
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Tributary: spot-dancing for
elastic services with latency SLOs

Aaron Harlap and Andrew Chung, Carnegie Mellon University; Alexey Tumanov,
UC Berkeley; Gregory R. Ganger and Phillip B. Gibbons, Carnegie Mellon University

https://www.usenix.org/conference/atc18/presentation/harlap

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Tributary: spot-dancing for elastic services with latency SLOs
Aaron Harlap§∗ Andrew Chung§∗ Alexey Tumanov†

Gregory R. Ganger§ Phillip B. Gibbons§

§Carnegie Mellon University †UC Berkeley

Abstract
The Tributary elastic control system embraces the uncer-
tain nature of transient cloud resources, such as AWS
spot instances, to manage elastic services with latency
SLOs more robustly and more cost-effectively. Such
resources are available at lower cost, but with the pro-
viso that they can be preempted en masse, making them
risky to rely upon for business-critical services. Tribu-
tary creates models of preemption likelihood and exploits
the partial independence among different resource of-
ferings, selecting collections of resource allocations that
satisfy SLO requirements and adjusting them over time,
as client workloads change. Although Tributary’s col-
lections are often larger than required in the absence of
preemptions, they are cheaper because of both lower spot
costs and partial refunds for preempted resources. At the
same time, the often-larger sets allow unexpected work-
load bursts to be absorbed without SLO violation. Over
a range of web service workloads, we find that Tribu-
tary reduces cost for achieving a given SLO by 81–86%
compared to traditional scaling on non-preemptible re-
sources, and by 47–62% compared to the high-risk ap-
proach of the same scaling with spot resources.

1 Introduction
Elastic web services have been a cloud computing sta-
ple from the beginning, adaptively scaling the number
of machines used over time based on time-varying client
workloads. Generally, an adaptive scaling policy seeks to
use just the number of machines required to achieve its
Service Level Objectives (SLOs), which are commonly
focused on response latency and ensuring that a given
percentage (e.g., 95%) of requests are responded to in
under a given amount of time [17, 28, 19]. Too many
machines results in unnecessary cost, and too few re-
sults in excess customer dissatisfaction. As such, much
research and development has focused on doing this
well [20, 14, 11, 12, 26].

Elastic service scaling schemes generally assume in-
dependent and infrequent failures, which is a relatively
safe assumption for high-priority allocations in private
clouds and non-preemptible allocations in public clouds
(e.g., on-demand instances in AWS EC2 [3]). This as-

∗Equal contribution

sumption enables scaling schemes to focus on client
workload and server responsiveness variations in deter-
mining changes to the number of machines needed to
meet SLOs.

Modern clouds also offer transient, preemptible re-
sources (e.g., EC2 Spot Instances [1]) at a discount of
70–80% [6], creating an opportunity for cheaper ser-
vice deployments. But, simply using standard scaling
schemes fails to address the risks associated with such
resources. Namely, preemptions should be expected to
be more frequent than failures and, more importantly,
preemptions often occur in bulk. Akin to co-occurring
failures, bulk preemptions can cause traditional scaling
schemes to have sizable gaps in SLO attainment.

This paper describes Tributary, a new elastic control
system that exploits transient, preemptible resources to
reduce cost and increase robustness to unexpected work-
load bursts. Tributary explicitly recognizes the bulk
preemption risk, and it exploits the fact that preemp-
tions are often not highly correlated across different
pools of resources in heterogeneous clouds. For ex-
ample, in AWS EC2, there is a separate spot market
for each instance type in each availability zone, and re-
searchers have noted that they often move independently:
while preemptions within each spot market are corre-
lated, across spot markets they are not [16]. To safely
use preemptible resources, Tributary acquires collections
of resources drawn from multiple pools, modified as re-
source prices change and preemptions occur, while en-
deavoring to ensure that no single bulk preemption would
cause SLO violation. We refer to this dynamic use of
multiple preemptible resource pools as spot-dancing.

AcquireMgr is Tributary’s component that decides the
resource collection’s makeup. It works with any tradi-
tional scaling policy that determines (reactively or pre-
dictively) how many cores or machines are needed for
each successive period of time, based on client load vari-
ation. AcquireMgr decides which instances will provide
sufficient likelihood of meeting each time period’s tar-
get at the lowest expected cost. Its probabilistic algo-
rithm combines resource cost and preemption probability
predictions for each pool to decide how many resources
to include from each pool, and at what price to bid for
any new resources (relative to the current market price).

USENIX Association 2018 USENIX Annual Technical Conference 1

Given that a preemption occurs when a market’s spot
price exceeds the bid price given at resource acquisition
time, AcquireMgr can affect the preemption probability
via the delta between its bid price and the current price,
informed by historical pricing trends. In our implemen-
tation, which is specialized to AWS EC2, the predictions
use machine learning (ML) models trained on historical
EC2 Spot Price data. The expected cost of the computa-
tion takes into account EC2’s policy of partial refunds for
preempted instances, which often results in AcquireMgr
choosing high-risk instances and achieving even bigger
savings than just the discount for preemptibility.

In addition to the expected cost savings, Tributary’s
spot-dancing provides a burst tolerance benefit. Any
elastic control scheme has some reaction delay between
an unexpected burst and any resulting addition of re-
sources, which can cause SLO violations. Because Trib-
utary’s resource collection is almost always bigger than
the scaling policy’s most recent target in order to accom-
modate bulk preemptions, extra resources are often avail-
able to handle unexpected bursts. Of course, traditional
elastic control schemes can also acquire extra resources
as a buffer against bursts, but only at a cost, whereas the
extra resources when using Tributary are a bonus side-
effect of AcquireMgr’s robust cost savings scheme.

Results for four real-world web request arrival traces
and real AWS EC2 spot market data demonstrate Tribu-
tary’s cost savings and SLO benefits. For each of three
popular scaling policies (one reactive and two predic-
tive), Tributary’s exploitation of AWS spot instances re-
duces cost by 81–86% compared to traditional scaling
with on-demand instances for achieving a given SLO
(e.g., 95% of requests below 1 second). Compared to un-
safely using traditional scaling with spot instances (AWS
AutoScale [2]) instead of on-demand instances, Tribu-
tary reduces cost by 47–62% for achieving a given SLO.
Compared to other recent systems’ policies for exploit-
ing spot instances to reduce cost [24, 16], Tributary pro-
vides higher SLO attainment at significantly lower cost.

This paper makes four primary contributions. First,
it describes Tributary, the first resource acquisition sys-
tem that takes advantage of preemptible cloud resources
for elastic services with latency SLOs. Second, it in-
troduces AcquireMgr algorithms for composing resource
collections of preemptible resources cost-effectively, ex-
ploiting the partial refund model of EC2’s spot markets.
Third, it introduces a new preemption prediction ap-
proach that our experiments with EC2 spot market price
traces show is significantly more accurate than previous
preemption predictors. Fourth, we show that Tributary’s
approach yields significant cost savings and robustness
benefits relative to other state-of-the-art approaches.

2 Background and Related Work
Elastic services dynamically acquire and release machine
resources to adapt to time-varying client load. We distin-
guish two aspects of elastic control, the scaling policy
and the resource acquisition scheme. The scaling pol-
icy determines, at any point in time, how many resources
the service needs in order to satisfy a given SLO. The
resource acquisition scheme determines which resources
should be allocated and, in some cases, aspects of how
(e.g., bid price or priority level). This section discusses
AWS EC2 spot instances and resource acquisition strate-
gies to put Tributary and its new approach to resource
acquisition into context.

2.1 Preemptible resources in AWS EC2
In addition to non-preemptible, or reliable resources,

most cloud infrastructures offer preemptible resources as
a way to increase utilization in their datacenters. Pre-
emptible resources are made available, on a best-effort
basis, at decreased cost (in for-pay settings) and/or at
lower priority (in private settings). This subsection de-
scribes preemptible resources in AWS EC2, both to pro-
vide a concrete example and because Tributary and most
related work specialize to EC2 behavior.

