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Abstract
Concurrency bugs widely exist and severely threaten
system availability. Techniques that help recover from
concurrency-bug failures during production runs are
highly desired. This paper proposes BugTM, an ap-
proach that leverages Hardware Transactional Mem-
ory (HTM) on commodity machines for production-
run concurrency-bug recovery. Requiring no knowl-
edge about where are concurrency bugs, BugTM uses
static analysis and code transformation to insert HTM in-
structions into multi-threaded programs. These BugTM-
transformed programs will then be able to recover from a
concurrency-bug failure by rolling back and re-executing
the recent history of a failure thread. BugTM greatly
improves the recovery capability of state-of-the-art tech-
niques with low run-time overhead and no changes to OS
or hardware, while guarantees not to introduce new bugs.

1 Introduction
1.1 Motivation
Concurrency bugs are caused by untimely accesses to
shared variables. They are difficult to expose dur-
ing in-house testing. They widely exist in production-
run software [26] and have caused disastrous failures
[23, 32, 40]. Production run failures severely hurt sys-
tem availability: the restart after a failure could take long
time and even lead to new problems if the failure leaves
inconsistent system states. Furthermore, comparing with
many other types of bugs, failures caused by concurrency
bugs are particularly difficult to diagnose and fix cor-
rectly [50]. Techniques that handle production-run fail-
ures caused by concurrency bugs are highly desired.

Rollback-and-reexecution is a promising approach to
recover failures caused by concurrency bugs. When a
failure happens during a production run, the program
rolls back and re-executes from an earlier checkpoint.
Due to the unique non-determinism nature of concur-
rency bugs, the re-execution could get around the failure.

This approach is appealing for several reasons. It is
generic, requiring no prior knowledge about bugs; it im-
proves availability, masking the manifestation of concur-
rency bugs from end users; it avoids causing system in-
consistency or wasting computation resources, which of-
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Figure 1: Single-threaded recovery for concurrency bugs

ten come together with naive failure restarts; even if not
successful, the recovery attempts only delays the failure
by a negligible amount of time.

This approach also faces challenges in performance,
recovery capability, and correctness (i.e., not introducing
new bugs), as we elaborate below.

Traditional rollback recovery conducts full-blown
multi-threaded re-execution and whole-memory check-
pointing. It can help recover almost all concurrency-bug
failures, but incurs too large overhead to be deployed in
production runs [35, 39]. Even with support from operat-
ing systems changes, periodic full-blown checkpointing
still often incurs more than 10% overhead [35].

A recently proposed recovery technique, ConAir,
conducts single-threaded re-execution and register-only
checkpointing [55]. As shown in Figure 1, when a fail-
ure happens at a thread, ConAir rolls back the register
content of this thread through an automatically inserted
longjmp and re-executes from the return of an automat-
ically inserted setjmp, which took register checkpoints.
This design offers great performance (<1% overhead),
but also imposes severe limitations to failure-recovery
capability. Particularly, with no memory checkpoints
and re-executing only one thread, ConAir does not al-
low its re-execution regions to contain writes to shared
variables (referred to as Ws) for correctness concerns,
severely hurting its chance to recover many failures.

This limitation can be demonstrated by the real-world
example in Figure 2. In this example, the NULL assign-
ment from Thread-2 could execute between the write
(A1) and the read (A2) on s→table from Thread-1, and
cause failures. At the first glance, the failure could be
recovered if we could rollback Thread-1 and re-execute
both A1 and A2. However, such rollback and re-execution
cannot be allowed by ConAir, as correctness can no
longer be guaranteed if a write to a shared variable is
re-executed (Ws in Figure 2): another thread t could have
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read the old value of s→table, saved it to a local pointer,
the re-execution then gave s→table a new value, caus-
ing inconsistency between t and Thread-1 and deviation
from the original program semantics.

1 //Thread-1

2 s->table = newTable(...); //A1, Ws

3
4 if(!s->table) //A2

5 //fatal-error message; software fails

1 //Thread-2

2
3 s->table = NULL;

Figure 2: A real-world concurrency bug from Mozilla
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Figure 3: Design space of concurrency-bug failure re-
covery (Heart: non-existing optimal design; Rx [35] changes OS)

1.2 Contributions
Existing recovery techniques only touch two corners of
the design space — good performance but limited re-
covery capability or good recovery capability but lim-
ited performance — as shown in Figure 3. It is desir-
able to have new recovery techniques that combine the
performance and recovery capability strengths of the ex-
isting two corners of design, while maintaining correct-
ness guarantees. BugTM provides such a new technique
leveraging hardware transactional memory (HTM) sup-
port that already exists in commodity machines.

At the first glance, the opportunity seems obvious, as
HTM provides a powerful mechanism for concurrency
control and rollback-reexecution. Previous work [46]
also showed that TM can be used to manually fix con-
currency bugs after they are detected.

However, automatically inserting HTMs to help
tackle unknown concurrency bugs during production
runs faces many challenges not encountered by manu-
ally fixing already detected concurrency bugs off-line:

Performance challenges: High frequency of transac-
tion uses would cause large overhead unacceptable for
production runs. Unsuitable content of transactions, like
trapping instructions1, high levels of transaction nesting,
and long loops, would also cause performance degrada-
tion due to repeated and unnecessary transaction aborts.

Correctness challenges: Unpaired transaction-start
and transaction-commit could cause software to crash.

1Certain instructions such as system calls will deterministically
cause HTM abort and are referred to as trapping instructions.

ReExecution RollBack Checkpoint ReExecution
Point Point Memory ? contains Ws?

ConAir setjmp longjmp 7 7
BugTMH StartTx AbortTx X X

BugTMHS
setjmp longjmp

X– Xor StartTx or AbortTx

Table 1: Design comparisons (Ws: shared-variable writes)

Deterministic aborts, such as those caused by trapping
instructions, could cause software to hang if not well
handled. We need to guarantee these cases do not happen
and ensure software semantics remains unmodified.

Failure recovery challenges: In order for HTM to
help recovery, we need to improve the chances that soft-
ware executes in a transaction when a failure happens
and we need to carefully design HTM-abort handlers to
correctly process the corresponding transaction aborts.

BugTM addresses these challenges by its carefully de-
signed and carefully inserted, based on static program
analysis, HTM start, commit, and abort routines. Specif-
ically, we have explored two BugTM designs: BugTMH
and BugTMHS, as highlighted in Table 1. They are both
implemented as LLVM compiler passes that automati-
cally instrument software in the following ways.

