
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

RAFI: Risk-Aware Failure Identification to Improve
the RAS in Erasure-coded Data Centers

Juntao Fang, Wuhan National Laboratory for Optoelectronics, Huazhong University
of Sci. and Tech.; Shenggang Wan, School of Computer Science and Technology,

Huazhong University of Sci. and Tech.; Xubin He, Department of Computer
and Information Sciences, Temple University

https://www.usenix.org/conference/atc18/presentation/fang

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

RAFI: Risk-Aware Failure Identification to Improve the RAS
in Erasure-coded Data Centers

Juntao Fang‡, Shenggang Wan†, and Xubin He§

†School of Computer Science and Technology, Huazhong University of Sci. and Tech., China
‡Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci. and Tech., China

§Department of Computer and Information Sciences, Temple University, USA
{yydfjt, sgwan}@hust.edu.cn, xubin.he@temple.edu

Abstract

Data reliability and availability, and serviceability (RAS)
of erasure-coded data centers are highly affected by data
repair induced by node failures. Compared to the re-
covery phase of the data repair, which is widely studied
and well optimized, the failure identification phase of the
data repair is less investigated. Moreover, in a traditional
failure identification scheme, all chunks share the same
identification time threshold, thus losing opportunities to
further improve the RAS.

To solve this problem, we propose RAFI, a novel risk-
aware failure identification scheme. In RAFI, chunk fail-
ures in stripes experiencing different numbers of failed
chunks are identified using different time thresholds. For
those chunks in a high risk stripe (a stripe with many
failed chunks), a shorter identification time is adopted,
thus improving the overall data reliability and availabil-
ity. For those chunks in a low risk stripe (one with
only a few failed chunks), a longer identification time is
adopted, thus reducing the repair network traffic. There-
fore, the RAS can be improved simultaneously.

We use both simulations and prototyping implementa-
tion to evaluate RAFI. Results collected from extensive
simulations demonstrate the effectiveness and efficiency
of RAFI on improving the RAS. We implement a proto-
type on HDFS to verify the correctness and evaluate the
computational cost of RAFI.

1 Introduction

In large-scale erasure-coded data centers, node failures
are the norm rather than the exception [1]. Those fre-
quent node failures can result in numerous chunk fail-
ures (a chunk is the basic unit to organize data). The RAS
(Reliability, Availability, and Serviceability) of data cen-
ters are highly affected by repairing those failed chunks,
which is known as data repair. Many solutions [2–19]
are proposed to improve the RAS, i.e., reduce data loss,

unavailability, and repair network traffic (a typical repair
cost), through optimizing the data repair. However, ex-
isting solutions typically focus on the recovery phase,
which is from the time when a chunk failure is identi-
fied to the time when the failed chunk is recovered. In
contrast, the identification phase, which is from the time
when a chunk failure occurs to the time when the chunk
failure is identified, has not been explored yet. Conse-
quently, the potential to further improve the RAS is not
fully explored.

Traditionally, the failure identification of a chunk de-
pends on the failure identification of its host node. When
a node fails, its failure is not identified until a certain
time threshold. When the node failure is identified, the
failures of all the chunks on that node are identified, and
the states of those chunks transition to lost. In summary,
all chunks share the same time threshold with nodes in a
traditional failure identification (TFI) scheme.

Under the TFI scheme, it is hard to simultaneously im-
prove the RAS through adjusting the time threshold. On
one hand, higher data reliability and availability could
be achieved by lowering the failure identification time
threshold, because of the shortened data repair time. On
the other hand, the data center might suffer from increas-
ing repair network traffic, because more transient node
failures might be identified. In contrast, by increasing
the failure identification time threshold, the repair net-
work traffic could be reduced but the data reliability and
availability might be suffer.

In this paper, we posit that the RAS can be simulta-
neously improved through optimizing the identification
phase. This is rooted in the following dedicated observa-
tion on stripes. Each stripe consists of data chunks and
parity chunks generated from those data chunks. A stripe
is the basic unit for ensuring data reliability and avail-
ability. According to the number of failed chunks in a
stripe, failed stripes can be classified into two types. One
is a stripe which has many failed chunks, e.g., by default
two or more failed chunks in a stripe with three parity

USENIX Association 2018 USENIX Annual Technical Conference 495

chunks. This type of failed stripes is referred to as a high
risk stripe. The other is referred to as a low risk stripe,
which has a few failed chunks, e.g., by default one failed
chunk in a stripe with three parity chunks. The more
failed chunks a stripe has, the lower the data reliability
and availability of the stripe are. Hence, most of the data
loss and unavailability occur in high risk stripes. On the
other hand, low risk stripes are much more common than
high risk stripes, and thus induce most of the repair net-
work traffic.

There already exist solutions that improve the RAS in
the failure recovery phase, are rooted in being aware of
the risk of stripes, e.g., prioritizing the recovery of the
chunks in the stripes with multiple lost chunks [3, 7], or
canceling the recovery of the chunks in the stripes with
a few lost chunks [14]. Inspired by these approaches,
we propose a novel Risk-Aware Failure Identification
scheme, named RAFI, to improve the RAS of erasure-
coded data centers. More specifically, RAFI is aware
of not only lost chunks, which are focused on the tra-
ditional risk-aware wisdom, but also unidentified failed
chunks, whose failure has not been identified yet. The
key principle of RAFI is that the more failed chunks a
stripe has, the shorter failure identification time thresh-
old those chunks take. As a result, the aforementioned
conflict between the data reliability and availability, and
the repair network traffic is resolved, and the RAS are
improved simultaneously.

We make the following contributions in this paper.
(1) We propose a risk-aware failure identification

scheme RAFI to simultaneously improve the RAS of
erasure-coded data centers. By deploying RAFI, a chunk
failure is identified through multiple independent iden-
tification thresholds. Therefore, for chunks in high risk
stripes, their failure identification is expedited, thus im-
proving the data reliability and availability. For chunks in
low risk stripes, their failure identification is postponed,
thus reducing the repair network traffic. As a result, the
RAS are improved simultaneously.

(2) A simulator is developed to verify our RAFI. The
simulation results demonstrate that RAFI is very effec-
tive and efficient. For example, cooperating with all
types of the state-of-the-art optimizations on the failure
recovery phase, RAFI can further improve the data relia-
bility by a factor of 9.3, and reduce the data unavailability
and repair network traffic by 43% and 36%, respectively,
at the cost of degraded reads increased by 1.7%.

(3) A prototype of RAFI is implemented in HDFS
to verify the correctness and computational cost of our
RAFI. The experimental results demonstrate that, in the
worst case scenario, the computational cost of RAFI is
still negligible.

The rest of this paper is organized as follows: Sec-
tion 2 presents a model to analyze the relevance among

the data reliability, repair network traffic, and failure
identification. In Section 3, we give the design of RAFI.
The results of prototype experiments and simulations are
illustrated in Section 4 and 5, respectively. Section 6
reviews related work on optimizing the failure recovery
phase, and Section 7 concludes the paper.

2 Background and Motivation

In this section, we first define the terms used in this paper.
Then, we review the background materials of erasure-
coded data centers, and summarize the existing methods
to improve the RAS. Finally, we illustrate our motivation
to propose RAFI.

2.1 Terms

Some terms to facilitate our discussion are summarized
as follows.