EC2 offers “on-demand instances”, which are reli-
able VMs billed at a flat per-second rate. EC2 also of-
fers the same VM types as “spot instances”, which are
preemptible but are usually billed at prices significantly
lower (70% - 80%) than the corresponding on-demand
price. EC2 may preempt spot instances at any time, thus
presenting users with a trade-off between reliability (on-
demand) and cost savings (spot).

There are several properties of the AWS EC2 spot mar-
ket behavior that affect customer cost savings and the
likelihood of instance preemption. (1) Each instance type
in each availability zone has a unique AWS-controlled
spot market associated with it, and AWS’s spot mar-
kets are not truly free markets [9]. (2) Price movements
among spot markets are not always correlated, even for
the same instance type in a given region [23]. (3) Cus-
tomers specify a bid in order to acquire a spot instance.
The bid is the maximum price a customer is willing to
pay for an instance in a specific spot market; once a bid
is accepted by AWS, it cannot be modified. (4) A cus-
tomer is billed the spot market price (not the bid price)
for as long as the spot market price for the instance does
not exceed the bid price or until the customer releases
it voluntarily. (5) As of Oct 2nd, 2017, AWS charges
for the usage of an EC2 instance up to the second, with
one exception: if the spot market price of an instance ex-
ceeds the bid price during its first hour, the customer is
refunded fully for its usage. No refund is given if the
spot instance is revoked in any subsequent hour. We de-
fine the period where preemption makes the instance free

2 2018 USENIX Annual Technical Conference USENIX Association

as the preemption window.
When using EC2 spot instances, the bidding strategy

plays an important role in both cost and preemption prob-
ability. Many bidding strategies for EC2 spot instances
have been studied [9, 33, 30]. The most popular strategy
by far is to bid the on-demand price to minimize the odds
of preemption [23, 21], since AWS charges the market
price rather than the bid price.

2.2 Cloud Resource Acquisition Schemes
Given a target resource count from a scaling policy, a

resource acquisition scheme decides which resources to
acquire based on attributes of resources (e.g., bid price
or priority level). Many elastic control systems assume
that all available resources are equivalent, such as would
be true in a homogeneous cluster, which makes the ac-
quisition scheme trivial. But, some others address re-
source selection and bidding strategy aspects of multi-
ple available options. Tributary’s AcquireMgr employs
novel resource acquisition algorithms, and we discuss re-
lated work here.

AWS AutoScale [2] is a service provided by AWS that
maintains the resource footprint according to the target
determined by a scaling policy. At initialization time,
if using on-demand instances, the user specifies an in-
stance type and availability zone. Whenever the scaling
target changes, AutoScale acquires or releases instances
to reach the new target. If using spot instances, the user
can use a so-called “spot fleet”[4] consisting of multi-
ple instance type and availability zone options. In this
case, the user configures AutoScale to use one of two
strategies. The lowestPrice strategy will always select
cheapest current spot price of the specified options. The
diversified strategy will use an equal number of instances
from each option. Tributary bids aggressively and diver-
sifies based on predicted preemption rates and observed
inter-market correlation, resulting in both higher SLO at-
tainment and lower cost than AutoScale.

Kingfisher [26] uses a cost-aware resource acquisition
scheme based on using integer linear programming to
determine a service’s resource footprint among a het-
erogeneous set of non-preemptible instances with fixed
prices. Tributary also selects from among heterogeneous
options, but addresses the additional challenges and op-
portunities introduced by embracing preemptible tran-
sient resources. Several works have explored ways of
selecting and using spot instances. HotSpot [27] is a re-
source container that allows an application to suspend
and automatically migrate to the most cost-efficient spot
instance. While HotSpot works for single-instance ap-
plications, it is not suitable for elastic services since its
migrations are not coordinated and it does not address
bulk preemptions.

SpotCheck [25] proposes two methods of selecting
spot markets to acquire instances in while always bid-

ding at a configurable multiple of the spot instance’s cor-
responding on-demand price. The first method is greedy
cheapest-first, which picks the cheapest spot market. The
second method is stability-first, which chooses the most
price-stable market based on past market price move-
ment. SpotCheck relies on VM migration and hot spares
(on-demand or otherwise) to address revocations, which
incurs additional cost, while Tributary uses a diverse pool
of spot instances to mitigate revocation risk.

BOSS [32] hosts key-value stores on spot instances
by exploiting price differences across pools in different
data-centers and creating an online algorithm to dynam-
ically size pools within a constant bound of optimal-
ity. Tributary also constructs its resource footprint from
different pools, within and possibly across data-centers.
Whereas BOSS assumes non-changing storage capacity
requirements, Tributary dynamically scales its resource
footprint to maintain the specified latency SLO while
adapting to changes in client workload.

Wang et al. [31] explore strategies to decide whether,
in the face of changing application behavior, it is better to
reserve discounted resources over longer periods or lease
resources at normal rates on a shorter term basis. Their
solution combines on-demand and “reserved” (long term
rental at discount price) instances, neither of which are
ever preempted by Amazon.

ExoSphere [24] is a virtual cluster framework for
spot instances. Its instance acquisition scheme is based
on market portfolio theory, relying on a specified risk
averseness parameter (α). ExoSphere formulates the re-
turn of a spot instance acquisition as the difference be-
tween the on-demand cost and the expected cost based
on past spot market prices. It then tries to maximize the
return of a set of instance allocations with respect to risk,
considering market correlations and α , determining the
fraction of desired resources to allocate in each spot mar-
ket being considered. For a given virtual cluster size,
ExoSphere will acquire the corresponding number of in-
stances from each market at the on-demand price. Unsur-
prisingly, since it was created for a different usage model,
ExoSphere’s scheme is not a great fit for elastic services
with latency SLOs. We implement ExoSphere’s scheme
and show in Section 5.6 that Tributary achieves lower
cost, because it bids aggressively (resulting in more pre-
emptions), and higher SLO attainment, because it explic-
itly predicts preemptions and selects resource sets based
on sufficient tolerance of bulk preemptions.

Proteus [16] is an elastic ML system that combines
on-demand resources with aggressive bidding of spot re-
sources to complete batch ML training jobs faster and
cheaper. Rather than bidding the on-demand price, it bids
close to market price and aggressively selects spot mar-
kets and bid prices that it predicts will result in preemp-
tion, in hopes of getting many partial hours of free re-

USENIX Association 2018 USENIX Annual Technical Conference 3

sources. The few on-demand resources are used to main-
tain a copy of the dynamic state as spot instances come
and go, and acquisitions are made and used to scale the
parallel computation whenever they would reduce the av-
erage cost per unit work. Although Tributary uses some
of the same mindset (aggressive use of preemptible re-
sources), elastic services with latency SLOs are different
than batch processing jobs; elastic services have a tar-
get resource quantity for each point in time, and having
fewer usually leads to SLO violations, while having more
often provides no benefit. Unsurprisingly, therefore, we
find that Proteus’s scheme is not a great fit for such ser-
vices. We implement Proteus’s acquisition scheme and
show in Section 5.6 that Tributary achieves much higher
SLO attainment, because it understands the resource tar-
get and explicitly uses diversity to mitigate bulk preemp-
tion effects. Tributary also uses a new and much more
accurate preemption predictor.

3 Elastic Control in Tributary
AcquireMgr is Tributary’s resource acquisition compo-
nent, and its approach differentiates Tributary from pre-
vious elastic control systems. It is coupled with a scal-
ing policy, any of many popular options, which provides
the time-varying resource quantity target based on client
load. AcquireMgr uses ML models to predict the pre-
emption probability of resources and exploits the rela-
tive independence of AWS spot markets to account for
potential bulk preemptions by acquiring a diverse mix of
preemptible resources collectively expected to satisfy the
user-specified latency SLO. This section describes how
AcquireMgr composes the resource mix while targeting
minimal cost.