Hardware BugTM, short for BugTMH , uses HTM
techniques2 exclusively to help failure recovery. When a
failure is going to happen, a hardware transaction abort
causes the failing thread to roll back. The re-execution
naturally starts from the beginning of the enclosing trans-
action, carefully inserted by BugTMH .

BugTMH provides better recovery capability than
ConAir — benefiting from HTM, its re-execution region
can contain shared variable writes. However, HTM costs
more than setjmp/longjmp. Therefore, the performance
of BugTMH is worse than ConAir, but much better than
full-blown checkpointing, as shown in Figure 3.

Hybrid BugTM, short for BugTMHS, uses HTM
techniques and setjmp/longjmp together to help failure re-
covery. BugTMHS inserts both setjmp/longjmp and HTM
APIs into software, with the latter inserted only when
beneficial (i.e., when able to extend re-execution re-
gions). When a failure is going to happen, the rollback
is carried out through transaction abort if under an active
transaction or longjmp otherwise.

BugTMHS provides performance almost as good
as ConAir and recovery capability even better than
BugTMH by carefully combining BugTMH and ConAir.

We thoroughly evaluated BugTMH and BugTMHS us-
ing 29 real-world concurrency bugs, including all the
bugs used by a set of recent papers on concurrency bug
detection and avoidance [17, 19, 41, 55, 56, 57]. Our
evaluation shows that BugTM schemes can recover from

2This paper’s implementation is based on Intel TSX. However, the
principles apply to other vendors’ HTM implementations.
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many more concurrency-bug failures than state of the art,
ConAir, while still provide good run-time performance
— 3.08% and 1.39% overhead on average for BugTMH
and BugTMHS, respectively.

Overall, BugTM offers an easily deployable technique
that can effectively tackle concurrency bugs in produc-
tion runs, and presents a novel way of using HTM.
Instead of using transactions to replace existing locks,
BugTM automatically inserts transactions to harden the
most failure-vulnerable part of a multi-threaded pro-
gram, which already contains largely correct lock-based
synchronization, with small run-time overhead.

2 Background
2.1 Transactional Memory (TM)

TM is a widely studied parallel programming construct
[13, 15]. Developers can wrap a code region in a trans-
action (Tx), and the underlying TM system guarantees
its atomicity, consistency, and isolation. Hardware trans-
actional memory (HTM) provides much better perfor-
mance than its software counterpart (STM), and has been
implemented in IBM [12], Sun [8], and Intel commercial
processors [1].

In this paper, we focus on Intel Transactional Synchro-
nization Extensions (TSX). TSX provides a set of new
instructions: XBEGIN, XEND, XABORT, and XTEST. We will de-
note them as StartTx, CommitTx, AbortTx, and TestTx, re-
spectively for generality. Here, CommitTx may succeed
or fail with the latter causing Tx abort. AbortTx explic-
itly aborts the current Tx, which leads to Tx re-execution
unless special fallback code is provided. TestTx checks
whether the current execution is under an active Tx.

There are multiple causes for Tx aborts in TSX. Un-
known abort is mainly caused by trapping instructions,
like exceptions and interrupts (abort code 0x00). Data
conflict abort is caused by conflicting accesses from an-
other thread that accesses (writes) the write (read) set of
the current Tx (abort code 0x06). Capacity abort is due
to out of cache capacity (abort code 0x08). Nested trans-
action abort happens when there are more than 7 levels
Tx nesting (abort code 0x20). Manual abort is caused
by AbortTx operation, with programmers specifying abort
code.

2.2 ConAir
ConAir is a static code transformation tool built upon
LLVM compiler infrastructure [22]. It is a state-of-the-
art concurrency bug failure recovery technique as dis-
cussed in Section 1. We describe some techniques and
terminologies that will be used in later sections below.

Recovery capability limitations ConAir does not al-
low its re-execution regions to contain any writes to
shared variables. Many of its re-execution points (i.e.,

1 //Thread-1

2 if(thd->proc){ //A1

3 *buf++ = ’ ’; //Ws

4 strcat(buf,thd->proc);//A2

5 //failure site

6 }

1 //Thread-2

2
3
4 thd->proc = NULL;

Figure 4: A real-world concurrency bug from MySQL

setjmps) are put right after shared-variable writes, which
prevent re-execution regions from growing longer and
severely limit the recovery capability of ConAir.

ConAir fundamentally cannot recover any RAW3 vi-
olations (e.g., the bug in Figure 2) and WAR violations,
as Table 2 shows. The reason is that the (RA)W and
W(AR) have to be re-executed for successful recoveries,
but ConAir cannot re-execute shared-variable writes.

ConAir also cannot recover other types of concurrency
bugs if a shared-variable write happens to exist between
the failure location and the ideal re-execution point. For
example, the RAR atomicity violation in Figure 4 cannot
be recovered by ConAir due to the write to *buf on Line
3. If Line 3 did not exist, ConAir could have rolled back
Thread-1 to re-execute Line 2 and gotten around the fail-
ure. With Line 3, ConAir can only repeatedly re-execute
the strcat on Line 4, with no chance of recovery.

Failure instruction f ConAir automatically identifies
where failures may happen so that rollback APIs can be
inserted right there. This identification is based on pre-
vious observations that >90% of concurrency bugs lead
to four types of failures [56]: assertion violations, seg-
mentation faults, deadlocks, and wrong outputs. BugTM
will reuse this technique to identify potential failure loca-
tions, denoted as failure instructions f in the remainder
of the paper. Specifically, ConAir identifies the invoca-
tions of __assert_fail or other sanity-check macros as
failure instructions for assertion failures. ConAir then
automatically transforms software to turn segmentation
faults and deadlocks into assertion failures: ConAir au-
tomatically inserts assertions to check whether a shared
pointer variable v is null right before v’s dereference
and check whether a pointer parameter of a string-library
function is null right before the library call; ConAir au-
tomatically turns lock functions into time-out lock func-
tions, with a long timeout indicating a likely deadlock
failure, and inserts assertions accordingly. ConAir can
help recover from wrong output failures as long as de-
velopers provide output specifications using assertions.