A failed node: a node whose heartbeats have been lost.
When a node fails, its heartbeat is lost immediately and
it becomes a failed node. In TFI, the failure of a node is
not identified until its heartbeats have been lost for over
a certain time threshold.

A failed chunk: a chunk whose host node fails. When
a node fails, all chunks on that node become failed. A
failed chunk can be further classified into an unidentified
failed chunk and a lost chunk as described below.

An unidentified failed chunk: a failed chunk whose
failure has not been identified yet. Between the chunk
failure occurs and that failure is identified, the chunk is
treated as unidentified failed.

A lost chunk: a failed chunk whose failure is identified.
After the failure of a chunk is identified, the chunk is
treated as lost.

Si and Si+: a stripe Si is a stripe with i lost chunks, and
a stripe Si+ is a stripe with i and more lost chunks.

2.2 Erasure-coded Data Centers

To tolerate node failures, data redundancy techniques are
usually deployed in data centers. Traditional data redun-
dancy techniques, e.g., replication, suffer from high spa-
tial cost. Hence, erasure coding techniques (e.g., Reed-
Solomon coding) which have a much lower spatial cost
compared to replication techniques, are widely used in
data centers [7, 12, 20, 21].

To apply the erasure coding in data centers, data is
first divided into fixed size data chunks. Then, parity
chunks are generated from those data chunks. To prevent
data loss or unavailability from node failures, all those
data and parity chunks together form a stripe and are dis-
tributed to different nodes.

496 2018 USENIX Annual Technical Conference USENIX Association

Table 1: Methods to Improve the RAS

Time Threshold ↓ Recovery Penalty Factor ↑ Network Bandwidth ↑ Queue Time ↓
Reliability/Availability ↑ ↑ ↑ ↑
Repair Network Traffic ↑ ↓ → →

Node failures are monitored through frequent heart-
beats, e.g., every 3 seconds [3]. However, a node fail-
ure is not immediately identified when the heartbeats are
lost, because most node failures are transient and those
failed nodes can come back in a short period, e.g., 10
minutes [20]. In order to reduce the repair network traf-
fic, only when the heartbeats have been lost over a certain
time threshold, e.g., 15 minutes [20] or 30 minutes [7],
a node failure is identified (a misidentification occurs if
the node comes back).

Traditionally, when a node failure is identified, all the
chunk failures due to that node failure are treated as iden-
tified failures. Surviving data and parity chunks (on other
nodes) of the lost chunks would be fetched to repair those
lost chunks (data repair), thus ensuring the data availabil-
ity and reliability.

2.3 Methods to Improve the RAS
It is cost-effective to improve the RAS by optimizing the
data repair process. Many solutions are proposed follow-
ing this way which are explained below and also summa-
rized in Table 1.

(1) Decreasing the time threshold reduces the repair
time, and thus improves the reliability; however, it in-
creases the repair network traffic;

(2) In erasure-coded data centers, multiple available
chunks are transmitted over the network to recover lost
chunks in the stripe. Recovery penalty factor is a factor
which is between the amount data transmitted for recov-
ering a stripe Si and the size of a chunk. Decreasing the
recovery penalty factor [2, 4, 5, 7–13, 16, 17, 22, 23] re-
duces the repair time, and thus improves the reliability;
in the meanwhile, it reduces the repair network traffic;

(3) Increasing the network bandwidth [6, 24–26] of
each storage node reduces the repair time, and thus im-
proves the reliability; in the meanwhile, the repair net-
work traffic stays almost the same.

(4) The queue time (waiting for recovery) of failed
stripes is affected by recovery schemes. Giving high pri-
ority to Si (i > 1) [7, 27], the queue time of Si (i > 1)
is decreased, and thus the reliability is improved; in the
meanwhile, this method has little effect on the repair net-
work traffic.

According to the above analysis and simulation results
demonstrated in Figure 9a in Section 5.3, the RAS can-
not be improved simultaneously by adjusting the failure
identification time threshold. Therefore, a novel risk-

aware failure identification scheme RAFI is proposed to
explore the huge potential of simultaneously improving
the RAS within the failure identification phase.

2.4 Motivation

When some nodes fail, many stripes are affected, i.e.,
have failed chunks. Due to the randomized chunk layout,
only a small fraction of those affected stripes have many
failed chunks, and the remaining affected stripes only
have a few failed chunks. Hence, most repair network
traffic is induced by repairing the latter type of stripes.

On the other hand, the failure identification time of an
arbitrary affected stripe having i failed chunks is equal
to the failure identification time of its ith failed chunk,
i.e., all the affected stripes share the same failure identi-
fication time. The stripes with many lost chunks usually
entitle high recovery priority, i.e., a short queuing time.
Hence, the repair time of those stripes are usually dom-
inated by the failure identification time. In contrast, the
stripes with a few identified failed chunks usually have a
long queuing time. Hence, the repair time of those stripes
are usually dominated by the recovery time.

If the failure identification of those two types of stripes
can be handled separately, the RAS of data centers can
be improved simultaneously. More specifically, for the
stripes having many failed chunks, we tune down the fail-
ure identification time threshold of those failed chunks,
and thus improving the data availability and reliability
at the cost of slightly increasing repair network traffic.
For the stripes having a few failed chunks, we tune up
the failure identification time threshold of those failed
chunks, and thus reducing the repair network traffic with-
out significantly reducing data reliability and availability.
More importantly, the benefit induced by the above two
operations would be dominant compared to the associ-
ated cost. Hence, the RAS of data centers can be im-
proved simultaneously.

3 RAFI: Design and Analysis

In this section, we first present the design of RAFI; fol-
lowed by a discussion on the benefit and cost of deploy-
ing RAFI.

USENIX Association 2018 USENIX Annual Technical Conference 497

timet1 t2 t4 t5

a1

b1

b2

unavaialble chunkavailable chunk lost chunk

t3

T

t6

T

(a) In TFI, a fixed threshold T is used to identify failures. The failure
of chunk a1 is not identified until t4, while two failures of chunks b1
and b2 are not identified until t4 and t5, respectively.

timet1 t2 t4 t5

a1

b1

b2

T1

t3

T2

t6

(b) In RAFI, the failure of chunk a1 is identified through the threshold
T1 at t6, which is later than t4. On the other hand, the failures of
chunks b1 and b2 are identified through the threshold T2 at t3, which
is ahead of t4 and t5.

Figure 1: Identification of chunk failures using TFI and RAFI.
We use three sample chunks, where a1 is a random chunk of a
stripe A while b1 and b2 are two random chunks of a stripe B.
Assume chunk a1 fails at time t1 while chunks b1 and b2 fail
at t1 and t2, respectively.

3.1 Design of RAFI

As we discussed above, the key problem of the traditional
failure identification (TFI) scheme is that all chunks
share the same failure identification time threshold. To
simultaneously improve the RAS, we propose RAFI to
identify chunk failures according to the risk level of their
host stripes and apply different time thresholds accord-
ingly. More specifically, dedicated chunk failure identi-
fication time thresholds are set for stripes in different risk
levels, which are determined by the total failed chunks in
the stripes. For chunks in low risk stripes, long failure
identification time thresholds are adopted, thus reducing
the repair cost. For chunks in high risk stripes, short fail-
ure identification time thresholds are adopted, thus im-
proving the data reliability and availability. As a result,
the RAS are simultaneously improved.