Resource Acquisition. AcquireMgr interacts with
AWS to request and acquire resources. To do so, Ac-
quireMgr builds sets of request vectors. Each request
vector specifies the instance type, availability zone, bid
price, and number of instances to acquire. We call this
an allocation request. An allocation is defined as a set
of instances of the same type acquired at the same time
and price. AcquireMgr’s total footprint, denoted with the
variable A, is a set of such allocations. Resource acqui-
sition decisions are made under four conditions: (1) a
periodic (one-minute) clock event fires, (2) an allocation
reaches the end of its preemption window, (3) the scaling
policy specifies a change in resource requirement, and/or
(4) a preemption occurs. We term these conditions deci-
sion points.

AcquireMgr abstracts away the resource type which
is being optimized for. For the workloads described
in this paper, virtual CPUs (VCPUs) are the bottleneck
resource; however, it is possible to optimize for mem-
ory, network bandwidth, or other resource types instead.
A service using Tributary provides its resource scaling

characteristics to AcquireMgr in the form of a utility
function υ(). This utility function maps the number of
resources to the percentage of requests expected to meet
the target latency, given the load on the web service.
The shape of a utility function is service-specific and de-
pends on how the service scales, for the expected load,
with respect to the number of resources. In the simplest
case where the web service is embarrassingly parallel,
the utility function is linear with respect to the number
of resources offered until 100% of the requests are ex-
pected to be satisfied, at which point the function turns
into a horizontal line. As a concrete example, if an em-
barrassingly parallel service specifies that 100 instances
are required to handle 10000 requests per second with-
out any of the requests missing the target latency, a linear
utility function will assume that 50 instances will allow
the system to meet the target latency on 50% of the re-
quests. Tributary allows applications to customize the
utility function so as to accommodate the resource re-
quirements of applications with various scaling charac-
teristics.

In addition to providing υ(), the service also provides
the application’s target SLO in terms of a percentage of
requests required to meet the target latency. By expos-
ing the target SLO as a customizable input, Tributary al-
lows the application to control the Cost-SLO tradeoff.
Upon receiving this information, AcquireMgr acquires
enough resources to meet SLO in expectation while op-
timizing for expected cost. In deciding which resources
to acquire, AcquireMgr uses the prediction models de-
scribed in Sec. 3.1 to predict the probability that each
allocation would be preempted. Using these predictions,
AcquireMgr can compute the expected cost and the ex-
pected utility of a set of allocations (Sec. 3.2). Ac-
quireMgr greedily acquires allocations until the expected
utility is greater than or equal to the SLO percentage re-
quirement (Sec. 3.3).

3.1 Prediction Models
When acquiring spot instances on AWS, there are

three configurable parameters that affect preemption
probability: instance type, availability zone and bid
price. This section describes the models used by Ac-
quireMgr to predict allocation preemption probabilities.

Previous work [16] proposed taking the historical me-
dian probability of preemption based on the instance
type, availability zone and bid price. This approach does
not consider time of day, day of week, price fluctuations
and several other factors that affect preemption proba-
bilities. AcquireMgr trains ML models considering such
features to predict resource reliability.

Training Data and Feature Engineering. The pre-
diction models are trained ahead of time with data de-
rived from AWS spot market price histories. Each sam-
ple in the training dataset is a hypothetical bid, and the

4 2018 USENIX Annual Technical Conference USENIX Association

target variable, preempted, of our model is whether or
not an instance acquired with the hypothetical bid is pre-
empted before the end of its preemption window (1 hr).
We use the following method to generate our data set:
For each instance and bid delta (bid price above the mar-
ket price with range [0.00001,0.2]) we generate a set of
hypothetical bids with the bid starting at a random point
in the spot market history. For each bid, we look forward
in the spot market price history. If the market price of
the instance rises above the bid price at any point within
the hour, we mark the sample as preempted. For each
historical bid, we also record the ten prices immediately
prior to the random starting point and their time-stamps.

To increase prediction accuracy, AcquireMgr engi-
neers features from AWS spot market price histories.
Our engineered features include: (1) Spot market price;
(2) Average spot market price; (3) Bid delta; (4) Fre-
quency of spot market price changing within past hour;
(5) Magnitude of spot market price fluctuations within
past two, ten, and thirty minutes; (6) Day of the week;
(7) Time of day; (8) Whether the time of day falls within
working hours (separate feature for all three time zones).
These features allow AcquireMgr to construct a more
complex prediction model, leading to a higher prediction
accuracy (Sec. 5.7).

Model Design. To capture the temporal nature of the
EC2 spot market, AcquireMgr uses a Long Short-Term
Memory Recurrent Neural Network (LSTM RNN) to pre-
dict instance preemptions. The LSTM RNN is a popu-
lar model for workloads where the ordering of training
examples is important to prediction accuracy [29]. Ex-
amples of such workloads include language modeling,
machine translation, and stock market prediction. Un-
like feed forward neural networks, LSTM models take
previous inputs into account when classifying input data.
Modeling the EC2 spot market as a sequence of events
significantly improves prediction accuracy (Sec. 5.7).
The output of the model is the probability of the resource
being preempted within the hour.

3.2 AcquireMgr
To make decisions about which resources to acquire

or release, AcquireMgr computes the expected cost and
expected utility of the set of instances it is considering
at each decision point. Calculations of the expected val-
ues are based on probabilities of preemption computed
by AcquireMgr’s trained LSTM model. This section de-
scribes how AcquireMgr computes these values.

Definitions. To aid in discussion, we first define the
notion of a resource pool. Each instance type in each
availability zone forms its own resource pool—in the
context of the EC2 spot instances, each such resource
pool has its own spot market. Given a set of allocations
A, where A is formulated as a jagged array, let Ai be de-
fined as the ith entry of A corresponding to an array of

A Set of allocations as jagged array
Ai Sorted array of allocations from resource pool i
ai, j Set of instances allocated from resource pool i
βi, j Probability that allocation ai, j is preempted
ti, j Time left in the preemption window for ai, j

ki, j Number of instances in allocation ai, j

Pi, j Market price of allocation ai, j

pi, j Bid price of allocation ai, j

size(y) Size of the major dimension of array y
resc(y) Counts the total number of resources in y
λi Regularization term for diversity
P(R = r) Probability that r resources remain in A
υ(r) The utility of having r resources remain in A
VA The expected utility of a set of allocations A
CA Expected cost of a set of allocations ($)

Table 1: Summary of parameters used by AcquireMgr
.allocations from resource pool i sorted by bid price in as-

cending order. We define allocation ai, j as an allocation
from resource pool i (i.e., ai, j ∈ Ai) with the jth lowest
bid in that resource pool. We further denote pi, j as the
bid price of allocation ai, j, βi, j as the probability of pre-
emption of allocation ai, j, and ti, j as the time remaining
in the preemption window for allocation ai, j. Note that
pi, j ≥ pi, j−1, which also implies βi, j−1 ≥ βi, j. Finally,
we define a size(A) function that returns the size of A’s
major dimension. See Table 1 for symbol reference.

Expected Cost. The total expected cost for a given
footprint A is calculated as the sum over the expected
cost of individual allocations CA [ai, j]:

CA =
size(A)

∑
i=1

size(Ai)

∑
j=1

CA[ai, j] (1)

AcquireMgr calculates the expected cost of an alloca-
tion by considering the probability of preemption within
the preemption window βi, j for a given allocation ai, j at
a given bid delta. There are exactly two possibilities: an
allocation will either be preempted with probability βi, j
or it will reach the end of its preemption window in the
remaining ti, j minutes with probability 1−βi, j, in which
case we would voluntarily release the allocation. The ex-
pected cost can then be written down as:

CA[ai, j] = (1−βi, j)∗Pi, j ∗ ki, j ∗ ti, j +βi, j ∗0∗ ki, j ∗ ti, j (2)

where ki, j is the number of instances in the allocation.
and Pi, j is the market price for instance of type i at the
time of acquisition.

