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Abstract

The proliferation of applications that handle sensitive
user data on wearable platforms generates a critical need
for embedded systems that offer strong security without
sacrificing flexibility and long battery life. To secure sen-
sitive information, such as health data, ultra-low-power
wearables must isolate applications from each other and
protect the underlying system from errant or malicious
application code. These platforms typically use micro-
controllers that lack sophisticated Memory Management
Units (MMU). Some include a Memory Protection Unit
(MPU), but current MPUs are inadequate to the task,
leading platform developers to software-based memory-
protection solutions. In this paper, we present our memory
isolation technique, which leverages compiler inserted
code and MPU-hardware support to achieve better run-
time performance than software-only counterparts.

1 Introduction

Smart watches and smart bands offer novel opportuni-
ties for individuals to monitor and control their health,
manage a chronic disease, pursue athletic excellence, re-
cover from surgery, or steer their lifestyle toward healthier
behaviors. Smart watches can run a variety of apps, in-
cluding third-party apps installed by the user. However,
the battery life for a typical smart watch is about one
day, far shorter than the weeks-long battery life typical
of single-purpose fitness bands. To balance these trade-
offs, some devices (such as the Amulet [10]) seek to
achieve the battery life of a closed-source fitness band
(like a Fitbit) and the capability to run multiple third-party
apps, while retaining strong security properties. These
low-energy multi-app wearable platforms employ ultra-
low-power microcontrollers (MCUs), with tiny RAM,
limited secondary storage, and which lack the hardware-
based memory-protection mechanisms – such as Memory
Management Units (MMU) – needed to ensure that ap-

plications cannot interfere with each other. This makes it
difficult to provide long battery life and strong security
properties that allow multiple third-party apps to coexist.

This work focuses on a fundamental security property:
memory isolation, which ensures that no application can
read, write, or execute memory locations outside its own
allocated region, or call functions outside a designated
system API. In this paper, we present a novel memory
isolation technique, which leverages compiler inserted
code and a low-sophistication Memory Protection Unit
(MPU) found in many microcontrollers, to achieve better
performance than software-only counterparts.

We use the open-source Amulet platform [10] to im-
plement the following isolation methods for comparison:
(1) compiler-enforced language limitations (no pointers,
no recursion), (2) compiler-inserted run-time memory iso-
lation (address-space bounds verification), and (3) MPU-
supported memory isolation (hardware enforced failure).
The first option is the approach taken by the Amulet team,
which limits the programmer to a subset of C. Pointers
are disallowed, and the compiler inserts code for run-time
bounds-checking on arrays. In the second approach, we
modify the Amulet implementation to allow for pointers
and recursion, but our custom compiler inserts code to
validate each pointer dereference to ensure the application
stays within its bounds. In the third approach we imple-
ment a novel combination, in which the OS and compiler
coordinate the dynamic assignment of the MPU’s lim-
ited functionality – and limited compiler-inserted pointer
checking – to enable the desired isolation. Finally, we
automate this process through an extension to the Amulet
Build System. We make the following contributions:

1. an analysis of design considerations, including se-
curity issues, that enable multiple applications on
ultra-low-power wearables, with minimal burden on
the programmer or the user;

2. a novel technique, using the limited-function hard-
ware memory protection unit (MPU) found in com-
modity ultra-low-power microcontrollers, combined
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with compile-time analysis of application code, to
sandbox application code and memory;

3. a prototype implementation as a refinement of the
open-source Amulet platform;

4. an evaluation that compares the performance of the
Amulet platform’s limited language-based memory-
isolation mechanism, a full-featured software-only
approach, and a full-featured MPU-assisted mecha-
nism.

2 Background and Related Work

Early operating systems for wireless sensors like
TinyOS [14] and others [1, 6, 9] reduced complexity [13],
enabled dynamic reprogramming [15], and provided in-
terfaces for concurrent execution [7]. These platforms
did not provide memory isolation, nor did they allow
installation of multiple third-party applications. As the
application space grows, security mechanisms that enable
multiprogramming of multi-tenant microcontroller units
(MCUs) must be developed. Recent work has explored
approaches for memory isolation on microcontrollers.

Some approaches change the language: AmuletOS [10]
uses a dialect of ANSI C, termed AmuletC, which disal-
lows pointers and recursion. TockOS [16] writes kernel
code in Rust, a type-safe and memory-safe language, and
isolates their apps using an MPU. While language mod-
ifications can make compile-time analysis easier [17],
they tend to limit expressiveness and are rarely enough to
ensure complete application isolation.