In summary, the key design principle of RAFI is that
the more failed chunks a stripe has, the shorter failure
identification threshold those chunks take. For a failed
chunk in a stripe with i failed chunks, there are at most
i identification thresholds to identify the failure of this
chunk, and the jth (0 < j ≤ i) identification threshold is
described as follows. If there are j failed chunks and the
failure durations of these j failed chunks are all longer
than a preset time threshold Tj, all these j chunk failures
are identified and these chunks are denoted as lost imme-
diately. The state of an unidentified failed chunk in these
j chunks transitions to lost, and a lost chunk in these j

chunks remains lost. The states of the remaining (i− j)
chunks do not transition.

In RAFI, a chunk failure is identified by independent
identification thresholds, which is quite different from
the traditional single identification threshold described
in Section 1. For example, in a (6,3)-coded data cen-
ter, stripe A has one failed chunk and is a low risk stripe,
stripe B has two failed chunks and is a high risk stripe.
A time threshold T1 which is larger than the original time
threshold T is set to identify failures of chunks in the low
risk stripe; while a time threshold T2, which is shorter
than the T is set to identify failures of chunks in the high
risk stripe. As shown in Figure 1, using RAFI, the failure
identification of chunk a1 in the stripe A is postponed;
in the meanwhile, the failure identification of chunks b1
and b2 in the stripe B is expedited.

RAFI is flexible. First, all the time thresholds can be
set independently to get proper trade-offs between the
data reliability and availability, and the repair network
traffic for a certain type of stripes. Second, the identifica-
tion thresholds can be merged to get proper trade-offs be-
tween the RAS and the computation cost of RAFI. When
the time thresholds in all identification thresholds are set
to the same T , RAFI becomes TFI.

3.2 Benefit and Cost

Improving the RAS: Using RAFI, we can independently
set different time thresholds to identify failures. First,
short thresholds are used to expedite the identification
of failed chunks in high risk stripes, thus improving the
data reliability and availability. At the same time, long
thresholds are used to postpone the failure identification
of chunks in low risk stripes, thus reducing the repair
network traffic and improve the serviceability. Because
the identification time is dominant in the repair time of
chunks in high risk stripes, the expedition is effective in
improving the data reliability and availability thus com-
pensates the negative impacts induced by the postpone-
ment. Because most repair network traffic is induced by
recovering chunks in low risk stripes, the repair network
traffic is significantly reduced, even under the consider-
ation of the extra repair network traffic induced by the
expedition, thus improving the serviceability.

Compatibility: Because RAFI focuses on the failure
identification phase, it can work together with existing
optimizations which focus on the failure recovery phase.

Increasing Degraded Reads: Degraded read is an op-
eration to read unavailable but recoverable chunks in a
stripe. Because we postpone the failure identification
of chunks in low risk stripes, more failed chunks might
be generated, thus increasing degraded reads. However,
the simulation results in Section 5 show that degraded
reads increase by less than 1.7% due to RAFI. Because

498 2018 USENIX Annual Technical Conference USENIX Association

degraded reads are much fewer than normal reads, the
overhead is very small.

4 Prototyping Evaluation

In this section, we first present the evaluation method-
ology; then we illustrate implementation details of our
prototype RAFI-HDFS; finally we demonstrate results of
prototyping experiments.

4.1 Evaluation Methodology
To verify the effectiveness of RAFI, we propose a hybrid
methodology to comprehensively evaluate RAFI via both
simulation and prototype implementation. The reason is
explained below.

It is difficult to evaluate a technique targeting at the
RAS of data centers because the data loss and unavail-
ability events are very rare and not evenly distributed.
The accuracy problem induced by that uneven distribu-
tion can be mitigated by high accurate simulation, which
is run thousands to millions of iterations, although the
simulator itself might be not that accurate. However,
pure simulation cannot verify the correctness of design
details and might cover fatal defects of the technique.

In our hybrid evaluation, the design details and com-
putational cost of RAFI are verified through prototyping
running on a real distributed storage system; the effec-
tiveness and efficiency of RAFI on the RAS are evaluated
through high accurate Monte-Carlo simulation.

In this section, we evaluate the identification time and
computational cost of RAFI in real world environments.
The simulator and simulation results are discussed in
Section 5.

4.2 RAFI-HDFS
To evaluate the effectiveness of RAFI, we implement
a prototype named RAFI-HDFS on HDFS [27], a rep-
resentative distributed file system widely deployed in
the data centers. Because erasure coding is supported
by HDFS in version 3.0.0, our implementation is based
on HDFS 3.0.0-alpha2. The implementation of RAFI-
HDFS follows the design in Section 3. We only add
about 200 lines of codes to HDFS.

Figure 2 demonstrates the overall architecture of
RAFI-HDFS consisting of two modules: one is a classi-
fication module and the other is an identification module.

The classification module is responsible for convert-
ing the node failures into appropriate input for the iden-
tification thresholds. More specifically, the classification
module receives a node list that contains all failed nodes
and their failure durations from the node monitor mod-
ule. Only those nodes whose failure durations are larger

Node Monitor Module

Classification Module

Identification Module

Recovery Module

(node id, failure duration)

Stripes with new
lost chunk(s)

IT 1

key value

nid1 cid11 cid12 …

nid2 cid21 cid22 …

… … … …

key value

sid1 cid11 cid12 …

sid2 cid21 cid22 …

… … … …

key value

cid1 sid1

cid2 sid2

… …

key value

cid1 nid1

cid2 nid2

… …

node->chunks

chunk->stripe chunk->node

stripe->chunks

IT 2 IT m…

RAFI

query

Existing data structures

node list L1 node list Lm

Figure 2: Architecture of RAFI-HDFS. The right side is exist-
ing data structures which are used in RAFI. The node monitor
module reports failed nodes and their failure durations. The
classification module inserts nodes to different identification
thresholds in the identification module according to their fail-
ure durations. The identification thresholds (IT) in the identifi-
cation module are used to identify chunk failures.

than Ti (1 ≤ i ≤ m) are inserted into the node hash list
Li for the identification threshold (IT) i, thus reducing
the computation cost of that identification threshold. It
is worth noting that the classification module replaces
failed chunk lists with failed node lists. In such a manner,
the memory usage of maintaining the numerous failed
chunks is saved.

The identification module is a universal set of all the
identification thresholds in RAFI. When IT i receives its
node list Li, it begins to calculate the count of failed
chunks in stripes. First, the identification threshold cal-
culates the count of unidentified failed chunks in stripes
through querying the node-chunk mapping table and the
chunk-stripe mapping table, which typically reside in the
main memory of the manager nodes of the data cen-
ters. Second, through querying the stripe-chunk map-
ping table and chunk-node mapping table, the count of
lost chunks is obtained. If the count of failed chunks
(unidentified failed chunks and lost chunks) is larger than
or equal to i, those failed chunks which belong to nodes
in Li, transition to lost.

After working through all identification thresholds, if
new chunk failures are identified, the recovery module
is called to recover stripes containing those lost chunks.
Particularly, for nodes which enter IT 1, the failures of
these nodes are identified and these nodes are removed
from the system at the end of the IT 1.