Expected Utility. In addition to computing expected
cost for a set of allocations, AcquireMgr computes the
expected utility for a set of allocations. The expected
utility is the expected percentage of requests that will
meet the latency target given the set of allocations A. Ex-
pected utility takes into account the probability of allo-
cation preemptions, providing AcquireMgr with a metric

USENIX Association 2018 USENIX Annual Technical Conference 5

for quantifying the expected contribution that each allo-
cation should make to meet the resource target. The ex-
pected utility VA of the set of allocations A is calculated
as follows:

VA =
resc(A)

∑
r=0

P(R = r)∗υ(r) (3)

where P(R) is the probability mass function of the dis-
crete random variable R that denotes the number of re-
sources not preempted within the next hour, υ is the util-
ity function provided by the service, and resc(A) is the
function that reports the number of resources in a set of
allocations A. resc(A) computes the total amount of re-
sources in A, while size(A) only computes the size of A’s
major dimension.

Eq. 3 computes the expected utility over the next hour
given a workload, as though Tributary just bid for all its
allocations. This works, even though there will usually
be complex overlapping expiration windows across an
hour, because it only needs to hold true until recomputed
at the next decision point, which is never more than a
minute away. To derive P(R), AcquireMgr starts off with
the original set of allocations A and generates all possible
subsets of A. Each possible subset S ⊆ A, S marks some
allocations in A as preempted (∈ S) and the remaining
allocations as not preempted (6∈ S). To formalize the no-
tion, we define the indicator variable di, j, where di, j = 1
if allocation ai, j ∈ S and di, j = 0 otherwise.

To compute the probability of S being the set of pre-
empted resources (P(S)), AcquireMgr separates all allo-
cations by resource pools, as each resource pool within
AWS has its own spot market. We leverage the follow-
ing localizing property. Within each resource pool Ai,
the probability of preempting an allocation ai, j is only
dependent on whether the allocation with the next low-
est bid price, ai, j−1, in the same resource pool is pre-
empted. Note that P(ai,1) = βi,1 for allocation ai,1 for all
resource pools i. Consider two allocations ai, j,ai, j−1 ∈ A
from resource pool Ai. We observe the following prop-
erties: (1) ai, j cannot be preempted unless ai, j−1 is pre-
empted, (2) the probability that both ai, j and ai, j−1 are
preempted is the probability that ai, j is preempted, and
(3) the probability that ai, j is preempted without ai, j−1
being preempted is 0. With Bayes’ Rule, we observe
that:

P(ai, j|ai, j−1) =
P(ai, j ∧ai, j−1)

P(ai, j−1)
=

βi, j

βi, j−1
. (4)

Thus, for an allocation ai, j given subset S⊆ A,

P(ai, j|ai, j−1) =

{
0 if allocation ai, j−1 6∈ S,
βi, j/βi, j−1 else.

(5)

Tributary further introduces a regularization term λi
to encourage bidding in markets with low correlation.
Having instances spread across lowly correlated markets

is important for avoiding high-risk footprints. If the re-
source footprint has too many instances from correlated
resource pools, Tributary becomes exposed to having too
many resources being lost to a correlated price spike,
potentially causing an SLO violation. In order obtain
price correlation across spot markets, we periodically
keep track of fix-sized moving windows of spot markets
and compute the Pearson correlation between each pair
of spot markets. When computing expected utility, Trib-
utary increases an allocation in Ai’s probability of pre-
emption βi, j by λi:

λi = γ ∗
size(A)

∑
l=1

ρi,l ∗
resc(Ai)+ resc(Al)

2∗ resc(A)
(6)

where ρi,l is the Pearson correlation between resource
pools i and l, and γ ∈ R ≥ 0 is the configurable penalty
multiplier. Essentially, we add a weighted penalty to an
allocation based on its Pearson correlation scores with
the rest of our resources in different resource pools. In
our experiments, we set γ = 0.01. The regularization
term leads to Tributary creating a diversified resource
pool, thus reducing the probability that a significant por-
tion of the resources are preempted simultaneously. Hav-
ing a high probability of maintaining the majority of the
resource pool at any point time, allows Tributary to avoid
SLO violations with a high probability.

Let’s denote P(S) as the probability of S being the set
of resources preempted from A. AcquireMgr computes
it by taking the product of the conditional probability of
each allocation having the outcome specified in S. If the
allocation is preempted (di, j = 1) the conditional prob-
ability of the allocation being preempted (P(ai, j|ai, j−1))
is used, otherwise (di, j = 0) the product uses the condi-
tional probability of the allocation not being preempted
(1−P(ai, j|ai, j−1)).

P(S) =
size(A)

∏
i=1

size(Ai)

∏
j=1

(
di, j ∗P(ai, j|ai, j−1)

+(1−di, j)∗ (1−P(ai, j|ai, j−1))
) (7)

Finally, AcquireMgr formulates the probability of r re-
sources remaining after preemption P(R = r) (Eq. 3) as
the sum of the probabilities of all sets S where the num-
ber of resources not preempted in S equals to r:

P(R = r) = ∑
S⊆A,resc(S)=resc(A)−r

P(S) (8)

which it uses to calculate the expected utility of a set of
allocations A (Eq. 3).

Computational tractability. AcquireMgr’s algorithm
is exponentially computationally expensive as the num-
ber of spot markets considered increases. When con-
sidering more markets, it is possible to reduce compu-
tational complexity by grouping similar, correlated spot

6 2018 USENIX Annual Technical Conference USENIX Association

Eviction

Termination

8 c4.large in us-west-2c

2 c4.2xlarge in us-west-2a

4 c4.xlarge in us-west-2a

4 c4.xlarge in us-west-2c

(a) Legend

Alloc B

Alloc C

R
at

e
of

 R
eq

ue
st

s

Alloc A

Alloc D

Time (min)

Alloc C

6030

Alloc E

Alloc D

(b) Tributary

Alloc 2

Alloc 3

R
at

e
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3

6030

Alloc 4

(c) AutoScale
Figure 1: Figures (b) and (c) show how Tributary and AutoScale handle a sample workload respectively. Figure (a) is the legend for
(b) and (c), color-coding each allocation. The black dotted lines in (b) and (c) signify the request rates over time. At minute 15, the
request rate unexpectedly spikes and AutoScale experiences “slow” requests until completing integration of additional resources
with 3. Tributary, meanwhile, had extra resources meant to address preemption risk in C, providing a natural buffer of resources
that is able to avoid “slow” requests during the spike. At minute 35, when the request rate decreases, Tributary terminates B, since
it believes that B has the lowest probability of getting the free partial hour. It does not terminate D since it has a high probability
of eviction and is likely to be free; it also does not terminate C since it needs to maintain resources. AutoScale, on the other hand,
terminates both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary again benefits from the extra
buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow” requests and achieves lower cost than
AutoScale because AutoScale pays for 3 and for the partial hour for both 1 and 2 while Tributary only pays for A and the partial
hour for B since C and D were preempted and incur no cost.

markets, and performing revocation analysis with a rep-
resentative market. Although this would potentially de-
crease the precision of the preemption analysis, it would
allow AcquireMgr to further improve performance by
considering a larger number of markets.

3.3 Scaling Out
Resource Acquisition. When Tributary starts, the

user specifies a target SLO in terms of percentage of re-
quests that respond within a certain latency for Tributary
to target. AcquireMgr uses this target SLO to acquire
resources. At each decision point, AcquireMgr’s objec-
tive is to acquire resources until the expected utility θA
is greater than or equal to the target SLO. If the expected
utility is greater than or equal to the target SLO, no action
is taken; otherwise, AcquireMgr computes the expected
cost (Eq. 2) and utility of the current set of allocations
(Eq. 3). AcquireMgr then calculates the missing num-
ber of resources (M) required to meet the target SLO and
builds a set of possible allocations (Λ) that consists of
allocations from different resource pools at different bid
prices (from $0.0001 to $0.2 above the current price).
For each possible allocation Λi, AcquireMgr records the
new expected utility divided by the new expected cost
of A∪Λi, choosing the allocation Λchosen that maximizes
this value. AcquireMgr continues to add possible alloca-
tions until it achieves the target SLO in expectation.