Language features are often coupled with compiler
checks, binary-code rewriting, or system-implemented
dynamic checks. For example, AmuletOS has a compiler
that inserts run-time bounds-checking code around all
array accesses [10]. Deputy [4, 5] enforces type safety
at compile time; Harbor [12], built on top of SOS [9],
rewrites binary code to check any pointer reference and
function call. T-Kernel [8] modifies code at load time to
secure application memory. Each of these compile and
run-time techniques come with limitations: compile-time
techniques depend on language features (or modifications)
and clear OS rules, while dynamic checking requires ex-
pensive run-time overhead to check memory accesses.

Other systems virtualize the single memory space to
isolate applications, like Maté [13], or rely on novel hard-
ware mechanisms such as a Secure Loader hardware unit
between the CPU, peripherals, and RAM [11].

Many ultra-low-power MCUs like the MSP430 FRAM
series [18] are equipped with a basic Memory Protection
Unit, but they have some or all of the following short-
comings: (1) they support too few distinct regions, not
enough to sandbox each application; (2) they leave certain
segments of memory, like hardware registers or RAM, un-
protected; and (3) they have arcane protection boundary

rules, because they depend on opaque hardware imple-
mentations.

Given all these prior techniques, we see the potential
for a new approach that leverages the meager capabilities
of the new class of MPU, and the lessons learned from
years of isolation techniques using software approaches.
In this paper, we evaluate the performance of our memory-
isolation technique, which leverages compiler-inserted
code and MPU-hardware support, against: a language-
limited software-based approach (the native Amulet ap-
proach [10]), and a full-featured compiler-inserted-check
approach.

3 System Design

We apply our memory-isolation technique to the latest
open-source build of Amulet1. Amulet implements mem-
ory isolation through compiler-enforced language limita-
tions (no pointers, no recursion, no goto statements and
no inline assembly). We remove the most burdensome
restrictions by allowing app programmers to use recur-
sion and C pointers (including function pointers) in their
code, which reduces the effort to port code to the Amulet
and allows developers to write new apps in a customary
fashion. In our approach we implement two methods to
allow these language features and still ensure memory
isolation – use of the memory protection unit (MPU) and
compiler-inserted run-time memory isolation.

The Amulet system allows an Amulet user to select
a customized mix of applications to run on her Amulet
wristband, from a suite of applications developed indepen-
dently by separate app developers. The Amulet system
consists of three core parts – AmuletOS, Amulet Runtime,
and the Amulet Firmware Toolchain (AFT). AmuletOS
provides the core system services and an event-based
scheduler that drives the apps’ state machines, deliver-
ing events by calling the appropriate event-handler func-
tion with parameters representing the details of the event.
Amulet Runtime provides a state-machine environment
in which all applications run. The Amulet Firmware
Toolchain (AFT) [10], analyzes, transforms, merges, and
compiles the user’s desired applications with the Amule-
tOS to construct a firmware image for installation on the
user’s Amulet device.

Amulet devices use a TI MSP430FR5969 MCU, which
have a memory protection unit (MPU), with limited ca-
pabilities as described in Section 2. The MPU is not a
memory-management unit (MMU), nor does it provide
full memory protection: it cannot protect all regions of
memory (the MPU will not prevent instructions from read-
ing or writing the peripheral registers, InfoMem, SRAM,

1The latest open-source release of the Amulet platform can be found
at https://github.com/AmuletGroup/amulet-project
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If Appi dereferences a data pointer:
  if (address < Di) FAULT( );
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  if (addr < Ci) FAULT( );
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Figure 1: Memory diagram of our approach, and MPU regions per application.

or interrupt vectors), and its limited selection of three
MPU-controlled segments does not allow us to subdi-
vide memory into the four regions we desire (app code,
app data/stack, off-limits memory below the app, and off-
limits memory above the app). The MPU only has the
ability to protect accesses to memory above the higher
app bound but not below the lower app bound. To pro-
tect lower memory the compiler inserts a lower bound
check. Thus, the MPU memory isolation method consists
of configuring the MPU for an app and inserting lower-
bound checks, while the compiler inserted (software-only)
method mentioned earlier consists of not using the MPU
and inserting both an upper and lower memory bound
check. Although the MSP430’s MPU itself is not suffi-
cient to protect the system and other applications from
pointer misuse by a buggy (or malicious) app, it is use-
ful: in our approach, we strategically leverage both the
MPU and the compiler to accomplish the necessary pro-
tections. This section details the memory map used for
MPU, as well as how we handle memory accesses and
context switches.

Memory Map: Use of the MPU requires a different
memory mapping than in the original Amulet implemen-

tation. Figure 1 diagrams our approach. We leverage
the SRAM for the AmuletOS stack, the low FRAM for
AmuletOS code and data, and the high FRAM for app
code and data, grouped by app.2 Each app’s code and
data are separated, with its code in lower addresses than
its data. The MPU has four segments, of which we can
make good use of three.3InfoMem, the first segment, is
fixed to a certain address range and its configuration can
be changed any time by any code. Furthermore, only
two boundaries are adjustable: the boundary between
segment 1 and 2 and the boundary between segment 2
and 3.