3 BugTMH

3.1 High-Level Design
We discuss our high-level idea about where to put Txs,
and compare with some strawman ideas based on perfor-

3(R/W)A(R/W) is short for (Read/Write)-after-(Read/Write).
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Atomicity Violations Order Violations Deadlocks

Read-after-Read Read-after-Write Write-after-Read Write-after-Write
(a) RAR (b) RAW (c) WAR (d) WAW (e) (f)

Types
R	 w	
R	

w	 w	
R	

R	 w	
w	

w	 R	
w	

R	
w	

lock	A	
lock	B	 lock	B	

lock	A	

BugTMH XX XX XX XX XX XX
ConAir X − − X X X

Table 2: Common types of concurrency bugs and how BugTMH and ConAir attempt to recover from them. (R/W:
read/write to a shared variable; thick vertical line: the execution of one thread; dashed arrowed line: the re-execution region of BugTMH ; thin
arrowed line: the re-execution region of ConAir; explosion symbol: a failure; -: cannot recover; X: sometimes can recover if the recovery does not
require re-executing shared-variable writes; XX: mostly can recover. The recovery procedure under BugTMHS is a mix of BugTMH and ConAir
and hence is not shown in table.)

mance and failure-recovery capability.

Strawman approaches One approach is to chunk soft-
ware to many segments and put every segment inside
a hardware Tx [28]. This approach could avoid some
atomicity violations, the most common type of concur-
rency bugs. However, it does not help recover from or-
der violations, another major type of concurrency bugs.
Furthermore, its excessive use of Txs will lead to unac-
ceptable overhead for production-run deployment. An-
other approach is to replace all lock critical regions with
Tx. However, this approach will not help eliminate many
failures that are caused by missing lock.

Our approach In BugTMH , we selectively put hard-
ware Txs around places where failures may happen, like
the invocation of an __assert_fail, the dereference of
a shared pointer, etc. This design has the potential to
achieve good performance because it inserts Txs only at
selected locations. It also has the potential to achieve
good recovery capability because in theory it can recover
from all common types of concurrency bugs, as shown in
Table 2 and explained below.

An atomicity violation (AV) happens when the atom-
icity of a code region C is unexpectedly violated, such as
the bug shown in Figure 2. It contributes to more than
70% of non-deadlock concurrency bugs based on empir-
ical studies [26], and can be further categorized into 4
sub-types depending on the nature of C, as demonstrated
in Table 2. Conflicting accesses would usually trigger a
rollback recovery before the failure occurs, shown by the
dashed arrow lines in Table 2(a)(b)(c), benefiting from
the strong atomicity guarantee of Intel TSX — a Tx will
abort even if the conflicting access comes from non-Tx
code. For the bug shown in Figure 2 (an RAW atomicity
violation), if we put the code region in Thread-1 inside
a Tx, the interleaving NULL assignment from Thread-
2 would trigger a data conflict abort in Thread-1 before
the if statement has a chance to read the NULL. The re-
execution of Thread-1 Tx will then re-assign the valid
value to s → table for the if statement to read from,

successfully avoiding the failure.
An order violation (OV) happens when an instruction

A unexpectedly executes after, instead of before, instruc-
tion B, such as the bug in Figure 5. Different from AVs,
conflicting memory accesses related to OVs may not all
happen inside a small window. In fact, A may not have
executed when a failure occurs in the thread of B. Conse-
quently, the Tx abort probably will be triggered by a soft-
ware failure, instead of a conflicting access, depicted by
the dashed arrow in Table 2(e). Fortunately, the rollback
reexecution will still give the software a chance to cor-
rect the unexpected ordering and recover from the fail-
ure. Take the bug shown in Figure 5 as an example. If
we put a hardware Tx in Thread-1, when order violation
leads to the assertion failure, the Tx will abort, rollback,
and re-execute. Eventually, the pointer ptr will be ini-
tialized and the Tx will commit.

1 //Thread-1

2
3 assert (ptr); //B

4 //should execute after A

1 //Thread-2

2 //ptr is NULL until

3 //initialized at A

4 ptr = malloc (K); //A

Figure 5: A real-world OV bug (simplified from Transmission)

Deadlock bugs occur when different threads each
holds resources and circularly waits for each other. As
shown in Table 2(f), it can be recovered by Tx rollback
and re-execution too, as long as deadlocks are detected.

Of course, BugTMH cannot recover from all failures,
because some error-propagation chains cannot fit into a
HTM Tx, which we will discuss more in Section 7.

Next, we will discuss in details how BugTMH sur-
rounds failure sites with hardware Txs— how to auto-
matically insert StartTx, CommitTx, AbortTx, and fallback-
/retry code into software, while targeting three goals:
(1) good recovery capability; (2) good run-time perfor-
mance; (3) not changing original program semantics.

3.2 Design about AbortTx
BugTMH uses the same technique as ConAir to iden-
tify where failures would happen as discussed in Sec-
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1 if(_xtest()){

2 //manually abort with abort code 0xFF

3 _xabort(0xFF);

4 }

Figure 6: BugTMHAbortTx wrapper function (my_xabort)

tion 2.2. BugTMH puts an AbortTx wrapper function
my_xabort right before every failure instruction f , so that
a Tx abort and re-execution is triggered right before a
failure manifests. my_xabort uses a unique abort code
0xFF for its AbortTx operation (as shown in Figure 6),
so that BugTMH can differentiate different causes of Tx
aborts and handle them differently.

3.3 Design about StartTx and CommitTx

Challenges We elaborate on two key challenges in
placing StartTx and CommitTx, and explain why we
cannot simply insert well-structured atomic blocks (e.g.,
__transaction_atomic supported by GCC) into programs.

First, poor placements could cause frequent Tx aborts.
Trapping instructions (e.g., system calls) and heavy TM
nesting (>7 level) deterministically cause aborts, while
long Txs abort more likely than short ones due to timer-
interrupts and memory-footprint threshold. These aborts
hurt not only performance, but also recovery — deter-
ministic aborts of a Tx will eventually force us to execute
the Tx region4 in non-transaction mode, leaving no hope
for failure recovery.

Second, poor placements could cause unpaired execu-
tion of StartTx and CommitTx, hurting both correctness and
performance. When CommitTx executes without StartTx,
the program will crash; when StartTx executes without a
pairing CommitTx, its Tx will repeatedly abort.

Taking Figure 7 as an example, we want to put A1 and
A2, both accessing global variable G, into a Tx together
with __assert_fail on Line 6 for failure recovery. How-
ever, if we naively put StartTx on Line 2 and CommitTx on
Line 12, forming a well structured atomic block, correct
runs will incur repeated Tx aborts and huge slowdowns
due to I/Os on Line 10. Simply moving CommitTx to right
after Line 4 and keeping StartTx on Line 2 still will not
work — when else is taken, the earlier StartTx has no
pairing CommitTx and the Tx still aborts due to I/Os.

We address the first challenge by carefully placing
StartTx and CommitTx. We address the second challenge
mainly through our StartTx, CommitTx wrapper-functions.