Buffers of Transient Resources. To accommodate
potential resource preemptions, Tributary inherently ac-
quires more than the required amount of resources if any
of its allocations have a preemption probability greater
than zero, which is always the case with spot instances.
The amount of additional resources acquired depends on
the target SLO and the probabilities of allocation pre-

emptions (Eq. 3). While the primary goal of these ad-
ditional resources is to account for preemptions, they of-
ten have the added benefit handling unexpected increases
in load. Experiments with Tributary show that these
resource buffers both increase the fraction of requests
meeting latency targets and decrease cost (Sec. 5.3).

3.4 Scaling In
Aside from preemptions, Tributary also tries to scale

in voluntarily. As described earlier, each allocation is
considered only for the duration of the preemption win-
dow. When an allocation reaches the end of its preemp-
tion window, it is terminated and replaced with a new
allocation if required. When resource requirements de-
crease, Tributary considers terminating allocations for al-
locations least likely to be preempted. During this pro-
cess Tributary chooses the allocation with the least time
remaining in the hour, computes the expected utility θA
without this allocation, and if it is greater than the tar-
get SLO, Tributary terminates the allocation. Tributary
continues to try and terminate allocations as long as θA
remains greater than the target SLO.

3.5 Example and Future Consideration
Example. Fig. 1 shows how Tributary and AutoScale

handle a sample workload, including how the extra re-
sources Tributary acquires to handle preemption events
can also handle an unexpected request rate increase and
how aggressive allocation selection can get some re-
sources for free due to preemptions.

Future. Tributary lowers cost and meets SLO require-
ments by taking advantage of low-cost spot instances and
uncorrelated prices across different spot instance mar-
kets. Mass adoption of systems like Tributary could

USENIX Association 2018 USENIX Annual Technical Conference 7

change these characteristics. While a detailed analysis of
mass adoption’s potential effects on EC2 spot-markets is
outside the scope of this paper, we evaluate the effects
of two potential changes to the spot-market policies in
Section 5.5.

4 Tributary Implementation
Figure 2 shows Tributary’s high-level system architec-
ture. This section describes the main components, how
they fit together, and how they interact with AWS.

Preemption Prediction Models. The prediction mod-
els are trained offline using TensorFlow [8] and deployed
using Tensorflow Serving [7]. A separate model is used
for each resource pool. To service run time predictions
Tributary launches a Prediction Serving Proxy that re-
ceives all prediction queries from AcquireMgr, forwards
them to their respective models, aggregates the results,
and returns the predictions to AcquireMgr.

Resource Footprint Management. In Tributary, Ac-
quireMgr takes primary responsibility for managing the
resource footprint. AcquireMgr acquires instances, ter-
minates instances, and monitors AWS for instance pre-
emption notifications. AcquireMgr considers modifying
the resource footprint at every decision point, and it fol-
lows the procedure described in Sec. 3.3 when additional
resources are needed. Once AcquireMgr selects a set of
instances to acquire, it sends instance requests to AWS
via boto.ec2 API calls. AWS responds with a set of spot
request ids, which corresponds to the EC2 instances al-
located to AcquireMgr. Once the instances are in a run-
ning state, AcquireMgr sends the instance ids associated
with the new instances to Resource Manager. Instance
removal follows a similar procedure.

Scaling Policy. The Scaling Policy component deter-
mines dynamic sizing of the resource target. Through a
simple event-driven API, users can implement their own
scaling policies that access metrics provided by the Mon-
itoring Manager and specify the resource target.

Monitoring Manager (MonMgr). The Monitoring
Manager orchestrates monitoring of service system re-
sources. The Scaling Policy can register for metrics such
as total number of requests and average CPU utilization
of instances. The MonMgr queries requested metrics us-
ing AWS CloudWatch each monitoring period and for-
wards them to the scaling policy.

Resource Manager (ResMgr). The Resource Man-
ager is a proxy for AcquireMgr. Using resource tar-
gets provided by the Scaling Policy, the ResMgr gen-
erates the utility function used by AcquireMgr to make
resource acquisition decisions.1 The ResMgr also re-
ceives instance allocations and termination notices from
AcquireMgr and forwards them to the Service Manager.

1Process of constructing the utility function is described in Sec. 5.2.

Figure 2: Tributary architecture.

5 Evaluation
This section evaluates Tributary’s effectiveness. The re-
sults support a number of important findings: (1) Tribu-
tary’s exploitation of AWS spot market instances reduces
cost by 81%–86% compared to on-demand instances and
simultaneously decrease SLO latency misses; (2) Com-
pared to standard bidding policies for spot instances,
Tributary reduces cost by up to 41% and decreases SLO
latency misses by 31%–65%; (3) Compared to extend-
ing those standard policies to use enough extra (buffer)
resources to match Tributary’s number of SLO latency
misses, Tributary reduces cost by 47%–62%; (4) Trib-
utary outperforms state-of-the-art resource managers in
running elastic services; (5) Tributary’s preemption pre-
diction models improve accuracy significantly, resulting
in 37% lower cost than previous prediction approaches.

5.1 Experimental Setup
Experimental Platform. We report results for use of

three AWS EC2 spot instance types: c4.large, c4.xlarge,
and c4.2xlarge. The results correspond to the us-west-2
region, which consists of three availability zones. Us-
ing the three instance types in each availability zone, our
experiments involve nine resource pools.

Workload. The simulated workload uses a real-world
trace for request arrival times, with each request con-
sisting of the derivation of the PBKDF2 [18] key of a
password. The calculation of a PBKDF2 key is CPU-
heavy, with no network overhead and minimal memory
overhead. With the CPU performance being the bottle-
neck, the resource requirement can be characterized in
requests-per-second-per-VCPU.

Environment. In the simulation framework, each in-
stance is characterized with a number of VCPUs, and
the request processing time is configured to the mea-
sured time for one request on an EC2 instance (≈100ms).
Each instance server maintains a queue of requests, and
we simulate the queueing effects using the discrete event
simulation library SimPy [22]. The simulation frame-
work takes into account resource start-up time, with
newly acquired instances not able to service requests for
two hundred seconds following their launch.

SLO and Scaling. The target service latency is set to

8 2018 USENIX Annual Technical Conference USENIX Association

0 1000 2000 3000 4000
Minutes

125

367

Re
qu

es
ts

 p
er

 se
co

nd

(a) ClarkNet Periodic[10]
0 200 400 600 800 1000 1200 1400

Minutes

125

242

Re
qu

es
ts

 p
er

 se
co

nd

(b) WITS Large Variation[15]
Figure 3: Traces used in system evaluation.

one second, and we verified on EC2 that a VCPU can
handle roughly 10 requests per second without violat-
ing the latency target. So, the requests-per-second-per-
VCPU is ten, and the queue size per server instance is
ten times the number of VCPUs in the instance. Tribu-
tary is not overly sensitive to the target latency setting.

Traces. We use four real-world request arrival traces
with differing characteristics. Berkeley is from the
Berkeley Home IP proxy service and ClarkNet is from
the ClarkNet ISP’s HTTP servers [10]. Both exhibit a
periodic, diurnal pattern. We use the first 2000 minutes
of these two traces, which covers an entire period. WITS
is a sampled trace from the Waikato Internet Traffic Stor-
age (WITS) [15]. The trace lasts for roughly a day, from
April 6th to April 7th of the year 2000. This trace ex-
hibits large variation of request rates throughout the day,
as can be seen in Fig. 3b. WorldCup98 is the arrival trace
of the workload on the 1998 FIFA World Cup HTTP
Servers [10] on day 75 of the World Cup. All traces are
scaled to have an average of 125 requests per second in
order to generate sufficient load for the experiments.

5.2 Scaling Policies Evaluated
We implement three popular scaling policies: Reac-

tive, Predictive Moving Window Average (MWA), and
Predictive Linear Regression (LR) to evaluate our sys-
tem. The utility function provided by the service is lin-
ear for all three policies. We make this assumption since
our workload characteristic is embarrassingly parallel —
if a workload exhibits different scaling characteristics, a
different utility function can be employed.

