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Abstract
We present NoveLSM, a persistent LSM-based key-
value storage system designed to exploit non-volatile
memories and deliver low latency and high throughput
to applications. We utilize three key techniques – a byte-
addressable skip list, direct mutability of persistent state,
and opportunistic read parallelism – to deliver high per-
formance across a range of workload scenarios. Our
analysis with popular benchmarks and real-world work-
load reveal up to a 3.8x and 2x reduction in write and
read access latency compared to LevelDB. Storing all
the data in a persistent skip list and avoiding block I/O
provides more than 5x and 1.9x higher write throughput
over LevelDB and RocksDB. Recovery time improves
substantially with NoveLSM’s persistent skip list.

1 Introduction
Persistent key-value stores based on log-structured

merged trees (LSM), such as BigTable [13], Lev-
elDB [4], HBase [2], Cassandra [1], and RocksDB [3],
play a crucial role in modern systems for applications
ranging from web-indexing, e-commerce, social net-
works, down to mobile applications. LSMs achieve
high throughput by providing in-memory data accesses,
buffering and batching writes to disk, and enforcing se-
quential disk access. These techniques improve LSM’s
I/O throughput but are accompanied with additional stor-
age and software-level overheads related to logging and
compaction costs. While logging updates to disk before
writing them to memory is necessary to recover from ap-
plication or power failure, compaction is required to re-
strict LSM’s DRAM buffer size and importantly commit
non-persistent in-memory buffer to storage. Both log-
ging and compaction add software overheads in the crit-
ical path and contribute to LSM’s read and write latency.
Recent proposals have mostly focused on redesigning
LSMs for SSD to improve throughput [23, 30, 40].

Adding byte-addressable, persistent, and fast non-
volatile memory (NVM) technologies such as PCM
in the storage stack creates opportunities to improve
latency, throughput, and reduce failure-recovery cost.
NVMs are expected to have near-DRAM read latency,

50x-100x faster writes, and 5x higher bandwidth com-
pared to SSDs. These device technology improvements
shift performance bottlenecks from the hardware to the
software stack, making it critical to reduce and eliminate
software overheads from the critical path of device ac-
cesses. When contrasting NVMs to current storage tech-
nologies, such as flash memory and hard-disks, NVMs
exhibit the following properties which are not leveraged
in current LSM designs: (1) random access to persistent
storage can deliver high performance; (2) in-place update
is low cost; and (3) the combination of low-latency and
high bandwidth leads to new opportunities for improving
application-level parallelism.

Given the characteristics of these new technologies,
one might consider designing a new data structure from
scratch to optimally exploit the device characteristics.
However, we believe it worthwhile to explore how to re-
design LSMs to work well with NVM for the following
reasons. First, NVMs are expected to co-exist with large-
capacity SSDs for the next few years [27] similar to the
co-existence of SSDs and hard disks. Hence, it is impor-
tant to redesign LSMs for heterogeneous storage in ways
that can exploit the benefits of NVMs without losing SSD
and hard disk optimizations. Second, redesigning LSMs
provides backward compatibility to thousands of appli-
cations. Third, maintaining the benefits of batched, se-
quential writes is important even for NVMs, given the
5x-10x higher-than-DRAM write latency. Hence in this
paper, we redesign existing LSM implementations.

Our redesign of LSM technology for NVM focuses
on the following three critical problems. First, exist-
ing LSMs maintain different in-memory and persistent
storage form of the data. As a result, moving data
across storage and memory incurs significant serializa-
tion and deserialization cost, limiting the benefits of low
latency NVM. Second, LSMs and other modern appli-
cations [1–4, 13] only allow changes to in-memory data
structures and make the data in persistent storage im-
mutable. However, memory buffers are limited in their
capacity and must be frequently compacted, which in-
creases stall time. Buffering data in memory can result
in loss of data after a system failure, and hence updates
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must be logged; this increases latency, and leads to I/O
read and write amplification. Finally, adding NVM to the
LSM hierarchy increases the number of levels in the stor-
age hierarchy which can increase read-access latency.

To address these limitations, we design NoveLSM,
a persistent LSM-based key-value store that exploits the
byte-addressability of NVMs to reduce read and write
latency and consequently achieve higher throughput.
NoveLSM achieves these performance gains through
three key innovations. First, NoveLSM introduces a per-
sistent NVM-based memtable, significantly reducing the
serialization and deserialization costs which plague stan-
dard LSM designs. Second, NoveLSM makes the persis-
tent NVM memtables mutable, thus allowing direct up-
dates; this significantly reduces application stalls due to
compaction. Further, direct updates to NVM memtable
are committed in-place, avoiding the need to log up-
dates; as a result, recovery after a failure only involves
mapping back the persistent NVM memtable, making it
three orders of magnitude faster than LevelDB. Third,
NoveLSM introduces optimistic parallel reads to simul-
taneously access multiple levels of the LSM that can ex-
ist in NVM or SSD, thus reducing the latency of read
requests and improving the throughput of the system.

We build NoveLSM by redesigning LevelDB, a
widely-used LSM-based key-value store [4]. Nov-
eLSM’s design principles can be easily extended to other
LSM implementations [1–3]. Our analysis reveals that
NoveLSM significantly outperforms traditional LSMs
when running on an emulated NVM device. Evalua-
tion of NoveLSM with the popular DBbench [3,4] shows
up to 3.8x improvement in write and up to 2x improve-
ment in read latency compared to a vanilla LevelDB
running on an NVM. Against state-of-the-art RocksDB,
NoveLSM reduces write latency by up to 36%. When
storing all the data in a persistent skip list and avoid-
ing block I/O to SSTable, NoveLSM provides more
than 5x and 1.9x gains over LevelDB and RocksDB. For
the real-world YCSB workload, NoveLSM shows a max-
imum of 54% throughput gain for scan workload and an
average of 15.6% across all workloads over RocksDB.
Finally, the recovery time after a failure reduces signifi-
cantly.

2 Background
We next provide background on LSM trees and on

the design of popular LSM stores, LevelDB [4] and
RocksDB [3], used extensively in this work. We also
present a background on persistent memory and our
method of emulating it.