Where to StartTx and CommitTx The design principle
is to minimize the chance of aborts that are unrelated
to concurrency bugs, tackling the first challenge above.
BugTMH achieves this by making sure that its Txs do

4We will refer to the code region between our my_xbegin and my_xend

as a Tx region, which may be executed in transactional mode.

1 void func(...){

2
3 G = g; //A1

4 if(!G){ //A2

5
6 __assert_fail;//f: failure instr.

7 }

8 else{

9
10 IO(...); //computation & I/O

11 }

12
13 }

1 void func(...){

2 + my_xbegin();

3 G = g;

4 if(!G){

5 + my_xabort();

6 __assert_fail;

7 }

8 else{

9 + my_xend();

10 IO(...);

11 }

12 + my_xend();

13 }

Figure 7: A toy example adapted from Figure 2 (left-
side) and its BugTMH transformation (right-side)

1 if(_xtest() == 0){//no active Tx

2 Retrytimes = 0;

3 prev_status = -1;

4 retry: if((status = _xbegin()) == _XBEGIN_STARTED){

5 //Tx starts

6 }else{

7 //abort fallback handler, no active Tx at this point

8 Retrytimes++;

9 if(status==0x00||status==0x08){

10 //unknown or capacity abort

11 if(!(prev_status==0x00 && status==0x00) &&

12 !(prev_status==0x08 && status==0x08))

13 { prev_status=status; goto retry;}

14 }else if(status==0x06 || status==0xFF){

15 if(Retrytimes < RetryThreshold)

16 {prev_status=status; goto retry;}

17 }

18 //continue execution in non-Tx mode

19 }

20 }

Figure 8: BugTMHStartTx wrapper function (my_xbegin)

not contain function calls, which avoids system calls
and many trapping instructions, or loops, which avoids
large memory footprints. The constraint of not contain-
ing function calls will be relaxed in Section 3.5.

Specifically, for every failure instruction f inside a
function F , BugTMH puts a StartTx wrapper function
right after the first function call instruction or loop-exit
instruction or the entrance of F , whichever encountered
first along every path tracing backward from f to the
entrance of F . BugTMH puts CommitTx wrapper func-
tions right before the exit of F , every function call in
F , and every loop header instruction in F , unless the cor-
responding loop contains a failure instruction, in which
case we want to extend re-execution regions for possible
failures inside the loop.

Analysis for different failure instructions may decide
to put multiple StartTx (CommitTx) at the same program
location. In these cases, we will only keep one copy.

For the toy example in Figure 7, the intra-procedural
BugTMH identifies Line 2 to put a StartTx, and identifies
Line 9 and 12 to put CommitTx, as shown in the figure.

USENIX Association 2018 USENIX Annual Technical Conference    841



1 if(_xtest())

2 _xend(); //terminate an active transaction

Figure 9: BugTMHCommitTx wrapper function (my_xend)

How to StartTx and CommitTx The above algorithm
does not guarantee one-to-one pairing of the execution
of StartTx and CommitTx, the second challenge discussed
above. BugTMH addresses this through TestTx check-
ings conducted in my_xbegin and my_xend, BugTMH wrap-
per functions for StartTx and CommitTx. That is, StartTx
will execute only when there is no active Txs, as shown
in Figure 8; CommitTx will execute only when there exists
an active Tx, as shown in Figure 9.

Overall, our design so far satisfies performance, cor-
rectness, and failure-recovery goals by guaranteeing a
few properties. For performance, BugTMH guarantees
that its Txs do not contain system/library calls or loops
or nested Txs, and always terminate by the end of the
function where the Tx starts. For correctness, BugTMH
guarantees not to introduce crashes caused by unpairing
CommitTx. For recovery capability, BugTMH makes the
best effort in letting failures occur under active Txs.

3.4 Design for fallback and retry

Challenges It is not trivial to automatically and cor-
rectly generate fallback/retry code for all Txs inserted
by BugTMH . Since many Tx aborts may be unrelated
to concurrency bugs, inappropriate abort handling could
lead to performance degradation, hangs, and lost failure-
recovery opportunities.

Solutions BugTMH will check the abort code and re-
act to different types of aborts differently. Specifically,
BugTMH implements the following fallback/retry strat-
egy through its my_xbegin wrapper (Figure 8).

Aborts caused by AbortTx inserted by BugTMH indi-
cates software failures. We should re-execute the Tx un-
der HTM, hoping that the failure will disappear in retry
(Line 14–17). To avoid endless retry, BugTMH keeps a
retry-counter Retrytimes (Figure 8). This counter is con-
figurable in BugTMH , with the default being 1000000.

Data conflict aborts (Line 14–17) are caused by con-
flicting accesses from another thread. They are handled
in the same way as above, because they could be part of
the manifestation of concurrency bugs.

Unknown aborts and capacity aborts (Line 9–13) have
nothing to do with concurrency bugs or software fail-
ures. In fact, the same abort code may appear re-
peatedly during retries, causing performance degrada-
tion without increasing the chance of failure recovery.
Therefore, the fallback code will re-execute the Tx re-
gion in non-transaction mode once these two types of
aborts are observed in two consecutive aborts. Nested

Tx aborts would not be encountered by BugTMH , be-
cause BugTMH Txs are non-nested.

The above wrapper function not only implements fall-
back/retry strategy, but also allows easy integration into
the target software, as demonstrated in Figure 7.

3.5 Inter-procedural Designs and Others
The above algorithm allows no function calls or returns
in Txs, keeping the whole recovery attempt within one
function F . This is too conservative as many functions
contain no trapping instructions and could help recovery.

To extend the re-execution region into callees of F , we
put my_xend before every system/library call instead of ev-
ery function call. To extend the re-execution region into
the callers of F , we slightly change the policy of putting
my_xbegin. When the basic algorithm puts my_xbegin at
the entrance of F , the inter-procedural extension will find
all possible callers of F , treat the callsite of F in its caller
as a failure instruction, and apply my_xbegin insertion and
my_xend insertion in the caller.

We then adjust our strategy about when to finish a
BugTMH Tx. The basic BugTMH may end a Tx too
early: by placing my_xend before every function exit, the
re-execution will end in a callee function of F before re-
turning to F and reaching the potential failure site in F .
Our adjustment changes the my_xend wrapper inserted at
function exits, making it take effect only when the func-
tion is the one which starts the active Tx.

Finally, as an optimization, we eliminate Txs that con-
tain no shared-variable reads the failure instruction f
has control or data dependency on. In these cases, the
execution and outcome of f is deterministic during re-
execution, and hence the failure cannot be recovered.