To allow application developers to use C pointers, we
leverage previously described MPU hardware. While
an app is running, we configure the MPU segments as
follows: 0: InfoMem (unused; no access); 1: OS, lower-
memory apps, and current-running app’s code (execute-
only); 2: current-running app’s data and stack (read-write
only); 3: higher-memory apps (no access).

Consider, as an example, Application 2 in Figure 1.
All of the app’s code is gathered in one region, all of its
data and stack in another region. The MPU configuration
triggers a fault if a stray pointer references anything in
higher regions (shown as Application 3 in the figure), but
the MPU cannot fully protect regions in addresses below
the application’s code segment.

While the OS is running, we configure the MPU seg-
ments as follows: 0: InfoMem (unused; no access); 1:
OS code (execute-only); 2: interrupt vectors and OS data
(read-write only); 3: apps (read-write only). This con-
figuration allows the AmuletOS to run its own code and,
as needed, to manipulate data in both the app and OS
regions.

It’s important to note an important design change from
Amulet as it was originally introduced. The Amulet sys-
tem uses a single stack – shared by both the OS and the
current application. This approach is possible because at
most one app runs at any time, so there is no need to retain
a stack for non-running apps. It is also possible because
app code cannot use pointers, and thus cannot read any
memory outside its statically allocated global variables,
or outside its current stack frame. If we were to stick with
the same single-stack model, we would need to bzero the
stack region every time we switched apps, lest the new
app glean information from the stack tailings left behind
by the prior app. We chose instead to allocate a distinct
region of memory for each app’s stack, removing this
cost (and other costs to ensure stack references remain

2If the AmuletOS is too large to fit in the low FRAM, it could span
the interrupt vectors, but for simplicity we do not show it as such in the
diagram.

3MPU segment 0 is pinned to the InfoMem, which is only 512 bytes
and which we currently do not use. We anticipate using the InfoMem
in future revisions, for a return-address stack that protects the return
address from stack overflow bugs and attacks.
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in-bounds) at the cost of increased memory usage.
That brings us to another important design decision

related to security and the application stack. Languages
such as C traditionally place a function’s return address
on the stack, and jump indirectly through that address as
part of the function-return instruction. Stack overflows
in buggy or malicious code can overwrite that entry on
the stack, however, causing the function to return to a
different address. We leverage the compiler to insert
code to bounds-check the return address before every
function return. Furthermore, we place the top of the
app stack below the app’s data in the app’s data/stack
segment, and allow the stack to grow downward. The
compiler and linker can compute the size of the app’s data
region, and estimate the maximum stack depth, to ensure
the data/stack segment is large enough for the app’s needs.
If the app overflows its stack, for example by too-deep
recursive calls, it will cross an MPU boundary into an
execute-only code region and trigger a fault.

Memory accesses: An important role for the runtime
system is to handle application faults; when the app at-
tempts an invalid memory access, it jumps to a FAULT
function to log app-specific information about the fault.
At compile time, the AFT uses its transformation tools
to verify that the app only calls approved API functions
and reads approved system global variables, and to insert
code that verifies (at run-time) every pointer dereference
before it occurs. Notice that every one of these checks
is a simple comparison against a constant, followed by
a conditional branch (jump) to the fault-handling code.
Because all app code is processed by the AFT, and the app
cannot inline any of its own assembly code, the resulting
code is guaranteed to check every pointer used by the app.

Context Switches: The AmuletOS provides an API
for applications to access utilities and system services.
We need to swap MPU configurations and change stacks
on each transition, and we need to carefully handle
application-provided pointers passed through API calls
to the OS. Furthermore, because each app, and the OS,
has a separate stack segment, we need to change the stack
pointer on every transition between the OS and an app.

AFT Implementation: We extend the AFT to imple-
ment the MPU and software-only method checks previ-
ously mentioned. These tasks are accomplished by the
AFT in a four-phase code analysis. In the first phase, the
AFT checks for any still unsupported language features –
such as inline assembly and GOTO statements. In addi-
tion, the AFT enumerates each memory access and OS
API call on an app by app basis. Examination of the ap-
plication call graph and the stack frame for each function
determines the maximum stack size for each app. In the
event of recursion, the maximum stack size cannot be
determined and the AFT cannot guarantee a large enough
stack to prevent overflow. During the second phase, the

Operation
No

Isolation

Feature

Limited
MPU

Software

Only

Memory Access 23 41 29 32
Context Switch 90 90 142 98

Table 1: Average cycle count for basic memory isolation operations.