The Reactive Policy scales out immediately when de-
mand reported by the MonMgr is greater than what the
available resources are able to handle. It scales in slowly
(only after three minutes of low demand), as recom-
mended by Gandhi et al. [12], to prevent premature scale-
in in case the demand fluctuates widely in a short period
of time. The MWA Policy maintains a sliding window
of a fixed size, with each window entry consisting of the
number of requests received in each monitoring period.
The policy takes the average of the window entries to
predict the number of requests on the next monitoring pe-
riod. The policy then adjusts the utility and scaling func-
tions according to the predicted number of requests, and
reports the updated functions to the ResMgr to scale in
expectation of future requests. The LR Policy also main-
tains a sliding window of a fixed size, but rather than us-

ing the average in the window for prediction, the policy
performs linear regression on data points in the window
to estimate the expected number of requests in the next
monitoring period. Our experiments show that regardless
of the scaling policy used, Tributary beats its competitors
in both meeting the service latency target and cost.

5.3 Improvements with Tributary
Here, we evaluate Tributary’s ability to reduce cost

and latency target misses against AutoScale.
AWS Autoscale. AWS AutoScale (Sec. 2.2) as of-

fered by Amazon only supports the simplest reactive
scaling policies. To provide better comparison between
approaches, we implement the AWS AutoScale resource
acquisition algorithm as closely as possible according to
its documentation [2] and integrate it with Tributary’s
SvcMgr to work with its more powerful scaling policies.
From here on, mentions of AutoScale refer to our imple-
mentation of AWS AutoScale. AutoScale is the equiv-
alent of the AcquireMgr component of Tributary. The
default AutoScale algorithm with spot instances bids for
the lowest market-priced spot instance at the on-demand
price upon resource requests by the scaling policy. In ad-
dition, AutoScale terminates resources as soon as the re-
source requirements are lowered, choosing to terminate
resources that are most expensive at the moment.

Methodology and Terminology. To achieve fair com-
parisons across a wide range of data points, we perform
cost analysis with simulations using historical spot mar-
ket traces. Using traces allows us to test different ap-
proaches on the same period of market data and to get
a better picture of the expected behavior of the system
in a shorter amount of time. For each request arrival
trace (Sec. 5.1) and resource acquisition approach, we
present the average cost and percentage of “slow” re-
quests over trace requests across ten randomly chosen
day/time starting points between January 23, 2017 and
March 23, 2017 in the us-west-2 region. From here on,
we define a “slow” request as a request that does not
meet the latency target and the percentage of “slow” re-
quests as the percentage of “slow” requests over all re-
quests in a single trace. 2

Cost Savings and Service Latency Improvements.
Fig. 4 shows the cost savings and percentage of “slow”
requests for the ClarkNet trace. The cost savings are
normalized against running Tributary on on-demand re-
sources. The results demonstrate that Tributary reduces
cost and “slow” requests for all three scaling policies.
Cost savings are ≈ 85% compared to on-demand re-
sources. For the ClarkNet trace, Tributary reduces cost
by 36%, 24% and 21% compared to to AutoScale for
the Reactive, Predictive-LR and Predictive-MWA scaling
policies, respectively. Compared to AutoScale, Tributary

2Prediction models were trained on data from 06/06/16 – 01/22/17.

USENIX Association 2018 USENIX Annual Technical Conference 9

0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(a) Reactive
0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(b) Predictive-LR
0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(c) Predictive-MWA
Figure 4: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

reduces “slow” requests by 72%, 61% and 64%, respec-
tively, for the three scaling policies.

In order to decrease the number “slow” requests, popu-
lar scaling polices are often configured to provision more
resources than immediately necessary to handle unex-
pected increases in load. It is common to specify the
resource buffer as a percentage of the expected resource
requirement. For example, with a buffer of 50%, 15 re-
sources (e.g., VCPUs) would be acquired rather than the
projected 10. AutoScale+Buffer shows the cost of provi-
sioning AutoScale with a large enough buffer such that
its number of “slow” requests matches that of Tributary.
Tributary reduces cost by 61%, 56% and 57% compared
to AutoScale+Buffer for the three scaling policies.

The cost savings for Tributary on the Berkeley trace
relative to AutoScale are similar to those on the ClarkNet
trace, but the reduction in percentage of “slow” requests
increases. This difference in performance is due to differ-
ing characteristics of the two traces — the ClarkNet trace
experiences more minute-to-minute volatility in request
rate compared to the Berkeley trace. We observe similar
levels of cost reductions and reduction in “slow” requests
on the WITS and WorldCup98 traces, results for WITS
are shown in Tables 2. Compared to AutoScale+Buffer,
Tributary decreased costs by 47–62% across all traces.

Scaling Policy Cost Saving “Slow” request Reduction
Reactive 37% 31%
Predictive-LR 33% 50%
Predictive-MWA 29% 51%

Table 2: Cost and “slow” request improvements for Tributary
compared to AutoScale for the WITS trace

Attribution of Benefits. Tributary’s superior perfor-
mance arises from several factors. Much of the reduction
in cost compared to AutoScale is due to Tributary’s abil-
ity to get free instance hours. Free instance hours occur
when an allocation does useful work but is preempted
by AWS before the end of a preemption window. The
user receives a refund for the partial hour, which means
that any work done by the allocation in the preemption
window comes at no cost to the user. Tributary takes
the probability of getting free instance hours into account
when computing the expected cost of allocations (Eq. 1),
often acquiring resources that provide higher opportuni-
ties for free instance hours.

Another factor in Tributary’s lower cost is its abil-
ity to remove allocations that are not likely to be pre-

empted when demand drops. When resource demand
decreases, Tributary terminates instances that are least
likely to be preempted, thus lowering the expected cost
of its resource footprint. The reductions in “slow” re-
quests arise from the buffer of resources acquired by
Tributary (Sec. 3.3). When acquiring instances, Ac-
quireMgr estimates their probability of preemption. Un-
less all allocations have a preemption probability of zero,
which never occurs for spot instances, Tributary acquires
more resources than specified by the scaling policy. The
primary goal of the additional resources is to ensure that,
when Tributary experiences preemption events, it still
has at least the specified number of resources in expecta-
tion. The additional resources also provide a secondary
benefit by handling some or all of unexpected bursts of
requests that exceed the load expected by the scaling pol-
icy. The cost of these additional resources is commonly
offset by free instance hours; indeed, the extra resources
are acquired to cope with preemptions.

5.4 Risk Mitigation
A key feature of Tributary is that it encourages

instance diversification, i.e., acquiring instances from
mostly independent resource pools (Sec. 3.2). The de-
fault AutoScale policy is the lowest-price policy, which
does not take diversification into account when acquiring
instances; instead, it acquires the cheapest instance. Il-
lustrated in Fig. 1, Tributary acquires different types of
instances in different availability zones, while AutoScale
acquires instances of the same type (all red). Diversify-
ing across resource pools is important, because each has
an independent spot market, avoiding highly correlated
allocation preemptions within a single instance market.
Acquiring too much from a single pool, as often oc-
curs with AutoScale, creates a high risk of SLO violation
when preemption events occur (e.g., if the red allocation
in Fig. 1c was preempted prior to minute 35).

In our experiments, we found it to be very rare for mar-
ket prices to rise above on-demand prices, meaning that
AutoScale rarely experiences preemption events. How-
ever, when examining past EC2 spot market traces and
other availability zones, we found it to be significantly
more common for the market price to rise above the
on-demand price, thus preempting AutoScale instances.3

3 From 01/23/17–03/20/17, the market price rose above the on-demand
price 0 times for the c4.2xlarge instance type in us-west-2. From
11/1/16–01/22/17, it happened 1073 times.

10 2018 USENIX Annual Technical Conference USENIX Association

0

5

10

15

20

25

0

10

20

30

40

Exo Small α Exo Large α Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(a) Reactive
0

5

10

15

20

25

0

10

20

30

40

Exo Small α Exo Large α Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(b) Predictive-LR
0

5

10

15

20

25

0

10

20

30

40

Proteus Proteus+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(c) Reactive
0

5

10

15

20

25

0

10

20

30

40

Proteus Proteus+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(d) Predictive-LR
Figure 5: Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but similar.