2.1 Log Structured Merge Trees
An LSM-tree proposed by O’Neil et al. [32] is a per-

sistent structure that provides efficient indexing for a

 
NVM

3. SSTable search 

                           Level 0 

flush data

Merge

1. Insert op 1. Read op

2. Memtable   
    search

DRAM memtable

 

                                         Level 2      Merge

                                                Level 3        Merge

                                                      Level k           Merge

SSD

Immutable DRAM table

                                Level 1   Merge

2. Make 
immutable 

Figure 1: Naive LevelDB design with NVM. Figure shows
a simple method to add NVM to the LSM hierarchy. NVM is
used only as a replacement to disk for storing SSTables. Shaded
blocks show immutable storage, grey and red arrows show steps
for read operation search and the background compaction.

key-value store. LSMs achieve higher write throughput
by first staging data in memory and then across mul-
tiple levels on disk to avoid random disk writes. In
LSMs, the levels have an increasing size; for example, in
LevelDB, each level is at least ten times larger than the
previous level. During an insert operation, the keys are
first inserted into an in-memory level, and as this level
fills up, the data slowly trickles down to disk-friendly
block structures of the lower levels, where data is always
sorted. Before every insert operation into the memory
level, the data (key-value pairs) is logged in the per-
sistent storage for recovery after a failure; the logs are
garbage collected after data is safely flushed and per-
sisted to on-disk structures. Next, the search and read
operations proceed from the top memory level to the disk
levels and their latency increases with increasing num-
ber of levels. In general, LSMs are update-friendly data
structures and read operations are comparatively slower
to other NoSQL designs.

2.2 Popular LSM Stores

LevelDB is a popular LSM-based key-value store de-
rived from Google’s BigTable implementation and is
widely-used from browsers to datacenter applications.
Figure 1 shows LevelDB’s design with NVM added
to the storage hierarchy. During an insert operation,
LevelDB buffers updates in a memory-based skip list ta-
ble (referred to as memtable hereafter) and stores data on
multiple levels of on-disk block structures know as sorted
string tables (SSTable). After the memtable is full, it is
made immutable and a background compaction thread
moves the immutable memtable data to on-disk SSTable
by serializing the data to disk-based blocks. Only two
levels of memory tables (mutable and immutable) ex-
ist. With an exception to memtables, all lower levels are
mutually exclusive and do not maintain redundant data.
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The SSTables are traditional files with a sequence of I/O
blocks that provide a persistent and ordered immutable
mapping from keys to values, as well as interfaces for
sequential, random, and range lookup operations. The
SSTable file also has a block index for locating a block
in O(1) time. A key lookup can be performed with a sin-
gle disk seek to read the block and binary search inside
the block. In LevelDB, for read operations, the files with
SSTables are memory-mapped to reduce the POSIX file
system block-access overheads.
RocksDB is an LSM implementation that extends
LevelDB to exploit SSD’s high bandwidth and multicore
parallelism. RocksDB achieves this by supporting multi-
threaded background compaction which can simultane-
ously compact data across multiple levels of LSM hier-
archy and extracts parallelism with multi-channel SSDs.
RocksDB is highly configurable, with additional fea-
tures such as compaction filters, transaction logs, and
incremental replication. The most important feature of
RocksDB that can be beneficial for NVM is the use of
a Cuckoo hashing-based SST table format optimized for
random lookup instead of the traditional I/O block-based
format with high random-access overheads.

In this work, we develop NoveLSM by extending
LevelDB. We choose LevelDB due to its simplicity as
well as its broad usage in commercial deployments. The
optimizations in RocksDB over LevelDB are comple-
mentary to the proposed NoveLSM design principles.

2.3 Byte-addressable NVMs
NVM technologies such as PCM are byte-addressable

persistent devices expected to provide 100x lower read
and write latency and up to 5x-10x higher bandwidth
compared to SSDs [7, 12, 17, 22]. Further, NVMs can
scale to 2x-4x higher density than DRAM [5]. These
attributes make NVM a suitable candidate for replacing
SSDs. Additionally, NVMs are expected to be placed
in parallel with DRAM connected via the memory bus,
thereby providing memory-like load/store access inter-
face that can avoid POSIX-based block access supported
in current storage devices. Further, the read (load) la-
tency of NVMs is comparable to DRAM, but the write
latency is expected be to 5x slower.

2.4 NVM Emulation
Since byte-addressable NVMs are not available com-

mercially, we emulate NVMs similarly to prior re-
search [12, 17, 22, 26] and our emulation methodol-
ogy uses a 2.8 GHz, 32-core Intel Nehalem platform
with 25 MB LLC, dual NUMA socket with each socket
containing 16 GB DDR3 memory, and an Intel-510 Se-
ries SSD. We use Linux 4.13 kernel running DAX-
enabled Ext4 [6] file system designed for persistent
memory. We use one of the NUMA sockets as NVM

node, and to emulate lower NVM bandwidth compared
to DRAM, we thermal throttle the NUMA socket [25].
To emulate higher write latency, we use a modified ver-
sion of NVM emulator [37] and inject delay by estimat-
ing the number of processor store cache misses [12, 17,
22]. For our experiments, we emulate 5x higher NVM
write latency compared to DRAM access latency and
keep the NVM read latency same as the DRAM latency.
We vary NVM bandwidth from 2 GB/s to 8 GB/s; the
8 GB/s bandwidth is same as DRAM’s per-channel band-
width and is considered an ideal case.

3 Motivation
NVMs are expected to provide an order of magnitude

lower latency and up to 8x higher bandwidth compared
to SSDs; but can the current LSM software stack fully
exploit the hardware performance benefits of NVM? To
understand the impact of using NVM in current LSM
designs, we analyze LevelDB’s performance by using
NVM for its persistent storage. We use the widely-
used DBbench [4, 30, 35] benchmark with the total key-
value database size set to 16 GB, and the value size set
to 4 KB. Figure 2 compares the latency of sequential and
random LSM write and read operations. We configure
the maximum size of each SSTable file to 64 MB, a fea-
ture recently added to LevelDB to improve read perfor-
mance [4].