4 BugTMHS

Rollback and re-execution techniques based on HTM
(Section 3) and setjmp/longjmp [55] each has its own
strengths and weaknesses. The former allows re-
execution regions to contain shared variable writes,
which is a crucial improvement over the latter in terms
of failure recovery capability. However, it also has
higher overhead than the latter. Furthermore, some op-
erations not allowed inside an HTM Tx (e.g. malloc,
memcpy, pthread_cond_wait), could potentially be correctly
re-executed through software techniques [37, 45].

To combine the strengths of the above two approaches,
we design BugTMHS. The high level idea is that we
apply ConAir to insert setjmp and longjmp recovery
code into a program first5; and then, only at places
where the growth of re-execution regions are stopped by
shared-variable writes, we apply BugTMH to extend re-
execution regions through HTM-based recovery.

5Intel TSX allows setjmp/longjmp to execute inside Txs.
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Next, we will discuss in details how we carry out this
high level idea to achieve the union of BugTMH and
ConAir’s recovery capability, while greatly enhancing
the performance of BugTMH .

Where to setjmp and StartTx ConAir and BugTMH in-
sert setjmp and StartTx using similar algorithms, easing
the design of BugTMHS. That is, for every failure in-
struction f inside a function F , ConAir (BugTMH ) tra-
verses backward through every path p that connects f
with the entrance of F on CFG, and puts a setjmp wrap-
per function (StartTx wrapper function) right after the
first appearance of a killing instruction. We will refer to
this location as locsetjmp and locStartTx, respectively. For
ConAir, the killing instructions include the entrance of F ,
writes to any global or heap variables, and a selected set
of system/library calls; for BugTMH , the killing instruc-
tions include the entrance of F , the loop-exit instruction,
and all system/library calls 6.

BugTMHS slightly modifies the above algorithm.
Along every path p, BugTMHS inserts the setjmp wrapper
function at every locsetjmp, where ConAir would insert it.
In addition, BugTMHS inserts the StartTx wrapper func-
tion at locStartTx, when locStartTx is farther away from f
than locsetjmp (i.e., offering longer re-execution). Note
that BugTMHS inserts setjmp at every location locsetjmp
where ConAir would have inserted setjmp because ev-
ery locsetjmp might be executed without an active hard-
ware transaction due to unexpected HTM aborts and
others. When locsetjmp is same as locStartTx, BugTMHS
would only insert setjmp without inserting StartTx wrap-
per function.

Where to CommitTx BugTMHS inserts CommitTx wrap-
per functions exactly where BugTMH inserts them. Note
that, BugTMHS inserts fewer StartTx than BugTMH , and
hence starts fewer Txs at run time. Fortunately, this
does not affect the correctness of how BugTMHS inserts
CommitTx, because the wrapper function makes sure that
CommitTx executes only under an active Tx.

How to retry ConAir and BugTMH insert longjmp

and AbortTx wrapper functions, which are responsible
for triggering rollback-based failure recovery, using the
same algorithm — right before a failure is going to hap-
pen as described in Section 2.2 and Section 3.2.

BugTMHS inserts its rollback function (Figure 10) at
the same locations. We design BugTMHS rollback wrap-
per to first invoke HTM-rollback (i.e., AbortTx) if it is
under an active transaction, which will allow a longer
re-execution region and hence a higher recovery proba-
bility. The BugTMHS rollback wrapper invokes longjmp

rollback if it is not under an active transaction. To make

6BugTMHS also combines the inter-procedural recovery of ConAir
and BugTMH in a similar way. We skip details for space constraints.

1 if(_xtest())

2 _xabort(0xFF); //terminate an active transaction

3 else //use longjmp for recovery

4 if(longjmp_retry ++ < 1000000) // avoid endless retry

5 longjmp(buf1,-1);

Figure 10: BugTMHS rollback wrapper function

sure that the program would not keep attempting hope-
less recoveries, BugTMHS continues to use the HTM-
abort statistics in the StartTx wrapper function shown in
Figure 8 and continues to keep the longjmp retry count
threshold shown in Figure 10.

For examples shown in Figure 2, 4, and 7, BugTMHS
would insert both setjmp and StartTx into the buggy
code regions, because StartTx would provide longer
re-execution regions in all three cases. However, if
the *buf++ = ’ ’; statement does not exist in Figure 4,
BugTMHS would not insert StartTx there. Consequently,
if failures happen, longjmp will be used for recovery.

Overall, we expect BugTMHS to improve the perfor-
mance of BugTMH and improve the recovery capability
of both BugTMH and ConAir. This will be confirmed
through experiments in Section 7.

5 Failure Diagnosis

Previous recovery techniques like ConAir and naive sys-
tem restart leave failure diagnosis completely to develop-
ers, which is often very time consuming. To address this
limitation, we design BugTMHS to support failure diag-
nosis through the root-cause inference routine shown in
Figure 11 and extra logging during recovery.

The root-cause inference shown in Figure 11 is mostly
straightforward. The rationale of diagnosis based on the
number of re-executions (Line 5 and 7) is the following.
If the recovery success relies on a code region C in the
failure thread to re-execute atomically, probably one re-
execution attempt is sufficient, because another unserial-
izable interleaving during re-execution is very rare. This
case applies to RAR violation, as shown in Table 2. If
the recovery success relies on something to happen in an-
other thread, multiple re-executions are probably needed.
This applies to WAW violations and order violations, as
shown in Table 2.

Note that, BugTMHS and BugTMH could detect and
recover the software from concurrency bugs before ex-
plicit failures getting triggered. As shown in Table 2, for
several types of atomicity violation bugs, the retry would
be triggered by HTM data-conflict aborts, instead of ex-
plicit failures. In these cases (Line 9), BugTMHS cannot
affirmatively conclude that concurrency bugs have hap-
pened. It can only provide hints that certain types of
atomicity violations may be the reason for HTM aborts.
Along this line, future work could extend BugTM to con-
tain more concurrency-bug detection capability, in addi-
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1 Input: information from a successful recovery

2 if (timeout failures)

3 output: deadlock

4 else if (other explicit failures)

5 if (first re-execution succeeds)

6 output: RAR atomicity violation

7 else

8 output: Order Violation or WAW atomicity violation

9 else if (implicit failures) //HTM data conflict aborts

10 output: possible RAR, WAR, or RAW atomicity violations

Figure 11: Recovery-guided root-cause diagnosis

tion to its failure recovery capability.
BugTMHS also logs memory access type (read/write),

addresses, values, and synchronization operations dur-
ing re-execution, which helps diagnosis with no run-time
overhead and only slight recovery delay.

