 1.4×), while hav-
ing almost similar latency for the Apache workload (Fig-
ure 4 (a)). Likewise, eCS performance is similar to that of
bare-metal, except for the Psearchy workload.
For Apache, our APIs act as a back-off mechanism to

improve its scalability, as the system is heavily contended.
The throughput degrades after 30 cores because of the
overhead of process scheduling, socket overhead, and
inefficient kernel packet processing. Besides this, both
Psearchy and Metis suffer from the BWW problem, which
we improve with our eSchdSpin approach that results
in better scalability as well as reduction in the idling of
VMs. In particular, we decrease the idle time of Psearchy
and Metis by 25% and 20%, respectively, by using our
approach. One point to note is that blocking locks are
based on the TAS lock, whose throughput severely de-
grades with increasing core count because of the increase
cache-line contention, which we observe after 40 cores
for Psearchy for all configurations. We also find that
the Host is still 1.4× faster than eCS because eSchdSpin
only partially mitigates the BWW problem, while intro-
ducing excessive cache-line contention, which we can
circumvent with NUMA-aware locks [16]. For Pbzip2,
we observe that eCS performs equivalent to the Host,
while outperforming PVM and HVM after 60 cores, because
Pbzip2 spends the least amount of time in the kernel
space (5%), and starts to suffer from the BWW problem
only after 60 cores, which our eSchdSpin easily tackles.
6.4 Addressing BWW Problem via eCS

We evaluate the impact of the BWW problem on Psearchy
in both under- and over-committed scenarios. Figure 6
(a) shows that our scheduling-aware spinning approach
(marked as eCS + SchdSpin) improves the throughput of
Psearchy by 1.5× and 1.2× at 40 and 80 cores, respectively,
in an under-committed scenario. SchdSpin approach al-
lows a blocking waiter, both reader and writer, to actively
spin for the lock if the number of tasks in the run queue
is one, else the task schedules itself out. This approach is
similar to the scheduling-aware parking/wake-up strat-
egy [16], which we applied to the stock mutex and rwsem.

USENIX Association 2018 USENIX Annual Technical Conference    167



-8 ms

-4 ms

0 ms

4 ms

8 ms

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

0.0
2.0
4.0
6.0

0.0
2.0
4.0
6.0

10 20 30 40 50 60 70 80 90 100

Ti
m
e

#
Pr
ee
m
pt
io
ns

# windows (100 ms)

(a) Difference in running time per window
# Preemption Time difference

Sc
he
du

le
d
tim

e
(s)

(b) Cumulative running time

VM1

# windows (100 ms)

VM2
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As mentioned before, the reason for such an improve-
ment is that the current design is not scheduling aware,
as the waiter parks itself if it is unable to acquire the
lock. With our approach, we try to mitigate this per-
formance anomaly and allow the applications to scale
further. Unfortunately, the scheduling-aware approach
is inefficient in the case of the over-committed scenario,
as shown in Figure 6 (b). The reason is that current wait-
ers are guest OS agnostic, which leads to wasting CPU
resources and resulting in more LHP and LWP problems,
thereby degrading the scalability by almost 4.4× (marked
eCS + SchdSpin in (b)) against a simple eCS configuration
that still suffers from the BWW problem. We overcome this
issue by using our is_pcpu_overcommitted() API that
allows the SchdSpin approach to spin only when there
is no active task on the pCPU’s run queue; otherwise, the
waiter is scheduled out when more than one task are in
the run queue of the pCPU. By using our API (marked eCS
+ eSchdSpin), we outperform the baseline eCS approach
by 1.8× and the eCS + SchdSpin approach by 8×.3