As shown in Figure 2, although NVM hardware pro-
vides 100x faster read and write compared to SSD,
LevelDB’s sequential and random insert latency (for
5 GB/sec bandwidth) reduce by just 7x and 4x, respec-
tively; the sequential and random read (fetch) latency re-
duces by less than 50%. The results show that current
LSMs do not fully exploit the hardware benefits of NVM
and suffer from significant software overheads. We next
decipher the sources of these overheads.
Insert latency. A key-value pair insert (or update) op-
eration to LSM is first buffered in the memory – mu-
table memtable (skip list in LevelDB) – before writ-
ing the key-value pair to the storage layer (SSTables).
However, a power failure or a system crash can lead
to data loss (buffered in memory). To avoid data loss,
the key-value pairs and their checksum are first added to
a sequential log in the persistent storage before insert-
ing them to the memtable. When the memtable is full,
it is made immutable, and a new mutable memtable is
created to which new inserts continue. A background
thread compacts the immutable memtable to storage;
however, if the new mutable memtable also fills up be-
fore the completion of background compaction, all new
inserts to LSM are stalled. Current LSM designs suf-
fer from high compaction cost because compaction in-
volves iterating the immutable memtable skip list, se-
rializing data to disk-compatible (SSTable) format, and
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Figure 2: Latency reduction factor. Anal-
ysis shows LevelDB using NVM for storage
compared to SSD for 4 KB values; x-axis
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0

50

100

150

200

4K 8K 16K

La
te

nc
y 

(m
icr

os
/o

p)

Compaction
Memtable Insert
Log Write
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but stalls LSM when memtables are full
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Figure 4: Read latency cost split-up.
SST denotes SSTable, and the graph
shows time spent on memtable and dif-
ferent SSTable methods.

finally committing them to the storage. Besides, the stor-
age layer (SSTable) comprises of multiple levels, and the
memtable compaction can trigger a chain of compaction
across these levels, stalling all foreground updates.

Figure 3 shows the cost breakup for insert operations
with 4 KB, 8 KB, and 16 KB values. As shown in the
figure, data compaction dominates the cost, increasing
latency by up to 83%, whereas log writes and check-
sum calculations add up to 17% of the total insert la-
tency. Increasing the in-memory buffer (memtable) can
reduce compaction frequency; however, this introduces
several drawbacks. First, DRAM usage increases by
two times: memory must be increased for both muta-
ble and immutable memtables. Second, only after the
immutable memtable is compacted, log updates can be
cleaned, leading to a larger log size. Third, LSMs such
as LevelDB and RocksDB do not enforce commits (sync)
when writing to a log; as a result, an application crash or
power-failure could lead to data loss. Fourth, a larger log
also increases recovery time after a failure. Finally, the
cost of checksumming and logging also increases.

Read operation latency. A read operation involves
hierarchically searching the smaller in-memory mutable
and immutable memtables, followed by searching mul-
tiple SSTable levels. Searching a memtable involves
traversing the skip list without the need to deserialize
data. However, searching a SSTable is complicated for
the following reason: the SSTable contains multiple lev-
els that store key-value pairs sorted by their key hash,
and each level is searched using a binary search. Af-
ter locating the blocks containing a key-value pair, the
blocks are copied into a memory buffer and then dese-
rialized from disk to an in-memory format. The search
cost increases moving top-down across SSTable levels
because each SSTable level is at least 10x larger than the
previous level. To reduce SSTable search cost, LSMs
such as LevelDB and RocksDB maintain an index table
at each level which uses a Bloom filter to cache recently
searched keys, which is useful only for workloads with
high re-access rates (e.g., Zipfian distribution). Figure 4
breaks down the cost of a read operation for 4 KB, 8
KB, and 16 KB values. For small values, searching the

SSTable dominates the cost, followed by copying disk
blocks to memory and deserializing block contents to
in-memory key-value pairs; the deserialization cost in-
creases with increasing value size (e.g., 16 KB). Reduc-
ing data copy, search, and deserialization cost can signif-
icantly reduce read latencies.
Summary. To summarize, existing LSMs suffer from
high software overheads for both insert and read opera-
tions and fail to exploit NVM’s byte-addressability, low
latency, and high storage bandwidth. The insert oper-
ations suffer mainly from high compaction and log up-
date overheads, and the read operations suffer from se-
quential search and deserialization overheads. Reducing
these software overheads is critical for fully exploiting
the hardware benefits of NVMs.

4 Design
Based on the analyses presented earlier, we first for-

mulate NoveLSM’s design principles and then discuss
the details on how these principles are incorporated to
NoveLSM’s design.

4.1 NoveLSM Design Principles
NoveLSM exploits NVMs byte addressability, persis-

tence, and large capacity to reduce serialization and de-
serialization overheads, high compaction cost, and log-
ging overheads. Further, NoveLSM utilizes NVM’s low
latency and high bandwidth to parallelize search opera-
tions and reduce response time.
Principle 1: Exploit byte-addressability to reduce se-
rialization and deserialization cost. NVMs pro-
vide byte-addressable persistence; therefore, in-memory
structures can be stored in NVM as-is without the need
to serialize them to disk-compatible format or deserial-
ize them to memory format during retrieval. To exploit
this, NoveLSM provides a persistent NVM memtable
by designing a persistent skip list. During compaction,
the DRAM memtable data can be directly moved to the
NVM memtable without requiring serialization or dese-
rialization.
Principle 2: Enable mutability of persistent state and
leverage large capacity of NVM to reduce compaction
cost. Traditionally, software designs treat data in the
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storage as immutable due to high storage access latency;
as a result, to update data in the storage, data must be read
into a memory buffer before making changes and writing
them back (mostly in batches). However, NVM byte-
addressability provides an opportunity to directly update
data on the storage without the need to read them to a
memory buffer or write them in batches. To exploit mu-
tability of persistent state, NoveLSM designs a large mu-
table persistent memtable to which applications can di-
rectly add or update new key-value pairs. The persistent
memtable allows NoveLSM to alternate between small
DRAM and large NVM memtable without stalling for
background compaction to complete. As a result com-
paction cost significantly reduces.
Principle 3: Reduce logging overheads and recovery
cost with in-place durability. Current LSM designs
must first write updates to a log, compute the check-
sum and append them, before inserting them into the
memtable. Most LSMs compromise crash consistency
for performance by not committing the log updates. Fur-
ther, recovery after an application failure or system crash
is expensive; each log entry must be deserialized before
adding it to the memtable. In contrast, NoveLSM avoids
logging by immediately committing updates to the per-
sistent memtable in-place. Recovery is fast and only re-
quires memory mapping the entire NVM memtable with-
out deserialization.
Principle 4: Exploit the low latency and high band-
width of NVM to parallelize data read operations.
LSM stores data in a hierarchy with top in-memory levels
containing new updates, and older updates in the lower
SSTables levels. With an increase in the number of key-
value pairs in a database, the number of storage levels
(i.e., SSTables) increases. Adding NVM memtables fur-
ther increases the number of LSM levels. LSMs must
be sequentially searched from top to bottom, which can
add significant search costs. NoveLSM exploits NVMs’
low latency and high bandwidth by parallelizing search
across the memory and storage levels, without affecting
the correctness of read operations.