Of course, some real-world concurrency bugs are
complicated. However, complicated bugs can often be
decomposed into simpler ones. Furthermore, some prin-
ciples still hold. For example, if the re-execution suc-
ceeds with just one attempt, it is highly likely that an
atomicity violation happened to the re-execution region.

6 Methodology
Implementation BugTM is implemented using LLVM
infrastructure (v3.6.1). We obtained the source code of
ConAir, also built upon LLVM. All the experiments are
conducted on 4-core Intel Core i7-5775C (Broadwell)
machines with 6MB cache, 8GB memory running Linux
version 2.6.32, and O3 optimization level.

Benchmark suite We have evaluated BugTM on 29
bugs, including all the real-world bug benchmarks in
a set of previous papers on concurrency-bug detection,
fixing, and avoidance [17, 19, 41, 55, 56, 57]. They
cover all common types of concurrency-bug root causes
and failure symptoms. They are from server applica-
tions (e.g., MySQL database server, Apache HTTPD
web server), client applications (e.g., Transmission Bit-
Torrent client), network applications (e.g., HawkNL net-
work library, HTTrack web crawler, Click router), and
many desktop applications (e.g., PBZIP2 file compres-
sor, Mozilla JavaScript Engine and XPCOM). The sizes
of these applications range 50K — 1 million lines of
code. Finally, our benchmark suite contains 3 extracted
benchmarks: Moz52111, Moz209188, and Bank.

The goal of BugTM is to recover from production-run
failures, not to detect bugs. Therefore, our evaluation
uses previously known concurrency bugs that we know
how to trigger failures. In all our experiments, the evalu-
ated recovery tools do not rely on any knowledge about
specific bugs in their failure recovery attempts.

Setups and metrics We will measure the recovery ca-
pability and overhead of BugTMH and BugTMHS. We
will also evaluate and compare with ConAir [55], the
state of the art concurrency-bug recovery technique.

RootCause ConAir BugTMH BugTMHS

MySQL2011 AVRAR − X X
MySQL38883 AVRAR − X X
Apache21287 AVRAW − X X
Moz-JS18025 AVRAW − X X
Moz-JS142651 AVRAW − X X
Bank AVWAR − X X
Transmission OV X − X

Total 1 6 7

Table 3: Recovery capability comparison (Moz-JS:
Mozilla JavaScript Engine.)

To measure recovery capability, we follow the
methodology of previous work [18, 55], and insert sleeps
into software, so that the corresponding bugs will man-
ifest frequently. We then run each bug-triggering work-
load with each tool applied for 1000 times.

To measure the run-time overhead. We run the original
software without any sleeps with each tool applied. We
report the average overhead measured during 100 failure-
free runs, reflecting the performance during regular ex-
ecution. We also evaluate alternative designs of BugTM,
such as not conducting inter-procedural recovery, not ex-
cluding system calls from Txs, not excluding loops, etc.
Due to space constraints, we only show this set of eval-
uation results on Mozilla and MySQL benchmarks, two
widely used client and server applications.

7 Experimental Results

Overall, BugTMH and BugTMHS both have better recov-
ery capability than ConAir, and both provide good per-
formance. BugTMHS provides the best combination of
recovery capability and performance among the three.

7.1 Failure recovery capability
Among all the 29 benchmarks, 9 cannot be recovered
by any of the evaluated techniques, no matter ConAir
or BugTM, and the remaining 20 can be recovered by
at least one of the techniques (BugTMHS can recover all
of these 20). Table 3 shows the result of 7 benchmarks
where different tools show different recovery capability.

ConAir fails to recover from 6 out of 7 failures in Ta-
ble 3, mainly because it does not allow shared-variable
writes in re-execution regions. As a result, it cannot re-
cover from any RAW or WAR atomicity bugs, and some
RAR bugs, including the one in Figure 4.

BugTMH can successfully recover from all the 6 fail-
ures that ConAir cannot in Table 3. BugTMH cannot
recover from the Transmission bug, because recovering
this bug requires re-executing malloc, a trapping oper-
ation for Intel TSX but handled by ConAir. In fact,
malloc is allowed in some more sophisticated TM designs
[37, 45].

BugTMHS combines the strengths of BugTMH and
ConAir, and hence can successfully recover from all 7
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Run-time Overhead #setjmp #StartTx #StartTx per 10µs Abort%

ConAir BugTMH BugTMHS BugTMHS BugTMH BugTMHS BugTMH BugTMHS BugTMH BugTMHS

MySQL2011 0.05% 0.13% 0.08% 643425 2746031 778024 2.3 0.7 0.01 0.01
MySQL3596 0.40% 3.10% 1.12% 144212 110476 39913 3.9 1.4 0.12 0.20
MySQL38883 0.40% 3.08% 1.11% 144119 110471 39904 3.9 1.4 0.11 0.19
Apache21287 0.55% 3.77% 3.00% 40023 72093 45520 22.8 14.5 0.08 0.11
Moz-JS18025 0.57% 9.03% 2.62% 3992 6850 1159 16.3 2.8 0.29 0.04
Moz-JS142651 0.76% 11.9% 5.30% 2145 9666 4007 30.4 12.6 0.33 0.17
Bank 0.15% 2.18% 2.95% 6 5 5 0.1 0.1 0.0 0.0
Moz-ex52111 0.47% 0.53% 0.41% 4 3 0 0.0 0.0 0.0 0.0
Moz-ex209188 0.12% 0.58% 0.77% 2 1 1 0.0 0.0 0.0 0.0
MySQL791 0.35% 1.98% 0.24% 48998 4948 602 2.5 0.4 0.35 0.01
MySQL16582 0.15% 3.03% 0.99% 269543 153532 31222 3.8 0.8 0.03 0.06
Click 0.57% 8.11% 3.60% 4681 5142 2123 18.7 8.1 0.96 0.12
FFT 0.05% 0.03% 0.14% 23 25 19 0.0 0.0 0.0 0.0
HTTrack 0.15% 0.64% 0.04% 9212 15649 1572 0.1 0.0 0.83 0.11
Moz-xpcom 0.38% 0.45% 0.03% 324 1933 154 0.0 0.0 0.31 0.51
Transmission 0.11% 0.22% 0.07% 1093 2123 919 0.1 0.0 0.56 0.40
zsnes 0.05% 0.03% 0.44% 10462 11737 372 0.5 0.0 0.13 0.23
HawkNL 0.09% 0.00% 0.15% 10 19 16 0.0 0.0 0.0 0.07
Moz-JS79054 0.84% 11.7% 4.20% 338 1325 360 9.4 2.6 0.23 0.44
SQLite1672 0.05% 0.98% 0.50% 6 3 3 0.1 0.1 0.0 0.06
Avg. 0.31% 3.08% 1.39% - - - - - - -

Table 4: Overhead during regular execution and detailed performance comparison (red font denotes >3% overhead; #:
count of dynamic instances; Abort%: percentage of aborted dynamic Txs.)

benchmarks in Table 3. It recovers the first 6 failures
through HTM retries. It recovers from the Transmission
failure through longjmp (it rolls back the malloc that can-
not be handled by HTM-retry through free).