MPU configuration code and the previously mentioned
memory access checks (with placeholder values for app
boundaries) are injected into the code. The third phase
marks apps with memory section attributes for the linker,
as well as injecting the assembly code needed to manipu-
late the stack pointer. The last phase involves determining
the code size of each app, updating the linker script to
place each app in high memory (as detailed in Figure 1),
and updating the memory access checks from phase two
with the correct app boundaries. The AFT completes by
recompiling the modified code into the final firmware
image.

4 Evaluation

In this section we evaluate the costs of application isola-
tion. Our proposed system allows developers to write pure
C, instead of a constrained Amulet C, enabling them to
more easily write (or port) application code to the Amulet
platform. We look at the isolation overhead of a large set
of Amulet applications for three methods in Section 4.1,
and see that while the overhead of our isolation method is
higher than a feature-limited Amulet C, the impact of the
overhead on battery lifetime is negligible. In Section 4.2
we describe three benchmark applications, and the trade-
offs they display between computation-intensive and OS-
intensive applications.

4.1 Isolation Overhead

We use the Amulet Resource Profiler (ARP) and the ARP-
view tool to count the number of memory accesses and
context switches per state and transition, per application.
Using ARP-view, we can account for the rate of environ-
mental, user, and timer events set by the developer, com-
bine this information with the counted number of memory
accesses and context switches, and extrapolate the num-
ber of cycles of overhead for isolating applications. We
can then convert the estimated cycles into energy cost
(in Joules) to estimate the negative impact of isolation
on battery lifetime. The results of this experiment are
shown in Figure 2 for nine applications that are part of the
Amulet platform. These applications comprise thousands
of lines of code, and many have been deployed in user
studies [2, 3]. For all applications, isolation using ei-

ther the MPU or Software Only methods has less than

a 0.5% impact on battery lifetime.
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4.2 Benchmark Applications

We further explore the system overhead of application iso-
lation through several benchmark applications with vary-
ing levels of memory accesses. We designed a Synthetic

App a simple application whose purpose is to test the two
fundamental actions that incur memory-protection over-
heads: memory accesses and context switches. We then
investigate two major functions in our Activity Detection

App, which correspond to Activity Case 1 and Activity

Case 2 in Figure 3. These functions have a high number of
memory accesses compared to context switches. Finally,
we design a Quicksort App: an application that runs the
quicksort algorithm with a high number of memory ac-
cesses and no context switches. Each application was run
200 times and a hardware timer on the MSP430FR5969
MCU was used to measure the time of each iteration (with
a precision of 16 cycles).
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Figure 3: Percentage slowdown for each memory isolation method calculated by
comparing them to running apps with no isolation method.

The results from the synthetic app test in Table 1 show
that our MPU method had the fastest memory accesses,
but the slowest context switches. This result was expected,
and validates the simulation results, as our method only
requires half the number of bounds checks as the Soft-
ware Only approach, but incurs extra overhead for re-
configuring the MPU during context switches. Figure 3
further confirms the results from Table 1, which is that
our method is the most effective when used for computa-
tionally heavy applications.

5 Discussion and Conclusion

In this paper we explore the challenge of memory iso-
lation on ultra-low-power microcontrollers, which offer
primitive hardware support for memory protection. Tra-
ditional approaches use a range of language limitations,
compiler analysis, or dynamic checks (inserted by com-
piler or other tools); few have leveraged the capabilities
of emerging MPUs.

Our solution employs MPU hardware to protect most
regions of memory from inappropriate access by appli-
cation code. Our proof-of-concept implementation (on
an Amulet) is limited by the capabilities of the MSP430
MPU, which cannot protect the region below the current
app’s allocation; thus, the compiler still needs to insert
some code for bounds checks – albeit half as many as in
the software-only solution. We envision extending our
approach to work with more advanced MPUs to further re-
duce our runtime overheads; MPUs that can protect all of
memory and support 4 or more regions would negate the
need for our compiler-inserted bounds checks. We may
also explore more robust error handling techniques, such
as restart policies for applications that trigger a memory
access fault, or the use of a shadow return-address stack
to prevent applications from jumping outside their code
bounds.

In conclusion, our exploration shows that (1) it is possi-
ble to efficiently support memory isolation without resort-
ing to language limitations, as in the original Amulet ap-
proach, and (2) a hybrid approach that leverages compiler-
inserted code and MPU-hardware support can provide per-
formance benefits over a software-only approach. While
our approach leveraging the MPU was not effective for
apps that make frequent API calls, our MPU isolation
approach had, for all applications, less than 0.5% impact
on battery lifetime.
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