4.2 Addressing (De)serialization Cost
To reduce serialization and deserialization cost in

LSMs, we first introduce an immutable persistent
memtable. During compaction, each key-value pair
from the DRAM memtable is moved (via memcpy()) to
the NVM memtable without serialization. The NVM
memtable skip list nodes (that store key-value pairs) are
linked by their relative offsets in a memory-mapped re-
gion instead of virtual address pointers and are commit-
ted in-place; as a result, the persistent NVM skip list
can be safely recovered and rebuilt after a system fail-
ure. Figure 5.a shows the high-level design of an LSM
with NVM memtable placed behind DRAM memtable.

Immutable NVM skip list-based memtable. We de-
sign a persistent memtable by extending LevelDB’s skip
list and adding persistence support. A skip list is a multi-
dimensional linked-list that provides fast probabilistic in-
sert and search operation avoiding the need to visit all
elements of a linked list [33]. Popular LSM implementa-
tions, such as LevelDB and RocksDB, use a skip list be-
cause they perform consistently well across sequential,
random, and scan workloads. We extend the skip list for
persistence because it enables us to reuse LevelDB’s skip
list-specific optimizations such as aligned memory allo-
cation and faster range queries.

In a persistent skip list, the nodes are allocated from
a large contiguous memory-mapped region in the NVM.
As shown in Figure 5.d, each skip list node points to a
next node using physical offset relative to the starting ad-
dress of the root node, instead of a virtual address. Iterat-
ing the persistent skip list requires root node’s offset from
starting address of the memory-mapped region. After a
restart or during failure recovery, the persistent region is
remapped, and the root offset is recovered from a log file;
using the root node, all skip list nodes are recovered.

To implement a persistent skip list, we modify
LevelDB’s memtable with a custom persistent memory
NVM allocator that internally uses the Hoard alloca-
tor [10]. Our allocator internally maps a large region of
NVM pages on a DAX filesystem [6] and manages the
pages using persistent metadata similar to Intel’s NVML
library [24]. Each skip list node maintains a physical off-
set pointer and a virtual address pointer to the next node,
which are updated inside a transaction during an insert
or update operation, as shown in Figure 5.d. A power
or application failure in the middle of a key-value pair
insertion or the offset update can compromise durability.
To address this, we provide ordered persistent updates by
using hardware memory barriers and cacheline flush in-
structions [15, 16, 22, 38]. Note that NoveLSM extends
existing LSMs for NVMs rather than completely re-
designing their data structures; this is complementary to
prior work that focuses on optimizing LSMs’ in-memory
data structures [9, 34].

4.3 Reducing Compaction Cost
Although the immutable NVM design can reduce se-

rialization cost and read latency, it suffers from several
limitations. First, the NVM memtable is just a replica of
the DRAM memtable. Hence, the compaction frequency
is dependent on how fast the DRAM memtables fill. For
applications with high insert rates, compaction cost dom-
inates the performance.
Mutability for persistent memtable. To address the
issue of compaction stalls, NoveLSM makes the NVM
memtable mutable, thereby allowing direct updates to
the NVM memtable (Figure 5.(b)); when the in-memory
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memtable is full, application threads can alternate to
using the NVM memtable without stalling for the in-
memory memtable compaction to complete.

The working of the mutable NVM design can be sum-
marized as follows. During initialization, NoveLSM cre-
ates a volatile DRAM memtable and a mutable persis-
tent NVM memtable. Current LSM implementations use
a smaller memtable size to reduce DRAM consumption
and avoid data loss after a failure. In contrast, NoveLSM
uses a large NVM memtable; this is because NVMs
can scale up to 4x larger than DRAM and also main-
tain persistence. To insert a key-value pair, first, the
DRAM memtable is made active; the key-value pairs
and their checksum are written to a log and then in-
serted into the DRAM memtable. When the DRAM
memtable is full, it is made immutable, and the back-
ground compaction thread is notified to move data to
the SSTable. Instead of stalling for compaction to com-
plete, NoveLSM makes NVM memtable active (mutable)
and keys are directly added to mutable NVM memtable.
The large capacity of NVM memtable provides sufficient
time for background compaction of DRAM and NVM
immutable memtables without stalling foreground oper-
ations; as a result, NoveLSM’s mutable memtable design
significantly reduces compaction cost leading to lower
insert/update latency. For read operations, the most re-
cent value for a key is fetched by first searching the cur-
rent active memtable, followed by immutable memtables
and SSTables.

4.4 Reducing Logging Cost
NoveLSM eliminates logging for inserts added to mu-

table NVM memtable by persisting updates in-place. As
a result, NoveLSM reduces the number of writes for each
key-value pair and also reduces recovery time. We next
discuss the details.
Logging. In current LSM implementations, each key-
value pair and its 32-bit CRC checksum is first ap-
pended to a persistent log, then inserted into the DRAM
memtable, and finally compacted to an SSTable, leading

to high write amplification. Further, popular implemen-
tations such as LevelDB and RocksDB only append but
do not commit (fsync()) data to the log; as a result, they
compromise durability for better performance.