6.5 System Eventual Fairness
We now evaluate whether we are able to achieve even-
tual fairness while allowing eCS annotated VMs to obtain
an extra schedule followed by local vCPU penalization. To
evaluate the fairness, we run a simple micro-benchmark
in two VMs (marked VM1 and VM2). VM1 is a non-annotated
VM, whereas VM2 is an eCS annotated one. This micro-
benchmark indefinitely reads the content of a file that
stresses the read side of the rwsem and spends around 99%
of the time in the kernel without scheduling out the task,
thereby prohibiting the guest OS from doing any halt
exits. Figure 7 (a) shows the time difference between two
VM runtimes that we measure at every 100 ms window
for each VM as well as the number of preemptions for
VM2 in that window. Figure 7 (b) shows the cumulative
runtime of the VMs. We observe from Figure 7 (a) that
even after allowing for extra schedules, the CFS schedul-
ing policy balances out these extra schedules, which does

3Wehave used eCS + eSchdSpin approach for our evaluation against
PVM and HVM in §6.2 and §6.3.

not affect the runtime difference between VM1 and VM2.
For example, at the end of one second window, marked
10, we observe that the number of extra schedules that
the hypervisor granted VM2 was 34 (34 milliseconds of
extra time), but the runtime difference between VM1 and
VM2 is 7.8 ms, which becomes -1.9 ms at the end of two
seconds, while VM2 received a total of 54 extra schedules
(54 milliseconds). Hence, the extra schedule approach fol-
lowed by our local vCPU penalization ensures that none of
the tasks running on that particular physical CPU suffers
from the fairness issue, also referred as eventual fairness.
Moreover, Figure 7 (b) shows that both VMs get almost
equivalent runtime in a lockstep fashion with both VMs
getting almost 4.95 seconds at the end of 10 seconds.

7 Discussion
Our eCS approach addresses the problem of preemptions
and BWW in both under- and over-committed scenarios
by annotating all synchronization primitives and mecha-
nisms in the kernel space. However, besides these prim-
itives, kernel developers have to manually annotate a
critical section if they want to avoid the preemptions
while introducing their own primitives. One approach
could be that the hypervisor can read the instruction
pointer (IP) to figure out an eCS, but the guest OS must
provide a guest OS symbol table to resolve the IP. In ad-
dition, the current design of eCS only targets the kernel
space of a guest OS, and it is still agnostic of the user
space critical sections such as pthread locks. Hence, we
would like to extend our approach to the user space criti-
cal sections to further avoid the preemption problem, as
we believe that eCS is a natural fit for multi-level schedul-
ing. However, we need to communicate the scheduling
hint down to the lowest layer effectively, which requires
designing of the eCS composability extensions.
Our annotation approach does not open any security

vulnerability because our approach is based on the para-
virtualized VM, and it is similar to other approaches
that share the information with the hypervisor [4, 19].
By using our virtualized scheduling-aware spinning ap-
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proach (eSchdSpin), we partially mitigate the BWW prob-
lem. However, our Hypervisor → VM APIs expose
scheduling information of the pCPU, but they only tell
if a pCPU is overloaded or a vCPU is preempted. In ad-
dition, a VM cannot misuse this information as it will
be later penalized by the hypervisor. There is also very
slight possibility of priority inversion problem with our
extra schedule approach. However, the window of that
hypervisor-granted extra schedule is too small to incur
priority inversion and performance, unlike co-scheduling
approaches [41, 45] in which the scheduling window is
in the order of several milliseconds.

8 Related work
The double scheduling phenomenon is a recurring prob-
lem in the domain of virtualization, which seriously im-
pacts the performance of a VM. There have been com-
prehensive research efforts to mitigate this problem.
Synchronization primitives in VMs. Uhlig et al. [44]
demonstrated the spinlock synchronization issue in a
virtualized environment, which he addressed with syn-
chronous hints to the hypervisor, and was later replaced
by para-virtual hooks for the spinlock [8] for notifying
the hypervisor to block the vCPU after it has exhausted its
busy wait threshold. Meanwhile, other problems such as
LWP [32], the BWW problem [5, 39], and RCU readers preemp-
tion problems were found. Gleaner [5] that addressed the
BWW problem implemented a user space solution to handle
tasks among a varying number of vCPUs, by manipulat-
ing tasks’ processor affinity in the user space, which is
difficult to maintain at runtime as it must accurately track
each task launch and deletion. However, our eSchdSpin
approach is user agnostic and mitigates the problem to
certain extent for large core count.