Complexity. RAFI-HDFS only checks chunks on
failed nodes which newly enter Li to reduce the compu-
tation cost. Assume there are j nodes in Li (2 ≤ i ≤ m)
and there are an average of d chunks to be checked on

USENIX Association 2018 USENIX Annual Technical Conference 499

the node. Each stripe has k+m chunks. Because we use
a hash list to track the failed nodes, the total compari-
son time is about (k+m)× d. The time complexity of
identifying chunk failures is O(d).

4.3 Results of Prototyping Experiments

Experimental Setups. The experimental system con-
sists of ninety-seven servers running on the Alibaba
Cloud [28]. One server served as a NameNode contains
an Intel Xeon E5-2682v4 @ 2.5 GHZ CPU (4 vCPU), 16
GB DDR4 memory, 1.5 Gbps network and 40 GB SSD.
The remaining 96 servers are used as DataNodes, each
of which has an Intel Xeon E5-2680v3 @ 2.5 GHZ CPU
(1 vCPU), 1 GB DDR4 memory, 1 Gbps network and
40 GB SSD. The operating system running on all these
servers is Ubuntu 14.04. Each DataNode sends heart-
beats to the NameNode every 3 seconds and the NameN-
ode checks the states of all DataNodes every 5 minutes.
As default in HDFS, the time threshold T = 10.5 minutes
and the erasure coding scheme RS(6,3) is used.

Identification Time of Chunks: The identification time
of a chunk is the period from the time when a chunk be-
comes failed to the time when the chunk is identified
as a lost chunk. In order to evaluate the real identifi-
cation time, we collect the identification times by ran-
domly killing two DataNodes. In order to evaluate the
real identification time of chunks, we collect the iden-
tification times by randomly killing DataNodes in 0, 5,
10, and 20 minutes. Each experiment is conducted 20
times. In RAFI, T2 is set to 1 minute and T1 is set to
60 minutes. The results are consistent with our analysis
in Section 3.2. The results demonstrate that T I2 is ex-
pedited and T I1 is postponed. When we simultaneously
kill two storage nodes, T I1 and T I2 under TFI are 13.1
minutes; however, T I2 under RAFI is 3.6 minutes, while
T I1 under RAFI is 62.6 minutes. Moreover, T I1 and T I2
are not relevant to the time between the failure arrivals.

Burden on the NameNode: Because the computations
run on the NameNode, we record the time spent to iden-
tify chunk failures when nodes fail to further estimate the
impact on the NameNode. The chunk size is shrunk to
1KB in our cluster to generate enough number of chunks.
In the experiments, each DataNode stores about 68,000
chunks. In the experiments, there is no I/O workloads
because the time spent to identify chunk failures under
no I/O workloads is sufficient to indicate the overhead
caused by RAFI on the NameNode. For each result, we
concurrently kill DataNodes. Each experiment is con-
ducted 10 times and we calculate the average results.

We evaluate the time spent to identify chunk failures
from two aspects: the number of DataNodes in the clus-
ter and the number of concurrent node failures.

First, as shown in Figure 3, the time spent to iden-

Figure 3: Time spent to identify chunk failures when when
a DataNode fails. The number of DataNodes in the cluster
changes from 12 to 96. E.g., the NameNode takes 87 ms to
identify 68,000 chunk failures in a cluster of 24 DataNodes.

Figure 4: Time spent to identify chunk failures when DataN-
odes fail. The cluster consists of 96 DataNodes. E.g., the
NameNode spends 889 ms to identify 544,000 chunk failures
when eight DataNodes fail concurrently .

tify all 68,000 chunk failures on one failed DataNode
increases from 74 to 137 milliseconds when the num-
ber of DataNodes increases from 12 to 96. Compared to
time thresholds and check intervals (by default 10.5 and
5 minutes, respectively), the time spent to identify chunk
failures can be negligible in the identification time.

Second, as illustrated in Figure 4, the time spent to
identify chunk failures increases linearly as concurrent
node failures increase. The experiment results are con-
sistent with the analysis in Section 4.2. It is worth noting
that there are no failed nodes in most check time. Thus,
our method has minimal impact on the NameNode.

Moreover, in our evaluation, only one single thread is
used to check all chunks on failed nodes. In fact, we can
use multi-threading technologies to check all chunks on
failed nodes, e.g., each thread is responsible for checking
all chunks on one failed node. Therefore, the time spent
to identify all chunks on failed nodes can be dramatically
reduced when multiple nodes fail concurrently.

5 Simulations and Results Analysis

In this section, we discuss our simulator and simula-
tion results to evaluate the effectiveness and efficiency
of RAFI on the RAS.

500 2018 USENIX Annual Technical Conference USENIX Association

5.1 DR-SIM

We developed a simulator called DR-SIM which is writ-
ten in the R language because it easily runs in parallel.
The source code is approximately 1400 lines [29].

Event-driven simulators are widely used to study the
RAS of data centers [14, 20, 30]. However, those simu-
lators cannot be used in our simulations due to the fol-
lowing two reasons. First, some simulators are not open
source, e.g., the Google’s Cell Simulator [20]. Second,
the RAS cannot be all simulated by some simulators.
For example, limited by performance, the data reliabil-
ity cannot be studied by the ds-sim [14]. As a result, we
develop our own simulator, named DR-SIM, to study the
effect of the data repair on the RAS in data centers.

We summarize important features of DR-SIM as fol-
lows. (1) The trade-off between the performance and ac-
curacy of DR-SIM is carefully tuned. A simulation it-
eration (typically represents five years) can be finished
in tens of seconds. Therefore, we run hundreds of thou-
sands iterations for each simulation configuration, to ac-
curately measure the RAS. (2) Many state-of-the-art op-
timizations on the data repair are integrated into DR-
SIM, and important parameters of the data repair are
considered as variants in DR-SIM. Through modifying
the configuration of DR-SIM, we study the effectiveness
and efficiency of RAFI upon various combinations of the
state-of-the-art optimizations under various typical envi-
ronments of the data centers.

Figure 5 shows the architecture of DR-SIM which in-
cludes four modules: a configuration manager, a failure
generator, a repair calculator, and an event collector.

The configuration manager loads parameters used in
the simulations. The parameters are explained as fol-
lows. (1) System parameters: The target erasure-coded
data center consists of N independent storage nodes.
Each node has d chunks. The chunk size is s. (2) Coding
parameters: Data are coded with (k, m) erasure codes,
i.e., k data chunks and m parity chunks are in a stripe.
The k +m chunks in the same stripe are distributed to
k+m distinct nodes. A random placement policy is used
because it is usually adopted in practice. The recovery
penalty factor of Si (1≤ i≤m) is ri which is between the
amount data transmitted for recovery of Si and s. The re-
covery network bandwidth is b on each node. (3) Failure
parameters: Assume node failure arrivals are indepen-
dent. Let f (x) and F(x) be the probability and cumula-
tive distribution functions of the failure arrivals, respec-
tively. Assume failure durations are independent. Let
g(x) and G(x) be the probability and cumulative distribu-
tion functions of the failure durations, respectively. ρ is
the ratio of permanent node failures to all node failures. τ

denotes the additional proportion of correlated node fail-
ures. (4) Identification parameters: Storage nodes peri-

Configuration
Manager

Failure Generator

Repair Calculator Event Collector

failure events
data loss events,
data unavailability events,
chunk unavailability events,
data repair events

simulation
parameters

Figure 5: Architecture of DR-SIM

odically send heartbeats to dedicated manager nodes, e.g.
the NameNode [27, 31] or the metadata manager [32].
The manager nodes check states of all nodes at regular
time intervals of Th. The time thresholds for identifying
chunk failures are Ti (1≤ i≤m). (5) Simulation runtime
parameters: Ni denotes the number of iterations. Td is
the simulation duration for each iteration.