In contrast, for NoveLSM, when inserting into the mu-
table persistent memtable in NVM, all updates are writ-
ten and committed in-place without requiring a separate
log; as a result, NoveLSM can reduce write amplifica-
tion. Log writes are avoided only for updates to NVM
memtable, whereas, all inserts to the DRAM memtable
are logged. Our evaluations show that using a large
NVM memtable with direct mutability reduces logging
to a small fraction of the overall writes, thereby signif-
icantly reducing logging cost and recovery time. Ad-
ditionally, because all NVM updates are committed in-
place, NoveLSM can provide stronger durability guaran-
tees compared to existing implementations. Figure 5.d
shows the pseudocode for NVM memtable insert. First,
a new transaction is initiated and persistent memory for a
key-value pair is allocated. The key-value pair is copied
persistently by ordering the writes using memory store
barrier and cache line flush of the destination addresses,
followed by a memory store barrier [24, 38, 41]. As an
additional optimization, small updates to NVM (8-byte)
are committed with atomic store instruction not requir-
ing a barrier. Finally, for overwrites, the old nodes are
marked for lazy garbage collection.
Recovery. Recovering from a persistent NVM mem-
table requires first mapping the NVM memtable (a file)
and identifying the root pointer of the skip list. There-
fore, the NVM memtable root pointer offset and 20-bytes
of skip list-related metadata are stored in a separate file.
With a volatile DRAM and persistent NVM memtable, a
failure can occur while a key with version Vi in the persis-
tent NVM memtable is getting overwritten in the DRAM
memtable to version Vi+1. A failure can also occur while
a key with version Vi in the DRAM memtable, not yet
compacted to storage, is getting overwritten to version
Vi+1 in the NVM. To maintain correctness, NoveLSM
must always recover from the greatest committed version
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of the key. To achieve version correctness, NoveLSM
performs the following steps: (1) a new log file is created
every time a new DRAM memtable is allocated and all
updates to DRAM memtable are logged and made per-
sistent; (2) when the NVM memtable (which is a persis-
tent skip list on a memory-mapped file) is made active,
inserts are not logged, and the NVM memtable is treated
as a log file; (3) the NVM log files are also named with an
incremental version number similar to any other log file.
During LSM restart or failure recovery, NoveLSM starts
recovering from the active versions of log files in ascend-
ing order. A key present in a log file logi+1, which could
be either a DRAM log or NVM memtable, is considered
as the latest version of the key. Note that recovering data
from NVM memtable only involves memory-mapping
the NVM region (a file) and locating the skip list root
pointer. Therefore, recovering from even a large NVM
memtable is fast with almost negligible cost of mapping
pages to the page tables.

4.5 Supporting Read Parallelism
NoveLSM leverages NVM low latency and high band-

width to reduce the latency of each read operation by
parallelizing search across memtables and SSTables. In
this pursuit, NoveLSM does not compromise the correct-
ness of read operation. In current LSMs, read operations
progress top-down from memtable to SSTables. A read
miss at each level increases read latency. Other factors
such as deserializing data from the SSTable also add to
read overheads.
Reducing read latency. To reduce read latency,
NoveLSM takes inspiration from the processor design,
which parallelizes cache and TLB lookup to reduce
memory access latency for cache misses; NoveLSM par-
allelizes search across multiple levels of LSM: DRAM
and NVM mutable memtables, DRAM and NVM im-
mutable tables, and SSTables. Our design manages a
pool of worker threads that search memtables or the
SSTable. Importantly, NoveLSM uses only one worker
thread for searching across the mutable DRAM and
NVM memtable because of the relatively smaller DRAM
memtable size compared to the NVM memtable.

With this design, the read latency is reduced
from Tread ≈ TmemDRAM + TmemNV M + Timm + TSST to
Tread parallel ≈max(TmemDRAM +TmemNV M ,Timm,TSST )+C.
TmemDRAM , TmemNV M , Timm, and TSST represent the read
time to search across the DRAM and NVM mutable
memtable, the immutable memtable, and the SSTable,
and C represents a constant corresponding to the time to
stop other worker threads once a key has been found.
Guaranteeing version correctness for reads. Multi-
ple versions of a key can exist across different LSM
levels, with a newer version (Vi+1) of the key at the
top LSM level (DRAM or NVM mutable memtable)

and older versions (Vi,Vi−1, ...) in the lower immutable
memtable and SSTables. In traditional designs, search
operations sequentially move from the top memtable to
lower SSTables, and therefore, always return the most re-
cent version of a key. In NoveLSM, search operations are
parallelized across different levels and a thread searching
the lower level can return with an older version of the
key; this impacts the correctness of read operation. To
guarantee version correctness, NoveLSM always consid-
ers the value of a key returned by a thread accessing the
highest level of LSM as the correct version. To satisfy
this constraint, a worker thread Ti accessing Li is made
to wait for other worker threads accessing higher levels
L0 to Li−1 to finish searching, and only if higher levels do
not contain the key, the value fetched by Ti is returned.
Additionally, stalling higher-level threads to wait for the
lower-level threads to complete can defeat the benefits of
parallelizing read operation. To overcome this problem,
in NoveLSM, once a thread succeeds in locating a key,
all lower-level threads are immediately suspended.
Optimistic parallelism and management. Introduc-
ing parallelism for each read operation is only beneficial
when the overheads related to thread management cost
are significantly lower than the actual cost to search and
read a key-value pair. NoveLSM uses an optimistic par-
allelism technique to reduce read latency.
Thread management cost. In NoveLSM, the main LSM
thread adds a client’s read request to a job pool, no-
tifies all worker threads to service the request, and fi-
nally, returns the value for a key. NoveLSM always co-
locates the master and the worker threads to the same
CPU socket to avoid the lock variable bouncing across
processor caches on different sockets. Further, threads
dedicated to parallelize read operation are bound to sepa-
rate CPUs from threads performing backing compaction.
These simple techniques are highly effective in reducing
thread management cost.
Optimistic parallelism. While the thread pool optimiza-
tions reduce overheads, using multiple threads for keys
that are present in DRAM or NVM memtable only adds
more overheads. To avoid these overheads, we imple-
ment a Bloom filter for NVM and DRAM memtable. The
Bloom filter predicts likeliness of a key in the memtable,
and read parallelism is enabled only when a key is pre-
dicted to miss the DRAM or NVM memtable; false pos-
itives (keys that are predicted to be in memtable but are
not present) only make the read operations sequential
without compromising correctness.