Since Amazon charges users the market price and not
the bid price, it is possible that Amazon may once again
preempt instances bidding the on-demand price with
regularity—a phenomenon we recently observed in the
us-east availability zones. Thus, AutoScale’s resource
acquisition approach is riskier for services with latency
SLOs on spot machines.

Cost of Diversified AutoScale. In addition to the
default AutoScale policy which acquires the lowest-
priced instance, AWS also offers a diversified AutoScale
policy that starts instances from a diverse set of re-
source pools [4]. Acquiring instances from different spot
markets reduces preemption risks, but our experiments
showed that it increases cost by 8%–12% compared to
the lowest-price AutoScale policy. Compared to Tribu-
tary, which diversifies across spot markets intelligently,
we found that a diversified AutoScale policy cost 68%
more to achieve the same number of “slow” requests for
the reactive scaling policy on the ClarkNet trace.

5.5 Pricing Model Discussion
Our experimental results are based on current AWS

EC2 billing policies, as described Section 2.1. This sec-
tion discusses how Tributary would function under two
potential changes to the billing model: (1) elimination of
preemption refunds, (2) institution of a free market.

Elimination of preemption refunds. If Amazon
eliminates refunds when the market price exceeds bid
price during the first hours of usage, Tributary would
lose incentive to bid close to market price. Tributary’s
model would capture this change by setting β in Eq. 2
to zero. With higher bids, Tributary would acquire fewer
resources because preemption would be less likely. The
amount of resources acquired would still exceed the
amount of resources required as they would still have
non-zero preemption probabilities.

Although Tributary extracts significant benefit from
the refunds, it still outperforms AutoScale without it. For
example, in a simulation with this billing model modi-
fication, Tributary still reduces cost by 31% compared
to AutoScale with sufficient buffer to match numbers of
“slow” requests, for the Clarknet trace using the reactive
scaling policy. As expected, Tributary continues to meet
SLOs with high likelihood, as it continues to diversify
its resource pool and acquire buffers of resources (albeit
smaller ones) to account for preemption events.

Free market behavior. In its current design, the AWS
EC2 spot markets do not behave as free markets [9]. Cus-

tomers specify their bid prices for a given resource, but
generally do not pay that amount. Instead, a customer
is billed according to the EC2-determined spot price for
that resource. It is possible, perhaps even likely as the
spot market becomes widely popular, that AWS will tran-
sition toward a billing policy in which users are charged
their bid price, instead of the market price, and prices
move based on supply and demand rather than unknown
seller policies. This change would render the commonly
used strategy of bidding far above the market price (e.g.,
bidding the on-demand price) obsolete. Tributary’s be-
havior would not change significantly, as it already often
sets bid prices close to market prices and explicitly con-
siders revocation risks, and we believe it would therefore
outperform other approaches by even larger margins.

5.6 Comparing to State of the Art
This section compares Tributary’s support for elastic

services to two state-of-the-art resource managers de-
signed for preemptible instances. Since neither system
was designed for elastic services with latency SLOs,
Tributary unsurprisingly performs significantly better.

Exosphere. We implemented ExoSphere’s allocation
strategy, described in Sec. 2.2, with the following as-
sumptions and modifications: (i) The ExoSphere paper
did not specify whether the correlation between mar-
kets is recomputed as time moves on. In order to avoid
the need to constantly reconstruct ExoSphere’s resource
footprint, we assumed static correlation between mar-
kets. (ii) As the ExoSphere paper does not provide guide-
lines as to how to choose α , we experimented with a
range of α from 1 to 109. Higher α instructs ExoSphere
to be more risk averse at the expense of higher cost.

Fig. 5 shows the normalized cost and percentage of
“slow” requests served for Tributary and for ExoSphere
with small (1) and large (109) values of α . These ex-
periments were performed on a further scaled-up version
of the ClarkNet trace (100x of already-scaled version),
since ExoSphere was designed for 100s to 1000s of in-
stances and performs poorly at a scale of 10s.4 In our
experiments, we observed that Exosphere with a small α

tends to acquire mainly the cheapest resources, inducing
little diversity and increasing the number of “slow” re-
quests in the event of preemptions. Tributary’s advantage
in both cost and SLO attainment results from Tributary’s
exploitation of spot instance characteristics (Sec. 5.3).

4At small scales, ExoSphere with low α had no resource diversity.
With large α , it acquired too many resources, increasing its cost.

USENIX Association 2018 USENIX Annual Technical Conference 11

Proteus. We implemented Proteus’s allocation strat-
egy, described in Sec. 2.2, modified to acquire only spot
resources (reducing cost with no significant change in
SLO attainment). Fig. 5 compares Tributary and Pro-
teus for the ClarkNet trace, for two different scaling poli-
cies. While Proteus achieves lower cost than Tributary, it
experiences a large increase in ”slow” requests. This in-
crease is due to Proteus not diversifying its resource pool,
instead only acquiring resources based on reducing aver-
age per-core cost. When told by the scaling policy to ac-
quire additional resources, similarly to AutoScale buffers
(Sec. 5.3), Proteus is unable to match Tributary’s number
of ”slow” requests no matter how large the buffer (and,
thus, how high the cost). This is once again due to the
lack of diversity in the resources that Proteus acquires.

5.7 Prediction Model Evaluations
This section evaluates the accuracy of the preemption

prediction models used by Tributary, which are described
in Sec. 3.1. The recent Proteus system [16] used the his-
torical median probability of preemption depending on
the instance type, availability zone and the difference be-
tween the user bid price and the spot market price of the
resource. Tributary improves prediction accuracy by us-
ing machine learning inference models trained with his-
torical spot market data with engineered features. Fig. 6
shows the accuracy and F1 scores for prediction models
based on the historical median, a logistic regression clas-
sifier, a multilayer perceptron neural network (MLP NN)
and a long short term memory recurrent neural network
(LSTM RNN). These models were trained on spot mar-
ket data from 06/06/16 – 01/22/17 and were evaluated on
data from 01/23/17 – 03/20/17 for instance types c4.large,
c4.xlarge and c4.2xlarge in us-west-2.

The output of the prediction models is whether the in-
stance specified in a query will be preempted within the
preemption window. Accuracy scores are calculated by
the number of samples classified correctly divided by to-
tal number of samples. F1 scores, which account for data
skew, are a good accuracy measurement because the data
set is skewed toward preemptions at lower bid deltas and
non-preemptions at higher bid deltas. The LSTM RNN
model provides the best accuracy and the best F1 because
it is able to capture the temporal nature of the AWS spot
market. LSTM increases accuracy by 11% and the F1
score by 27% compared to using the historical median.
The MLP NN model performs worse than the historical
median model for accuracy, but its F1 score is higher
because unlike the historical median model, the MLP
model considers advanced features when predicting pre-
emptions as described in Sec. 3.1. The increased accu-
racy of the LSTM RNN model translates to Tributary’s
effectiveness. When using the LSTM RNN model, Trib-
utary runs at ≈37% less cost on the ClarkNet workload
compared to Tributary using historical medians, because

0
20
40
60
80

100

Pr
ed

ic
tio

n
Ac

cu
ra

cy
 (%

)

Historical Median
Logistic Regression
MLP NN
LSTM RNN

0
20
40
60
80

100

F1
 S

co
re

 (%
)

Historical Median
Logistic Regression
MLP NN
LSTM RNN

Figure 6: Accuracies and F1 scores (accounts for data skew)
for predicting preemption of AWS spot instances. The LSTM
RNN outperforms prior techniques (blue bar) by 11% on the
accuracy metric and 27% on the F1 score metric.
the historical median model overestimates the probabil-
ity of preemption, causing Tributary to acquire more re-
sources than necessary.

6 Conclusion
Tributary exploits AWS spot instances to meet latency
SLOs for elastic services at lower cost. By predicting
preemption probabilities and acquiring diverse resource
footprints, Tributary can aggressively use collections of
cheap spot instances to reliably meet SLOs even in the
face of bulk preemptions. Our experiments show cost
savings of 81–86% relative to using non-preemptible
on-demand instances and 47–62% relative to traditional
high-risk use of spot instances.