The failure generator is responsible for generating fail-
ure arrivals and failure durations of node failures at the
beginning of a simulation iteration. The failure arrivals
are generated according to the distribution function f (x).
Permanent failures and transient failures are generated by
their durations. For the transient failures, their durations
are generated according to the distribution function g(x).
For permanent failures, they are generated according to
the parameter ρ . Technically, failure durations of the per-
manent failures are set to zero (only for handling but not
calculating). In DR-SIM, additional correlated failures
are explicitly generated by adding a random value be-
tween 0 to 120 seconds [20] to existing failure arrivals
according to the parameter τ . It is worth noting that the
comeback of transient failed nodes has been already con-
sidered in DR-SIM.

The repair calculator simulates the data repair process
for lost chunks when failures occur. The repair calcula-
tor identifies the chunk failures according to the Th and Ti
(1≤ i≤m) and calculates the repair time for lost chunks
based on the recovery network bandwidth, the recovery
penalty factors and the recovery priority. The recovery
processes of lost chunks are scheduled depending on the
number of lost chunks in their stripes. For stripes have
the same number of lost chunks, the repair calculator
uses first come first scheduled rule to manage the recov-
ery of those chunks. Moreover, lost chunks are recovered
in parallel by utilizing all available nodes [33, 34].

The event collector is responsible for collecting data
loss events, data unavailability events, chunk unavail-
ability events, and data repair events. At the end of
each iteration, DR-SIM calculates metrics according to
the collected events. The mean time to data loss in the
whole data center (referred as MTTDL) is the metric to
evaluate the data reliability. All the data loss events are
recorded to calculate the MTTDL. The cumulative un-
available time of all stripes (referred as Tus) is the metric
to evaluate the data availability. All the data unavailabil-
ity events are recorded to calculate the Tus. The total re-

USENIX Association 2018 USENIX Annual Technical Conference 501

pair network traffic (referred as RNT) is the metric to
evaluate the serviceability. All the data repair events are
recorded to calculate the RNT. The cumulative unavail-
able time of all chunks (referred as Tuc) is the metric to
evaluate the degraded reads. All the chunk unavailabil-
ity events are recorded to calculate the Tuc. The former
three metrics are widely used in evaluation of the RAS in
the data centers [6, 7, 12, 14, 15, 20, 30, 35, 36]. The latter
one is roughly in proportion to the number of degraded
reads. It is worth noting that chunks and stripes are actu-
ally not simulated in DR-SIM under the consideration of
computation complexity. In fact, the cumulative unavail-
ability time of stripes and cumulative unavailability time
of chunks are estimated from the generated node failures
and data repair events.

5.2 Simulation Testbed
Comparisons between RAFI and TFI are made upon the
testbed described as follows.

The following three state-of-the-art optimizations are
always considered in the testbed. (1) The network adopts
CLOS topologies [24–26]. (2) All lost chunks are paral-
lel recovered via using available recovery network band-
width on all nodes. (3) The chunks in stripes with more
lost chunks have the higher priority to be recovered.

Three kinds of erasure codes are chosen in the simu-
lations to understand the sensitivity to different erasure
codes. RS codes are are a set of popular erasure codes
which are widely used in real world distributed storage
systems [12, 20, 21]. Zigzag codes [10] represent MDS
(Maximum Distance Separable) codes with optimal re-
covery penalty factors. LRC codes [7] are representative
non-MDS codes deployed in Windows Azure Storage.

The 1 Gbps network is chosen as the baseline in the
testbed under the consideration of the cost-effectiveness
in the erasure-coded data center, although we have found
that RAFI is more efficient in reducing the RNT under
the 40 Gbps network during studying the sensitivity of
RAFI to the recovery network bandwidth.

Because chunks in low risk stripes are the optimization
objects of both RAFI and Lazy [14], Lazy is considered
in the testbed when we made dedicated comparisons be-
tween these two techniques in Section 5.3.4.

Default values of most parameters used in the simu-
lations are listed in Table 2. The failure arrivals are as-
sumed to be independent and exponentially distributed
with the mean time to failure (MTTF = 7.1 days) [12,20].
The failure durations are assumed to be independent and
Weibull distributed. We get sample values from [20] and
model the failure durations with Weibull(113 seconds,
0.54), which is shown in Figure 6. The model fits well
starting from 0.5 minutes.

In our simulations, to simplify the comparison

Table 2: Symbols and Their Definitions

Symbol Definition Default Value
N # of storage nodes in a data center 1000
d # of chunks on a node 125,000
s Chunk size 128 MB

Th Check interval of node states 5 minutes

b Recovery network bandwidth 0.1 Gbps
on each node

Td Duration of each iterations 5 years
Ni # of iterations 500,000

4 6 8 10 12

2
0

4
0

6
0

8
0

1
0

0

Unavail bility event duration()

E
v
e

n
ts

(%
)

sample

model

Figure 6: Unavailability Event Duration

complexity, the identification thresholds identification
threshold i (i > 1) are merged to one by sharing the same
threshold value. The features of the erasure codes, and
two time threshold values (one for T1, and the other for Ti
(i> 1)) are represented by an abbreviation, e.g., RS(6,3)-
15-2 denotes a data center employed RS(6,3) with T1 =
15 minutes and T2 = T3 = 2 minutes. r1, r2 and r3 of an
RS(6,3)-coded stripe are 6, 7, and 8, respectively. All
measured metrics including the MTTDL, Tus, RNT and
Tuc, are normalized to that of the RS(6,3)-15-15 (it de-
notes a TFI configuration when the latter two values are
the same). The MTTDL, Tus, and RNT are the metrics to
evaluate the RAS.

5.3 Simulation Results
5.3.1 RAS as Functions of Ti

First of all, we run simulations to find the proper two
threshold values for RAFI. Let T3 = T2 = T1. Figure 9a
illustrates that the data reliability and availability get
worse while the repair network traffic is improved when
T1 increase. The RNT reduces slowly when T1 is larger
than 60 minutes. Thus, T1 of RAFI is set to 60 minutes
in the rest simulations.

Then, to study the impact of T2, let T3 = T2. T2 ranges
from 0.5 to 8 minutes. The results in Figure 9b demon-
strate that RAFI simultaneously improves the RAS in
most configurations. More specifically, the MTTDL is
improved by a factor up to 11. The Tus is reduced by up
to 45%. The RNT is reduced by up to 27%. The RNT
increases with the reduction of T2 because reducing T2
increases the number of S2+, and results in unnecessary

502 2018 USENIX Annual Technical Conference USENIX Association

Coding Schemes

(a) Reliability

RS(6,3) (,)

Coding Schemes

(N
o

rm
a

liz
e

d
)

0
2

4
6

8

Zigzag(6,3) RS(9,3) RS(12,3)

(b) Availability

RS(6,3)

Coding Schemes

(N
o

rm
a

liz
e

d
)

0
.0

0
.5

1
.0

. 5

Zigzag(6,3) RS(9,3) RS(12,3)

1

(c) Serviceability

RS(6,3)

(N
o
rm
a
liz
e
d
)

0
.0

0
.4

0
.8

1
.2

Zigzag(6,3) RS(9,3) RS(12,3)

(d) Degraded Reads

)

(e) RNT induced by S1 v.s.
RNT induced by S2+.