Taebe et al. [42] addressed the LHP/LWP issue by expos-
ing the time window from the hypervisor to the guest OS,
which leverages this information that enables a waiter
to either spin or join the waiting queue. However, their
solution is not applicable to CFS [27] scheduler of Linux
as it does not expose the scheduling window information.
Their solution is orthogonal to our approach as we want
the hypervisor to take a decision than the VM. Waiman
Long [20] designed and implemented qspinlock that in-
herently overcomes the problem of LWP by exploiting
the property of the TAS lock in the queue-based lock. It
works by allowing the other waiters to steal the lock
before joining the queue without disrupting the waiters’
queue. However, qspinlock is still prone to LHP. Mean-
while, by annotating various locks as eCS, we confirm
these problems, and further identify new sets of prob-
lems such as RP and ICP, and provide a simple solution
to address the double scheduling phenomenon.
Partial handling of scheduling overhead in VMs.
There have been several studies on virtualization over-

head because of the software-hardware redirection [1, 39]
and co-scheduling issues [17, 41, 45]. For example,
VMware relies on relaxed co-scheduling [45] to mit-
igate double scheduling problem, in which vCPUs are
scheduled in batches and the stragglers are synchronized
within a predefined threshold. Besides this, other works
have proposed balanced vCPU scheduling [41] or even
IPI based demand scheduling [17]. However, these co-
scheduling approaches suffer from CPU fragmentation.
On the contrary, our approach neither introduces any
CPU fragmentation nor it needs to synchronize the global
scheduling information for all the vCPU of a VM because
each vCPU is locally penalized by the hypervisor rather
than synchronizing them among other vCPUs.
Song et al. [40] proposed the idea of dynamically

adjusting vCPUs according to available CPU resources,
while allowing guest OS to schedule its tasks. They
used the approach of vCPU ballooning, which avoided
the problem of double scheduling and was later extended
by Cheng et al. [3] by designing a lightweight hotplug
vCPU mechanism. Although their approach is effective in
case of small VMs, it is complementary to our approach
and may not scale effectively for large SMP VMs be-
cause of the overhead of migrating tasks from one vCPU
to another as well as the frequent rescheduling of the
targeted vCPUs. eCS, on the other hand, does not suffer
from any explicit IPI and migration-specific tasks, as it
only adds an overhead of a simple memory operations
for a scheduling decision.

9 Conclusion
Double scheduling phenomenon is a well-known prob-
lem in the domain of virtualization that leads to several
symptoms in the form of LHP, LWP, and BWW. We identify
that it not only is limited to non-blocking locks, but also
is applicable to blocking locks and reader side of locks.
We present a single shot solution with our key insight: if
a certain key component of a guest OS is allowed to pro-
ceed further, the guest OS will make forward progress.
We identify these critical components as synchroniza-
tion primitives and mechanism such as spinlocks, mutex,
rwsem, RCU, and even interrupt context, which we call en-
lightened critical sections (eCS). We annotate eCSwith our
lightweight APIs that expose whether a VM is executing
a critical section, which the hypervisor uses to provide
an extra schedule at the scheduling boundary, thereby
allowing the guest OS to progress forward. In addition,
by leveraging the hypervisor scheduling context, a VM
mitigates the effect of BWW problem with our simple vir-
tualized spinning-aware spinning strategy. With eCS, we
not only decrease the spurious preemptions by 85–100%
but also improve the throughput of applications up to
1.6× and 2.5× in an under- and over-committed scenario,
respectively.
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