Unrecoverable benchmarks There are 9 benchmarks
that no tools can help recover for mainly three reasons.
Some of these issues go beyond the scope of failure re-
covery, yet others are promising to address in the fu-
ture. First, two order violation benchmarks cause failures
when the failure thread is unexpectedly slow. Therefore,
re-executing the failure thread would not help correct
the timing. Fortunately, both failures can be prevented
by delaying resource deallocation, a prevention approach
proposed before for memory-bug failures [29, 35]. Sec-
ond, three benchmarks, Cherokee326, Apache25520,
and MySQL169, cause failures that are difficult to detect
(i.e., silent data corruption). Tackling them goes beyond
the scope of failure recovery. Third, the remaining four
failures cannot be recovered due to un-reexecutable in-
structions, which are promising to address. For example,
Intel TSX does not support putting memcpy, cond_wait, or
I/O into its Txs. More sophisticated TMs with OS sup-
port [37, 45] could help recover these failures.

7.2 Performance
Table 4 shows the regular-run overheads of applying
BugTM schemes to 20 benchmarks, all the benchmarks
that are recoverable by BugTMHS.

BugTMH incurs more overhead, about 3% on average,
than ConAir does, about 0.3% on average, mainly be-
cause a Tx is much more expensive than a setjmp.

Fortunately, BugTMHS wins most of the lost perfor-
mance back, incurring 1.4% overhead on average and
less than 3% for all but 3 benchmarks. In the worst

cases, it incurs 4.2% and 5.3% overhead for two bench-
marks in Mozilla JavaScript Engine (JSE), a browser
component with little I/O. If we apply BugTMHS to the
whole browser, the overhead would be much smaller, as
JSE never takes >20% of the whole page-loading time
based on our profiling and previous work [31].

Comparing BugTMHS with BugTMH , BugTMHS is
faster mainly because it has greatly reduced the num-
ber of transactions at run time. For example, for the
four benchmarks that incur the largest overhead un-
der BugTMH (Moz-JS18025, Moz-JS142651, Click, and
Moz-JS79054), BugTMHS reduces the #StartTx per 10µs
from 9.4 — 30.4 to 2.6 — 12.6, and hence dropping the
overhead from 8.11–11.9% to 2.6–5.3%.

Tx abort rate is less than 1% for all benchmarks, with
more than 95% of all aborts being unknown aborts (timer
interrupts, etc.). As Section 7.4 will show, abort rates and
overhead are much worse in alternative designs.
Recovery time & Comparison with whole-program
restart A successful BugTM failure recovery takes lit-
tle time. In our experiments, the recovery of atomic-
ity violations and deadlocks mostly takes less than 100
µ-seconds (median is 76 µ-seconds). The recovery of
order violations takes slightly longer time, as it highly
depends on how much sleep is inserted to trigger the
failure. BugTM recovery is much faster than a system
restart, which could take a few minutes or even more
for complicated systems. It also avoids wasting already
conducted computation and crash inconsistencies. For
example, without BugTM, MySQL791 would crash the
database after a table is changed but before this change
is logged, leaving inconsistent persistent states.
Understanding BugTMH overhead The overhead of
BugTMH differs among benchmarks, ranging from
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BugTMH Intra-proc Trapping-Ins Loop

Moz-xpcom 0.45% X 0.44% 7 0.54% X 0.20% X
Moz-JS18025 9.03% X 7.01% X 16.8% X 11.3% X
Moz-JS79054 11.7% X 11.4% 7 14.0% X 11.1% X
Moz-JS142651 11.9%X 7.6% 7 19.6% X 12.2%X
MySQL791 1.98% X 1.50% X 11.4% X 11.5% X
MySQL2011 0.13% X 0.13% 7 1.50% X 0.06% X
MySQL3596 3.10% X 3.05% X 108% 7 2.63% X
MySQL16582 3.03% X 0.16% X 93.1% X 1.89% X
MySQL38883 3.08% X 3.04% X 106% 7 2.52% X

Table 5: BugTMH vs. alternative designs (%: the over-
head over baseline execution w/o recovery scheme ap-
plied; X: failure recovered; 7: failure not recovered.)

0.00% to 11.9%. As TM researchers found before, per-
formance in TM systems is often complicated [4, 34]. An
indicating metrics for our benchmarks is the frequency of
dynamic StartTx. As shown in the #StartTx per 10µs col-
umn of Table 4, BugTMH executes more than 1 StartTx

per 10 micro second on average for 10 benchmarks, and
incurs more than 1% overhead for 9 of them.

7.3 Diagnosis
BugTMHS can provide diagnosis information for all the
20 benchmarks that it can help recover from. For 13
benchmarks, recoveries through longjmp or HTM roll-
back are initiated right before explicit failures, for which
BugTMHS provides accurate root-cause diagnosis fol-
lowing Figure 11. For the other 7, the recoveries are trig-
gered by HTM data-conflict aborts, for which BugTMHS
correctly suggests that there might be RAR, RAW, or
WAR atomicity violations behind these aborts but can-
not provide more detailed root-cause information.

BugTMHS provides the option to log memory accesses
during failure recovery attempts initiated by longjmp.
Evaluation shows that this extra logging incurs 1.01X –
2.5X slowdowns to failure recovery with no overhead to
regular execution. The 2.5X slowdown happens during a
fast half-microsecond recovery.

7.4 Alternative designs of BugTM
Table 5 shows the performance and recovery capabil-
ity of three alternative designs of BugTMH . Due to
space constraints, we only show results on benchmarks
in MySQL database server and Mozilla browser suite
(non-extracted). Since BugTMH is the foundation of
BugTMHS, an alternative design that degrades the per-
formance or recovery capability of BugTMH will also
degrade BugTMHS accordingly as discussed below.