Figure 7: Impacts of different erasure coding schemes on the RAS. The results are normalized to RS(6,3)-15-15.

0
4

8
1
2

Bandwidth(Mbps)

M
T
T
D
L
(N
o
rm
a
liz
e
d
)

80 60 40 20

RS(6,3)−60−0

Zigzag(6,3)−60−0

(a) Reliability

0
.5

1
.0

1
.5

2
.0

2
.5

Bandwidth(Mbps)

(N
o
rm
a
liz
e
d
)

80 60 40 20

RS(6,3)−60−0

Zigzag(6,3)−60 0

(b) Availability

0
.4

0
.5

0
.6

0
.7

0
.8
0
.9

Bandwidth(Mbps)

(N
o
rm
a
liz
e
d
)

80 60 40 20

RS(6,3)−60−0

Zigzag(6,3)−60−0

(c) Serviceability

1
.0

1
.2

1
.4

1
.6

. 8

Bandwidth(Mbps)

(N
o
rm
a
liz
e
d
)

80 60 40 20

RS(6,3)−60−0

Zigzag(6,3)−60−0

(d) Degraded Reads

Figure 8: Impacts of constrained recovery network bandwidth on the RAS. RS(6,3) and Zigzag(6,3) are considered in the simula-
tions. The results are normalized to RS(6,3)-15-15.

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

T (minutes)

M
T

T
D

L
,

 a
n
d
 R

(N
o
rm

a
liz

e
d
) MTTDL

7.5 15 30 60 120

(a) The MTTDL, Tus, and RNT
with different T1.

0
.5

0
.7

0
.9

1
.1

T
u

s
 a

n
d

 R
N

T
(N

o
rm

a
liz

e
d

)

T2(minutes)

0.5 1 4 8

0
2

4
6

8
1

0
1

4

MTTDL

Tus

RNT

1
(N

o
rm

a
liz

e
d

)

(b) The MTTDL, Tus, and RNT with
different T2. T1 is set to 60 minutes.

Figure 9: Impacts of T1 and T2. The erasure coding scheme is
RS(6,3), and the results are normalized to RS(6,3)-15-15.

repair network traffic to repair those S2+. Only when T2
is 8 minutes, which is close to the original T of 15 min-
utes, RAFI does not take effect on the data availability.

From the results, we find that the data reliability and
availability are sensitive to the decrease of T2 but the re-
pair network traffic is not sensitive to the decrease of T2.
As a result, both T2 and T3 are set to 0.5 minutes in the
rest simulations.

5.3.2 RAS as Functions of Erasure Coding Schemes

In this section, we examine the effectiveness and effi-
ciency of RAFI under five typical kinds of erasure coding
schemes, RS(6,3), RS(9,3), RS(12,3), Zigzag(6,3) [10],
and LRC(12,2,2) [7]. These erasure coding schemes rep-
resent various recovery penalty factors. T1, T2 and T3
are 60 minutes, 0.5 minutes and 0.5 minutes, respec-
tively. All results are normalized to RS(6,3)-15-15 and
presented in Figure 7. In general, RAFI can cooperate
with all the five kinds of erasure coding schemes, and si-
multaneously further improve the RAS at the cost of the

slightly increased degraded reads.
Improving Reliability: Figure 7a shows that RAFI

improves the MTTDL of Zigzag(6,3), RS(6,3),
LRC(12,2,2), RS(9,3), and RS(12,3) by a factor of
9.3, 11, 7.7, 9.8, and 7.7, respectively. When the
recovery penalty factor increases, the improvements
diminish a little. The reason is that the higher recovery
penalty factor lengthens the recovery time, thus weakens
the effect of the reduction of the identification time.

Improving Availability: Figure 7b illustrates that
RAFI improves the data availability under various era-
sure coding schemes. The Tus of Zigzag(6,3), RS(6,3),
LRC(12,2,2), RS(9,3), and RS(12,3) is reduced by 43%,
45%, 24%,37%, and 30%, respectively.

Improving Serviceability: Figure 7c shows that RAFI
reduces the RNT under various erasure coding schemes.
The Perm represents the RNT induced only by permanent
node failures. Figure 7e shows the composition of the
RNT. In TFI, over 99% of the RNT is induced by the
repair of S1. In RAFI, about 15%-30% of the RNT is
induced by the repair of S2+.

Degraded Reads: When RAFI postpones the recov-
ery of S1, the amount of unidentified failed chunks in-
creases. Figure 7d shows that the degraded reads in-
crease by 1.7% at most, which is very slight.

5.3.3 RAS as Functions of Recovery Network Band-
width

Network bandwidth is very valuable in the data cen-
ters. In this section, simulations are performed to un-
derstand the effect of RAFI under a limited recovery net-
work bandwidth b. Both RS(6,3) and Zigzag(6,3) codes

USENIX Association 2018 USENIX Annual Technical Conference 503

are considered in the simulations. T1, T2 and T3 are 60
minutes, 0.5 minutes and 0.5 minutes, respectively. The
simulation results are normalized to RS(6,3)-15-15 and
presented in Figure 8.

Figure 8 shows that the RAS are still improved even
when b is 40 Mbps. However, at the same time, the Tuc
increases by 22%, because a small b significantly extends
the repair time of the lost chunks, thus leads to longer
chunk unavailability time. When b reduces, the reduction
of RNT increases a little.

Table 3: The RAS improvements under 40 Gbps network

Erasure Coding Schemes RS(6,3) Zigzag(6,3)
Improvement of MTTDL 3.4 3.7

Reduction of Tus 54% 56%
Reduction of RNT 79% 86%

40 Gbps network: Nowadays, some data centers are
equipped with 40 Gbps network for each node [26, 37].
In such a scenario, the recovery network bandwidth b is
4 Gbps for each node. Table 3 shows that RAFI still im-
proves the RAS when b is 4 Gbps. When b increases
from 100 Mbps to 4 Gbps, the recovery time reduces.
Because the ratio between the recovery time and the
repair time decreases, the improvement of MTTDL de-
creases. However, when the repair rate increases, there
will be more unnecessary repair network traffic. There-
fore, RAFI is very effective in reducing the repair net-
work traffic.

5.3.4 Comparisons with Lazy

To comprehensively compare RAFI with Lazy, the com-
parisons are made in the form of TFI + Lazy v.s. RAFI +
Lazy v.s. RAFI. RS(6,3) and Zigzag(6,3) codes are con-
sidered in the simulations. Lazy [14] recovers lost chunks
if their host stripes have at least two lost chunks. In TFI +
Lazy, we use the parameters: T1 = T2 = T3 = 15 minutes.
In RAFI + Lazy, T1 = T2 = 15 minutes, T3 = 1 minutes.
In RAFI, T1 = 60 minutes and T2 = T3 = 15 minutes. The
comparison results are shown in Figure 10.