5 Evaluation
Our evaluation of NoveLSM aims to demonstrate the

design insights in reducing write and read latency and
increasing throughput when using NVMs. We answer
the following important questions.

USENIX Association 2018 USENIX Annual Technical Conference    999



(a) Write latency (b) Read latency

01
1

LevelDB-NVM NoveLSM [immut-small]
NoveLSM [immut-large]

0

100

200

300

400

500

1 KB 4 KB 16 KB 64 KB

La
te

nc
y 

 (
m

ic
ro

s/
op

)

0
5

10
15
20
25
30
35

1 KB 4 KB 16 KB 64 KB

Figure 6: Write and Read latency. Impact of NVM immutable
for random writes and reads. Database size is constant.
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Figure 7: NoveLSM immutable memtable hits. Figure shows
percentage split of keys read from different LSM levels when
using the immutable memtable design.

1. What are the benefits of introducing a persistent im-
mutable NVM memtable for different access patterns?
2. Does enabling mutability for NVM memtable reduce
compaction cost and improve performance?
3. How effective is NoveLSM’s optimistic parallelism in
reducing read latency?
4. What is the impact of splitting NoveLSM across NVM
and SSD compared to state-of-the-art approaches?
5. Is NoveLSM effective in exploiting NVMs byte-
addressability to make failure recovery faster?

We first describe our evaluation methodology, and
then evaluate NoveLSM with benchmarks and realistic
workloads.

5.1 Methodology and Workloads
For our evaluation, we use the same platform de-

scribed earlier § 2.4. NoveLSM reserves and uses 16 GB
(a memory socket) to emulate NVM with 5 GB/sec NVM
bandwidth and the read and write latency set to 100ns
and 500ns respectively, similarly to [12, 17, 22], using
methodology described earlier. We evaluate NoveLSM
using DBbench [3, 4, 30] and the YCSB cloud bench-
mark [18]. The total LSM database size is restricted to
16 GB to fit in the NUMA socket that emulates NVM.
The key size (for all key-values) is set to 16 bytes and
only the value size is varied. We turn off database com-
pression to avoid any undue impact on the results, as
done previously [30].

5.2 Impact of NVM-immutable Memtable
We begin by evaluating the benefits and implications

of adding a persistent NVM immutable to the LSM hier-
archy. We study two versions of NoveLSM: NoveLSM

with a small (2 GB) immutable NVM memtable
(NoveLSM+immut-small), and NoveLSM with a large
(4 GB) immutable NVM memtable (NoveLSM+immut-
large). The remaining NVM space is used for stor-
ing SSTables. For comparison, we use a vanilla
LevelDB that stores all its non-persistent data in a
DRAM memtable and persistent SSTables in the NVM
(LevelDB-NVM). Figures 6.a and 6.b show the average
random write and read latency as a function of the value
sizes in X-axis.
Random write latency. Figure 6.a compares the ran-
dom write latency. For the naive LevelDB-NVM, when
the in-memory (DRAM) immutable memtable is full, a
compaction thread first serializes data to SSTable. In
contrast, NoveLSM uses a persistent NVM immutable
memtable (a level below the 64 MB DRAM immutable
memtable). When the DRAM immutable memtable is
full, first data is inserted and flushed to NVM memtable
skip list without requiring any serialization. When
NVM memtable is also full, its contents are serialized
and flushed to SSTable by a background thread. Us-
ing a larger NVM memtable (NoveLSM+immut-large)
as a buffer reduces the memory to disk format com-
paction cost but without compromising crash consis-
tency. Therefore, the NVM immutable design achieves
up to 24% reduction in latency for 64 KB value com-
pared to LevelDB-NVM. However, due to lack of direct
NVM memtable mutability, the compaction frequency is
dependent on the DRAM memtable capacity, which im-
pacts immutable NVM designs performance.
Random read latency. Figure 6.b shows the read
latency results. In case of LevelDB-NVM, reading a
key-value pair from SSTable requires first locating the
SSTable level, searching for the key within a level, read-
ing the corresponding I/O blocks, and finally deserial-
izing disk blocks to in-memory data. NoveLSM’s im-
mutable memtable skip list also incurs search cost; how-
ever, it avoids indexing, disk block read, and deserializa-
tion cost. Figure 7 shows the NVM immutable table hit
rate for different value sizes when using small and large
NVM tables. For 4 KB value size, the memtable hit rate
(DRAM or NVM) for small NVM memtable is less than
17% and the additional search in the NVM memtable in-
creases latency. However, for NoveLSM+immut-large,
the hit rate is around 29% and the read latency reduces
by 33% compared to LevelDB-NVM. Because we keep
the database size constant and vary the value size, for
larger value sizes (e.g., 64 KB), the number of key-values
in the database is less, increasing hit rate by up to 38%
and reducing latency by up to 53%. For single-threaded
DBbench, the throughput gains are same as latency re-
duction gains; hence, we do not show throughput results.

Summary. NoveLSM’s immutable memtable re-
duces write latency by 24% and read latency by up
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Figure 8: NVM mutability impact. Figure shows (a) write latency, (b) read latency. LevelDB-NVM and RocksDB-NVM use NVM
for SSTable. LevelDB-NVM [1GB-DRAM] uses a large DRAM memtable; [mutable + para] shows read parallelism. [mutable +
para + noflush] shows NoveLSM without persistent flush, [mutable + para + NoSST] shows using only NVM memtable without
SSTable. Figure (c) and (d) show NoveLSM Write and Read operation latency cost splitup for 4 KB values.

to 53%. Lack of direct NVM memtable mutability and
frequent compaction impacts write performance.