Tributary exploits AWS properties, such as dynamic
spot markets and preemption based thereon. We be-
lieve its approach would also work for other clouds offer-
ing preemptible resources, if they expose enough infor-
mation to predict preemption probabilities, which AWS
provides via the visible spot market prices. Currently,
Google Cloud Engine [5] does not expose such a signal
for its preemptible instances. For private clouds, expos-
ing preemption logs could provide the historical view,
but even better predictions can be enabled by exposing
scheduler state.
Acknowledgements: We thank our USENIX ATC18 re-
viewers and our shepherd, Christopher Stewart, for valu-
able suggestions. We thank Henggang Cui for his feed-
back. We thank the members and companies of the PDL
Consortium (Alibaba, Broadcom, Dell EMC, Facebook,
Google, HPE, Hitachi, IBM, Intel, Micron, Microsoft,
MongoDB, NetApp, Oracle, Salesforce, Samsung, Sea-
gate, Two Sigma, Toshiba, Veritas and Western Digital)
for their interest, insights, feedback, and support. This
research is supported in part by Intel as part of the In-
tel STC for Visual Cloud Systems (ISTC-VCS), National
Science Foundation under awards CNS-1042537, CCF-
1533858, CNS-1042543 (PRObE [13]), and DARPA
Grant FA87501220324. Lastly, one of the co-authors is
supported in part by DHS Award HSHQDC-16-3-00083,
NSF CISE Expeditions Award CCF-1139158, and gifts
from Alibaba, Amazon Web Services, Ant Financial,
CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM,
Microsoft, Scotiabank, Splunk and VMware.

12 2018 USENIX Annual Technical Conference USENIX Association

References
[1] Amazon EC2 Spot Instances. https://aws.amazon.com/

ec2/spot.

[2] AWS Autoscale. https://aws.amazon.com/
autoscaling/.

[3] AWS EC2. http://aws.amazon.com/ec2/.

[4] AWS EC2 Spot Fleet. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/spot-fleet.html.

[5] Google Compute Engine. https://cloud.google.com/
compute/.

[6] Spot Bid Advisor. https://aws.amazon.com/ec2/
spot/bid-advisor/.

[7] Tensorflow serving. https://tensorflow.github.io/
serving.

[8] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A.,
DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD,
M., KUDLUR, M., LEVENBERG, J., MONGA, R., MOORE, S.,
MURRAY, D. G., STEINER, B., TUCKER, P., VASUDEVAN, V.,
WARDEN, P., WICKE, M., YU, Y., AND ZHENG, X. Tensor-
flow: A system for large-scale machine learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI 16).

[9] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,
A., AND TSAFRIR, D. Deconstructing Amazon EC2 spot in-
stance pricing. ACM Transactions on Economics and Computa-
tion 1, 3 (2013), 16.

[10] DANZIG, P., MOGUL, J., PAXSON, V., AND SCHWARTZ, M.
The internet traffic archive. URL: http://ita.ee.lbl.gov/ (2000).

[11] GALANTE, G., AND BONA, L. C. E. D. A survey on cloud
computing elasticity. In Proceedings of the 2012 IEEE/ACM
Fifth International Conference on Utility and Cloud Computing
(Washington, DC, USA, 2012), UCC ’12, IEEE Computer Soci-
ety, pp. 263–270.

[12] GANDHI, A., HARCHOL-BALTER, M., RAGHUNATHAN, R.,
AND KOZUCH, M. A. Autoscale: Dynamic, robust capacity
management for multi-tier data centers. ACM Trans. Comput.
Syst. 30, 4 (Nov. 2012), 14:1–14:26.

[13] GIBSON, G., GRIDER, G., JACOBSON, A., AND LLOYD, W.
Probe: A thousand-node experimental cluster for computer sys-
tems research. USENIX 38, 3 (2013).

[14] GONG, Z., GU, X., AND WILKES, J. Press: Predictive elastic
resource scaling for cloud systems. In 6th IEEE/IFIP Interna-
tional Conference on Network and Service Management (CNSM
2010) (Niagara Falls, Canada, 2010).

[15] GROUP, W. N. R., ET AL. Wits: Waikato internet traffic storage.
URL: http://wand.net.nz/wits/index.php.

[16] HARLAP, A., TUMANOV, A., CHUNG, A., GANGER, G. R.,
AND GIBBONS, P. B. Proteus: Agile ML elasticity through tiered
reliability in dynamic resource markets. In Proceedings of the
Twelfth European Conference on Computer Systems (New York,
NY, USA, 2017), EuroSys ’17, ACM, pp. 589–604.

[17] HOXMEIER, J. A., AND DICESARE, C. System response time
and user satisfaction: An experimental study of browser-based
applications. AMCIS 2000 Proceedings (2000), 347.

[18] KALISKI, B. Pkcs# 5: Password-based cryptography specifica-
tion version 2.0.

[19] KOHAVI, R., AND LONGBOTHAM, R. Online experiments:
Lessons learned. Computer 40, 9 (2007).

[20] LIU, H., AND WEE, S. Web Server Farm in the Cloud: Per-
formance Evaluation and Dynamic Architecture. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 369–380.

[21] MARATHE, A., HARRIS, R., LOWENTHAL, D., DE SUPINSKI,
B. R., ROUNTREE, B., AND SCHULZ, M. Exploiting redun-
dancy for cost-effective, time-constrained execution of HPC ap-
plications on Amazon EC2. In Proceedings of the 23rd interna-
tional symposium on High-performance parallel and distributed
computing (2014), ACM, pp. 279–290.

[22] MULLER, K., AND VIGNAUX, T. Simpy: Simulating systems in
python. ONLamp. com Python Devcenter (2003).

[23] SHARMA, P., GUO, T., HE, X., IRWIN, D., AND SHENOY,
P. Flint: Batch-interactive data-intensive processing on tran-
sient servers. In Proceedings of the 11th European Conference
on Computer Systems (EuroSys 16) (2016), ACM, p. 6.

[24] SHARMA, P., IRWIN, D., AND SHENOY, P. Portfolio-driven re-
source management for transient cloud servers. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 1,
1 (2017), 5.

[25] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY, P.
Spotcheck: Designing a derivative iaas cloud on the spot market.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), ACM, p. 16.

[26] SHARMA, U., SHENOY, P., SAHU, S., AND SHAIKH, A. A
cost-aware elasticity provisioning system for the cloud. In 2011
31st International Conference on Distributed Computing Systems
(June 2011), pp. 559–570.

[27] SHASTRI, S., AND IRWIN, D. Hotspot: Automated server hop-
ping in cloud spot markets.

[28] SOUDERS, S. Velocity and the bottom line. In Velocity (Web
Performance and Operations Conference) (2009).

[29] SUNDERMEYER, M., SCHLÜTER, R., AND NEY, H. LSTM
neural networks for language modeling. In Interspeech (2012),
pp. 194–197.

[30] TANG, S., YUAN, J., AND LI, X.-Y. Towards optimal bid-
ding strategy for Amazon EC2 cloud spot instance. In Proceed-
ings of the 5th IEEE International Conference on Cloud Comput-
ing(CLOUD 12) (2012), IEEE, pp. 91–98.

[31] WANG, W., LI, B., AND LIANG, B. To reserve or not to reserve:
Optimal online multi-instance acquisition in iaas clouds. In ICAC
(2013), pp. 13–22.

[32] XU, Z., STEWART, C., DENG, N., AND WANG, X. Blending
on-demand and spot instances to lower costs for in-memory stor-
age. In INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, IEEE (2016), IEEE,
pp. 1–9.

[33] ZHENG, L., JOE-WONG, C., TAN, C. W., CHIANG, M., AND
WANG, X. How to bid the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communi-
cation (2015), ACM, pp. 71–84.

USENIX Association 2018 USENIX Annual Technical Conference 13

https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
http://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://aws.amazon.com/ec2/spot/bid-advisor/
https://aws.amazon.com/ec2/spot/bid-advisor/
https://tensorflow.github.io/serving
https://tensorflow.github.io/serving