Cooperating with Lazy, compared to TFI, RAFI im-
proves the MTTDL by a factor of 5.1, at the cost of in-
creasing the RNT by 2.5%. Because Lazy even does not
recover some permanent failed chunks, RAFI cannot fur-
ther reduce the RNT.

Compared to TFI + Lazy, RAFI without Lazy increases
the MTTDL by over two orders of magnitude at a higher
RNT cost. An interesting thing is that, RAFI suffers a
much lower increase of the RNT when cooperating with
the Zigzag codes. The reason is that the recovery penalty
factor of a Zigzag(6,3)-coded S1 is only 63% of that of
an RS(6,3)-coded S1. In fact, as mentioned in Section 6,

30 35 40 45 50 55
(TB per day)

M
T

T
D

L
(y

e
a

rs
)

1
0

2
1

0
3

1
0

5

TFI+Lazy+RS

TFI+Lazy+Zigzag
RAFI+Lazy+RS

RAFI+Lazy+Zigzag

RAFI+RS

RAFI+Zigzag

Figure 10: The MTTDL and RNT under TFI+Lazy,
RAFI+Lazy, and RAFI. The erasure coding schemes are
RS(6,3) and Zigzag(6,3). X axis is the repair network traffic, Y
axis is the MTTDL.

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Proportion of Additional Correlated Failures(%)

5 10 15 20 25

(N
o

rm
a

liz
e

d
)

RS(6,3)−60−0

Zigzag(6,3)−60−0

Figure 11: Impact of correlated failures on availability. The
results are normalized to RS(6,3) with no additional correlated
failures.

many codes [6, 7] are proposed to reduce the recovery
penalty factor of stripes with one lost chunk.

5.3.5 Availability under Correlated Failures

Because transient failures may happen concurrently [20],
we desire to see how data availability is affected by cor-
related failures. From Figure 11, we can see that, as
the proportion of additional correlated failures increases,
RAFI still reduces about 40% of the Tus, demonstrating
that RAFI is very resilient to correlated failures.

6 Related Work

Existing solutions which are proposed to improve the
RAS focus on optimizing the failure recovery phase,
such as reducing recovery penalty factors [2, 4, 5, 7–13,
16, 17, 22, 23], improving recovery rates [6, 18, 19], and
risk-aware recovery scheduling [3, 7, 14].

Reducing recovery penalty factors: Both the recov-
ery time and repair network traffic are improved through
reducing the recovery penalty factors of erasure codes.
Two types of techniques are proposed. One is to de-
sign MDS and non-MDS erasure codes with low recov-

504 2018 USENIX Annual Technical Conference USENIX Association

ery penalty factors [2, 6–12, 15–17, 38]. The other is to
design recovery algorithms to reduce recovery penalty
factors of existing erasure codes [4, 5, 13].

Regenerating Codes [22, 23, 38, 39] are a family of
MDS codes. The recovery penalty factors of the Regen-
erating Codes are much lower than that of the traditional
RS (Reed-Solomon) codes [40]. However, the Regener-
ating Codes are not systematic codes, thus suffer from
high read cost. To maintain low recovery penalty factors
and read cost, systematic MDS codes, such as Zigzag and
Butterfly codes [10, 17] are proposed. Zigzag codes [10]
are proved to be with optimal recovery penalty factors
in all systematic MDS codes. One significant drawback
of Zigzag codes is that the implementation depends on
non-binary algebra.

New trade-off points between storage overheads and
recovery penalty factors are found through non-MDS
codes, such as LRC [7, 11, 16]. Compared to MDS
codes, non-MDS codes dramatically reduce the recovery
penalty factors. However, the cost of non-MDS codes
cannot be ignored, particular when the scale of the data
center is very large, i.e., even 1% extra storage overhead
usually means millions of dollars [41, 42].

Recovery algorithms, such as [4,5,13], are proposed to
reduce recovery penalty factors of existing erasure codes.
The biggest drawback of those recovery algorithms is
that their efficiency on reducing recovery penalty factors
are much lower than that of designing novel codes.

Improving the recovery rate: Another approach to
shorten the recovery time is improving the recovery rate.

It is common to improve the recovery rate through
deploying high-speed networks, i.e., increasing the re-
covery network bandwidth. For example, CLOS net-
works [24–26] are deployed in FDS [6] to provide non-
oversubscribed full bisection bandwidth networks at the
scale of a data center. As a result, the recovery is dramat-
ically accelerated.

The recovery rate is also improved through increasing
the recovery parallelism. Mitra et al. propose a paral-
lel chunk recovery method PPR [18] to improve the re-
covery parallelism. Li et al. propose a pipelined chunk
recovery method ECPipe [19] to further improve that re-
covery parallelism. However, both PPR and ECPipe take
effect when there are only a few chunks be recovered.

Risk-aware recovery scheduling: Besides accelerating
the recovery of all chunks, high data reliability and avail-
ability can also be achieved through scheduling the re-
covery of chunks according to the number of lost chunks
in their host stripes, which indicates the data reliability
and availability risk of those stripes.

The recovery of the chunks in high risk stripes is pri-
oritized in HDFS [3] and WAS [7]. In such a manner, the
repair time of high risk stripes is dramatically reduced.
Meanwhile, the increase of the repair time is relatively

small. Therefore, the data reliability and availability are
improved. It is worth noting that, after being scheduled,
the failure identification time becomes dominant in the
repair time of high risk stripes, because those chunks in
high risk stripes are usually very few. As a result, the re-
duction in the identification time of high risk stripes
is very effective in improving the data reliability and
availability.

Silberstein et al. propose a technique Lazy [14] to re-
duce the repair network traffic. Because chunks in low
risk stripes, e.g., S1, are dominant in all chunks be re-
covered, most of the repair network traffic is generated
by recovering those chunks. Canceling the recovery of
chunks in low risk stripes dramatically reduces the repair
network traffic. However, the data reliability and avail-
ability dramatically decrease.

7 Conclusions

In this paper, we present a risk-aware failure identifica-
tion scheme, named RAFI, to simultaneously improve
the data reliability, availability, and serviceability (RAS)
of erasure-coded data centers. The basic idea of RAFI
is identifying a chunk failure not only according to its
failure duration, but also based on the data reliability and
availability of its host stripe. The benefits of RAFI are:
(1) the identification of failed chunks in high risk stripes
is expedited to improve the data reliability and availabil-
ity; and (2) the identification of failed chunks in low risk
stripes is postponed to reduce the repair network traffic,
thus improving the serviceability. Our results based on
both simulations and prototyping have demonstrated the
effectiveness and efficiency of RAFI in terms of reduced
data loss, unavailability, and repair network traffic.

8 Acknowledgment

We are grateful to anonymous reviewers and particu-
larly our shepherd Dahlia Malkhi for their helpful com-
ments and suggestions. We thank Changsheng Xie and
Ting Ye for their great efforts on this paper. Shenggang
Wan is the corresponding author. This research is spon-
sored by National Natural Science Foundation of China
Grants Nos. 61300046 and 61331010, and U.S. National
Science Foundation Grants Nos. CCF-1717660, CNS-
1702474 and CCF-1547804.