5.3 NVM Memtable Mutability
To understand the effectiveness of NoveLSM’s mu-

table memtable in reducing compaction cost, we be-
gin with NoveLSM+immut-large discussed in the pre-
vious result, and analyze four other NoveLSM tech-
niques: NoveLSM+mutable uses a large (4 GB) NVM
memtable which is placed in parallel with the DRAM
memtable and allows direct transactional updates (with-
out logging) supported by persistent processor cache
flushes; NoveLSM+mutable+para enables read paral-
lelism; NoveLSMmutable+para+noflush shows the la-
tency without persistent processor cache flushes; and
finally, NoveLSM+mutable+NoSST uses only persis-
tent NVM memtable for the entire database without
SSTables. For comparison, in addition to LevelDB-
NVM, we also compare the impact of increasing the
vanilla LevelDB-NVM DRAM memtable size to 1GB
(LevelDB-NVM+1GB-DRAM) and RocksDB-NVM [3]
by placing all its SSTable in NVM. RocksDB-NVM
is configured with default configuration values used in
other prior work [9,30]. For our experimentation, we set
the DRAM memtable to 64 MB for all configuration ex-
cept LevelDB-NVM+1GB-DRAM. Figure 8.c and Fig-
ure 8.d show the cost split up for a 4 KB random write
and read operation.
Write performance. Figure 8.a shows the average
write latency as a function of value size. When the
mutable NVM memtable is active, its large capacity
provides background threads sufficient time to finish
compaction, consequently reducing foreground stalls.
For 4 KB values, NoveLSM+mutable reduces latency
by more than 3.8x compared to LevelDB-NVM and
NoveLSM+immut-large, due to reduction of both com-
paction and log write cost as shown in Figure 8.c.
For 64 KB value size, write latency reduces by 2.7x com-
pared to LevelDB-NVM. While increasing the vanilla
LevelDB-NVM’s DRAM memtable size (1GB-DRAM)

improves performance, however, (1) DRAM consump-
tion increases by twice (DRAM memtable and im-
mutable table), (2) increases log size and recovery time
(discussed shortly), and importantly, (3) compromises
crash consistency because both LevelDB and RocksDB
do not commit log updates to storage by default.

For smaller value sizes, RocksDB-NVM marginally
reduces write latency compared to mutable NoveLSM
(NoveLSM+mutable) design that provides in-place com-
mits (with processor cache flushes). RocksDB bene-
fits come from using a Cuckoo hash-based SST [11]
that improves random lookups (but severely impacts
scan operations), parallel compaction to exploit SSD
parallelism, and not flushing log updates to stor-
age. While incorporating complementary optimiza-
tions, such as Cuckoo hash-based SST and parallel
compaction, can reduce latency, even avoiding persis-
tent cache flush (NoveLSM+mutable+para+noflush) re-
duces latency compared to RocksDB. For larger val-
ues, NoveLSM reduces latency by 36% compared to
RocksDB-NVM providing the same durability guaran-
tees. Finally, NoveLSM+mutable+NoSST, by using
large NVM memtable and adding the entire database to
the skip list, eliminates compaction cost reducing the
write latency by 5x compared to LevelDB-NVM and
more than 1.9x compared to RocksDB-NVM.
Read parallelism. Figure 8.b shows the read
latency for all configurations. First, compared to
LevelDB-NVM, NoveLSM+mutable reduces read la-
tency for 4 KB value size by 30%. RocksDB-NVM with
a random-access friendly Cuckoo-hash SSTable signif-
icantly reduces memtable miss latency cost, providing
better performance for smaller values. For smaller values
(1 KB, 4 KB), NoveLSM’s optimistic parallelism shows
no gains compared to RocksDB because the cost of
thread management suppresses benefits of parallel read.
However, for larger value sizes, NoveLSM’s parallelism
combined with the reduction in deserialization cost re-
duces NoveLSM’s read latency by 2x and 24% com-
pared to LevelDB-NVM and RocksDB respectively. In-
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Figure 9: Failure recovery performance. The figure shows
recovery time as a function of memtable size in X-axis. For
LevelDB and RocksDB, DRAM memtable size is increased,
whereas for NoveLSM, NVM memtable increased, and DRAM
memtable size is kept constant at 64 MB.

corporating RocksDB’s optimized SSTable can further
improve NoveLSM’s read performance. As a proof, the
NoveLSM-NoSST case reduces the read latency by 45%
compared to RocksDB.
Splitting LSMs across NVM and SSDs. NoveLSM
can support large LSMs that spill over to SSD when
NVM capacity is full. To understand the performance
impact, we set the LSM database size to 16 GB. We
compare two approaches: (1) LevelDB-NVM-SSD that
splits SSTable across NVM (8 GB) and SSD (8 GB), (2)
NoveLSM-mutable-SSD that uses a half-and-half config-
uration with 4 GB NVM for mutable memtable, 4 GB
NVM for higher levels of SSTable, and 8 GB SSTable
on SSD. We do not consider RocksDB because of the
complexity involved in supporting multiple storage de-
vices for a complex compaction mechanism, which is
beyond the scope of this work. When evaluating the
two configurations, we determine that LevelDB-NVM-
SSD suffers from high compaction cost. For larger value
sizes, memtables fill-up quickly, triggering a chain of
compaction across both NVM and SSD SSTables. In
contrast, NoveLSM’s mutable NVM memtable reduces
compaction frequency allowing background threads with
sufficient time to compact, thus reducing stalls; conse-
quently, NoveLSM reduces latency by more than 45%
for 64 KB values compared to LevelDB-NVM-SSD.

Summary. The results highlight the benefits of using
a mutable memtable for write operations and supporting
parallelism for read operations in both NVM-only and
NVM+SSD configurations. Incorporating RocksDB’s
SSTable optimizations can further improve NoveLSM’s
performance.

5.4 Failure Recovery
NoveLSM’s mutable persistence provides in-place

commits to NVM memtable and avoids log updates. In
Figure 9, we analyze the impact of memtable size on
recovery time after a failure. To emulate failure, we
crash DBbench’s random write workload after insert-
ing half the keys. On the X-axis, for LevelDB-NVM
and RocksDB-NVM, we increase DRAM memtable size,
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Figure 10: YCSB (a) latency and (b) throughput. Results
only shown for run-phase after warm-up. NoveLSM’s mutable
memtable size set to 4 GB. Workload A has 50-50% update-
read ratio, B is read-intensive with 95% reads and 5% up-
dates (overwrites); C is read-only, D is also read-only, with the
most recently inserted records being most popular, E is scan-
intensive (95% scan, and 5% insert), and F has 50% reads and
50% write-modify-reads.

whereas, for NoveLSM-mutable, the DRAM memtable
size is kept constant at 64 MB and only the NVM muta-
ble memtable size is varied.

For LevelDB-NVM and RocksDB-NVM, all updates
to DRAM memtable are also logged; hence, increasing
the DRAM memtable size also increases the log size that
must be read during recovery, thereby increasing the re-
covery time. Recovery involves iterating the log, verify-
ing checksums, serializing logged key-value pairs to an
SSTable disk block, and inserting them to the top level
of the SSTable which is merged with lower levels. As
a result, for a 1 GB DRAM memtable size, LevelDB-
NVM’s recovery is as high as 4 seconds; RocksDB-
NVM recovers faster than LevelDB due to its specialized
SST format. For NoveLSM, recovery involves identify-
ing a correct version of the persistent memtable before
the crash, memory-mapping the NVM memtable’s per-
sistent skip list, and modifying the root pointer to the
current virtual address of the application. As a result,
restart performance for NoveLSM is more than three or-
ders faster. Importantly, NoveLSM logs only the updates
to DRAM memtable, thereby reducing logging writes by
up to 99%.

5.5 Impact on YCSB
To understand the benefits and implication for cloud

workloads, we run the widely-used YCSB [18] bench-
mark and compare LevelDB-NVM, RocksDB-NVM,
and NoveLSM-mutable-para approaches. We use the
six workloads from the YCSB cloud suite with dif-
ferent access patterns. YCSB has a warm-up (write-
only) and a run phase, and we show the run phase re-
sults when using 4-client threads. Figure 10 shows the
95th percentile latency and throughput (in 100K op-
erations per second). We use 4 KB value size and
16 GB database. The SSTables are placed in NVM for
all cases, and NoveLSM’s mutable memtable is set to
4 GB. First, for workload A, with the highest write ratio
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(50%), NoveLSM’s direct mutability improves through-
put by 6% over RocksDB and 81% over LevelDB-NVM,
even for small 4 KB value sizes. Both workload B
and workload C are read-intensive, with high random
reads. NoveLSM’s read parallelism is effective in si-
multaneously accessing data across multiple LSM lev-
els for four client threads. For workload D, most ac-
cesses are recently inserted values, resulting in high mu-
table and immutable memtable hits even for RocksDB.
NoveLSM checks the bloom filter for each access for
enabling read parallelism (parallelism is not required
as keys are present in memtable), and this check adds
around 1µs overhead per key resulting in a slightly lower
throughput compared to RocksDB. Next, for the scan-
intensive workload E, LevelDB and NoveLSM’s SSTable
are highly scan-friendly; in contrast, RocksDB’s SSTable
optimized for random-access performs poorly for scan
operations. As a result, NoveLSM shows 54% higher
throughput compared to RocksDB-NVM. Finally, work-
load F with 50% updates (overwrites) adds significant
logging and compaction-related serialization overhead.
NoveLSM’s direct mutability reduces these cost improv-
ing throughput by 17% compared to RocksDB and more
than 2x over LevelDB-NVM.

Summary. NoveLSM’s direct mutability and read
parallelism provide high-performance for both random
and sequential workloads.

6 Related Work
Key-value store and storage. Prior works such as
SILT [29], FlashStore [20], SkimpyStash [21] design
key-value stores specifically targeting SSDs. FlashStore
and SkimpyStas treat flash as an intermediate cache and
place append-only logs to benefit from the high sequen-
tial write performance of SSD. SILT reduces DRAM us-
age by splitting in-memory log across the DRAM and
SSD and maintaining a sorted log index in the memory.
In summary, prior works enforce sequentiality by batch-
ing and adding software layers for improving throughput.
In contrast, we design NoveLSM to reduce I/O access la-
tency with heap-based persistent structures.
Application redesign for persistent memory. Byte
addressability, low latency, and high bandwidth make
NVMs a popular target for redesigning data structures
and applications originally designed for block storage.
Venkatraman et al. [36] were one of the first to explore
the benefits of persistence-friendly B-trees for NVMs.
Since then, several others have redesigned databases [8],
key-value stores [31], B-trees [14], and hashtables [19].
LSM and redesign for storage. Several prior works
have redesigned LSMs for SSD. Wang et al [39] expose
SSD’s I/O channel information to LevelDB to exploit the
parallel bandwidth usage. WiscKey [30] redesigns LSMs
for reducing the read and write amplification and exploit-

ing SSD bandwidth. VT-tree [35] design proposes a file
system and a user-level key-value store for workload-
independent storage. In NoveLSM, we reduce the write
latency with a mutable persistent skip list and the read
latency by parallelizing reads across the LSM levels.
LSM redesign for NVM. NoveLSM is focused on ex-
tending existing LSMs for NVMs rather than completely
redesigning their data structures; this is complemen-
tary to projects such as FloDB and PebblesDB [9, 34].
We were recently made aware of a concurrently devel-
oped effort with similar goals as NoveLSM. NVM-
Rocks [28] shares similar ideas on using a persistent mu-
table memtable to reduce access latencies and recovery
costs. To improve read latencies, it introduces a hier-
archy of read caches. NoveLSM retains the in-DRAM
memtable of the original LSM design, benefiting laten-
cies for both cached reads and writes, and introduces par-
allelism within read operations to reduce read latency.
We look forward to gaining access to NVMrocks and an-
alyzing the tradeoffs that each technique contributes to
the overall LSM performance.

7 Conclusion
We present NoveLSM, an LSM-based persistent key-

value store that exploits NVM byte-addressability, per-
sistence, and large capacity by designing a heap-based
persistent immutable NVM skip list. The immutable
NVM skip list facilitates DRAM memtable compaction
without incurring memory to I/O data serialization cost
and also accelerates reads. To reduce the compaction
cost further, we introduce direct mutability of NVM
memtables, which allow applications can to directly
commit data to NVM memtable with stronger durabil-
ity and avoid logging. Reducing compaction and log-
ging overheads reduces random write latency by up
to 3.8x compared to LevelDB running on NVM. To re-
duce read latency, we design opportunistic parallelism,
which reduces read latency by up to 2x. Finally, the per-
sistent memtable makes the restarts three orders of mag-
nitude faster. As storage moves closer to memory, and
storage bottlenecks shifts towards software, increased ef-
fort to optimize such software will undoubtedly be re-
quired to realize further performance gains.
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