References
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” in SOSP’03, 2003.

[2] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure
codes in storage systems: Constructions, efficient recovery, and
tradeoffs,” in MSST’10, 2010.

USENIX Association 2018 USENIX Annual Technical Conference 505

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in MSST’10, 2010.

[4] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang, “Optimal recovery
of single disk failure in RDP code storage systems,” in SIGMET-
RICS’10, 2010.

[5] S. Li, Q. Cao, J. Huang, S. Wan, and C. Xie, “PDRS: A New
Recovery Scheme Application for Vertical RAID-6 Code,” in
NAS’11, 2011.

[6] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and
Y. Suzue, “Flat Datacenter Storage,” in OSDI’12. USENIX,
2012.

[7] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, and S. Yekhanin, “Erasure Coding in Windows Azure Stor-
age,” in ATC’12, 2012.

[8] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethink-
ing Erasure Codes for Cloud File Systems: Minimizing I/O for
Recovery and Degraded Reads,” in FAST’12, 2012.

[9] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud:
applying network coding for the storage repair in a cloud-of-
clouds,” in FAST’12, 2012.

[10] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array
Codes With Optimal Rebuilding,” Transactions on Information
Theory, 2013.

[11] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” in VLDB’13, 2013.

[12] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran, “A Solution to the Network Challenges
of Data Recovery in Erasure-coded Distributed Storage Systems:
A Study on the Facebook Warehouse Cluster,” in HotStorage’13,
2013.

[13] S. Xu, R. Li, P. P. C. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. C. S. Lui,
“Single Disk Failure Recovery for X-Code-Based Parallel Stor-
age Systems,” IEEE Transactions on Computers, vol. 63, no. 4,
pp. 995–1007, 2014.

[14] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin,
“Lazy Means Smart: Reducing Repair Bandwidth Costs in
Erasure-coded Distributed Storage,” in SYSTOR’14, 2014.

[15] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ram-
chandran, “Having your cake and eating it too: jointly opti-
mal erasure codes for I/O, storage and network-bandwidth,” in
FAST’15, 2015.

[16] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A Tale of Two
Erasure Codes in HDFS,” in FAST’15, 2015.

[17] L. Pamies-Juarez, F. Blagojević, R. Mateescu, C. Gyuot, E. E.
Gad, and Z. Bandić, “Opening the Chrysalis: On the Real Repair
Performance of MSR Codes,” in FAST’16, 2016.

[18] S. Mitra, R. Panta, M. R. Ra, and S. Bagchi, “Partial-parallel-
repair (PPR): a distributed technique for repairing erasure coded
storage,” in EUROSYS’16, 2016.

[19] R. Li, X. Li, P. P. C. Lee, and Q. Huang, “Repair Pipelining for
Erasure-Coded Storage,” in ATC’17, 2017.

[20] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in Globally
Distributed Storage Systems,” in OSDI’10, 2010.

[21] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” 2013.

[22] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage sys-
tems,” Transactions on Information Theory, 2010.

[23] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, and C. Huang, “Sim-
ple regenerating codes: Network coding for cloud storage,” in
INFOCOM’12, 2012.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in SIGCOMM’08, 2008.

[25] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: experi-
ence with a globally-deployed software defined wan,” in SIG-
COMM’13, 2013.

[26] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, and P. Ger-
mano, “Jupiter Rising: A Decade of Clos Topologies and Central-
ized Control in Google’s Datacenter Network,” in SIGCOMM’15,
2015.

[27] D. Borthakur, “The hadoop distributed file system: Architecture
and design,” Hadoop Project Website, vol. 11, 2007.

[28] AlibabaCloud, “Alibab ECS,” https://www.alibabacloud.com/
product/ecs, 2017.

[29] J. Fang, “DR-SIM,” https://github.com/yydfjt/distributed
system simulator, 2017.

[30] L. Wan, F. Wang, H. S. Oral, S. S. Vazhkudai, and Q. Cao,
A Report on Simulation-Driven Reliability and Failure Analysis
of Large-Scale Storage Systems, Nov 2014. [Online]. Available:
http://www.osti.gov/scitech/servlets/purl/1185665

[31] A. Oriani and I. C. Garcia, “From Backup to Hot Standby: High
Availability for HDFS,” in SRDS’12, 2012.

[32] A. Thomson and D. J. Abadi, “CalvinFS: Consis-
tent WAN Replication and Scalable Metadata Manage-
ment for Distributed File Systems,” in FAST’15, 2015.
[Online]. Available: https://www.usenix.org/conference/fast15/
technical-sessions/presentation/thomson

[33] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast Crash Recovery in RAMCloud,” in
SOSP’11, 2011.

[34] B. gon Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica
maintenance for distributed storage systems,” in NSDI’06, 2006.

[35] V. Venkatesan, I. Iliadis, and R. Haas, “Reliability of Data Stor-
age Systems under Network Rebuild Bandwidth Constraints,” in
MASCOTS’12, 2012.

[36] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacen-
ters,” in SIGCOMM’12, 2012.

[37] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the Social Network’s (Datacenter) Network,” in SIGCOMM’15,
2015.

[38] F. André, A.-M. Kermarrec, E. Le Merrer, N. Le Scouarnec,
G. Straub, and A. Van Kempen, “Archiving cold data in ware-
houses with clustered network coding,” in EUROSYS’14, 2014.

[39] S. Jiekak, A.-M. Kermarrec, N. Le Scouarnec, G. Straub, and
A. Van Kempen, “Regenerating Codes: A System Perspective,”
in SIGOPS’13, 2013.

[40] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Fi-
nite Fields,” Journal of the Society for Industrial and Applied
Mathematics, 1960.

[41] A. K. Dutta and R. Hasan, “How much does storage really cost?
Towards a full cost accounting model for data storage,” in Inter-
national Conference on Grid Economics and Business Models.
Springer, 2013.

[42] Amazon, “Pricing of Amazon S3,” https://aws.amazon.com/s3/
pricing, 2017.

506 2018 USENIX Annual Technical Conference USENIX Association

https://www.alibabacloud.com/product/ecs
https://www.alibabacloud.com/product/ecs
https://github.com/yydfjt/distributed_system_simulator
https://github.com/yydfjt/distributed_system_simulator
http://www.osti.gov/scitech/servlets/purl/1185665
https://www.usenix.org/conference/fast15/technical-sessions/presentation/thomson
https://www.usenix.org/conference/fast15/technical-sessions/presentation/thomson
https://aws.amazon.com/s3/pricing
https://aws.amazon.com/s3/pricing

	Introduction
	Background and Motivation
	Terms
	Erasure-coded Data Centers
	Methods to Improve the RAS
	Motivation

	RAFI: Design and Analysis
	Design of RAFI
	Benefit and Cost

	Prototyping Evaluation
	Evaluation Methodology
	RAFI-HDFS
	Results of Prototyping Experiments

	Simulations and Results Analysis
	DR-SIM
	Simulation Testbed
	Simulation Results
	RAS as Functions of Ti
	RAS as Functions of Erasure Coding Schemes
	RAS as Functions of Recovery Network Bandwidth
	Comparisons with Lazy
	Availability under Correlated Failures

	Related Work
	Conclusions
	Acknowledgment