Inter-procedural vs. Intra-procedural BugTMH
uses the inter-procedural algorithm discussed in Section
3.5. This design adds 0.00 – 4.3 % overhead to its intra-
procedural alternative, as shown in Table 5. In exchange,
there are 4 benchmarks in Table 5 that require inter-
procedural re-execution of BugTMH to recover from.

Among them, two can be recovered by ConAir and hence
can still be recovered by intra-procedural BugTMHS; the
other two require inter-procedural BugTMHS to recover.
Recovering MySQL2011, Moz-xpcom, Moz-JS79054
has to re-execute not only function F where failures oc-
cur, but also F’s caller. As for Moz-JS142651, we need
to re-execute a callee of F where a memory access in-
volved in the atomicity violation resides.

Including trapping instructions in Txs Clearly, if
BugTMH did not intentionally exclude system calls from
its Txs, more Txs will abort. This alternative design hurts
performance a lot, incurring around 100% overhead for
three MySQL benchmarks shown in Table 5. Such de-
sign also causes BugTMHS to incur more than 20% over-
head on these benchmarks. Furthermore, these aborts
may hurt recovery capability, as they will cause corre-
sponding Tx regions to execute in non-transaction mode
to avoid endless aborts and hence lose the opportunity
of failure recovery. This indeed happens for two bench-
marks in Table 5. One of them will also fail to be recov-
ered by BugTMHS under this alternative design.

Including loops in Txs could lead to more capacity
aborts, which are indeed observed for all benchmarks in
Table 5. The overhead actually does not change much
for most benchmarks. Having said that, it raises the over-
head of MySQL791 from 1.98% to 11.5%.

More Txs We also tried randomly inserting more
StartTx. The overhead increases significantly. For Moz-
JS142651, when we double, treble, and quadruple the
number of dynamic Txs through randomly inserted Txs,
the overhead goes beyond 30%, 100%, and 800%. The
impact to BugTMHS would also be huge accordingly.

7.5 Discussion
As the evaluation and our earlier discussion show,
BugTM does not guarantee to recover from all concur-
rency bug failures, particularly if the bug has a long er-
ror propagation before causing a failure. However, we
believe BugTM, particularly BugTMHS, would provide
a beneficial safety net to most multi-threaded software
with little deployment cost or performance loss.

Several practices can help further improve the benefit
of BugTM. First, as discussed in Section 7.1, some im-
provements of HTM design would greatly help BugTM
to recover from more concurrency-bug failures. Sec-
ond, developers’ practices of inserting sanity checks into
software would greatly help BugTM. With more sanity
checks, fewer concurrency bugs would have long error
propagation and hence more concurrency-bug failures
would be recovered by BugTM. Third, different from
locks, which protect the atomicity of a code region only
when the region and all its conflicting code are all pro-
tected by the same lock, BugTM can help protect a code
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region regardless how other code regions are written.
Consequently, developers could choose to selectively ap-
ply BugTM to parts of software where he/she is least cer-
tain about synchronization correctness.

Finally, BugTM can be applied to software that is al-
ready using HTMs. BugTM will choose not to make its
HTM regions nesting with existing HTM regions.

8 Related Work
Concurrency-bug failure prevention The prevention
approach works by perturbing the execution timing, hop-
ing that failure-triggering interleavings would not hap-
pen. It either relies on prior knowledge about a bug/fail-
ure [19, 27] to prevent the same bug from manifesting
again, or relies on extensive off-line training [53, 51] to
guide the production run towards likely failure-free tim-
ing. It is not suitable for avoiding production-run fail-
ures caused by previously unknown concurrency bugs.
Particularly, the LiteTx work [51] proposes hardware ex-
tensions that are like lightweight HTM (i.e., without ver-
sioning or rollback) to constrain production-run thread
interleavings, proactively prohibiting interleavings that
have not been exercised during off-line testing. BugTM
and LiteTx are fundamentally different on how they
prevent/recover-from concurrency-bug failures and how
they use hardware support.

Automated concurrency-bug fixing Static analysis
and code transformation techniques have been proposed
to automatically generate patches for concurrency bugs
[17, 18, 25, 47]. They work at off-line and rely on accu-
rate bug-detection results. A recent work [16] proposes a
data-privatization technique to automatically avoid some
read-after-write and read-after-read atomicity violations.
When a thread may access the same shared variable with
no blocking operations in between, this technique would
create a temporary variable to buffer the result of the ear-
lier access and feed it to the later read access. Although
inspiring, this previous work is clearly different from
BugTM. It does not handle many other types of con-
currency bugs, including write-after-read and write-after-
write atomicity violations and order violations. Further-
more, it relies on analyzing traces of previous execution
of the program to carry out data privatization. The dif-
ferent usage contexts lead to different designs.

Failure recovery Rollback and re-execution have long
been a valuable recovery [35, 44] and debugging [7,
20, 33, 43] technique. Many rollback-reexecution tech-
niques target full system/application replay and hence
are much more complicated and expensive than BugTM.

Feather-weight re-execution based on idempotency
has been used before for recovering hardware faults
[6, 9]. Using it to help recover from concurrency-bug
failures was recently pioneered by ConAir [55]. BugTM

greatly improved ConAir. BugTMH and ConAir use not
only different rollback/reexecution mechanisms, but also
completely different static analysis and code transfor-
mation. The setjmp and longjmp used by ConAir have
different performance and correctness implications from
StartTx, CommitTx, and AbortTx, which naturally led to
completely different designs in BugTMH and ConAir.

Recent work leverages TM to help recover from tran-
sient hardware faults [21, 24, 49]. Due to the different
types of faults/bugs these tools and BugTM are facing,
their designs are different from BugTM. They wrap the
whole program into transactions, which inevitably leads
to large overhead (around 100% overhead [21, 49]) or
lots of hardware changes to existing HTM [24], and dif-
ferent design about how/where to insert Tx APIs. They
use different ways to detect and recover from the occur-
rence of faults, and hence have different Tx abort han-
dling from BugTM. They either rely on non-existence
of concurrency bugs to guarantee determinism [21] or
only apply for single-threaded software [24, 49], which
is completely different from BugTM.

Others Lots of research was done on HTM and STM
[2, 3, 5, 11, 13, 14, 30, 36, 42]. Recent work explored
using HTM to speed up distributed transaction systems
[48], race detection [10, 54], etc. Previous empirical
studies have examined the experience of using Txs, in-
stead of locks, in developing parallel programs [38, 52].
They all look at different ways of using TM systems from
BugTM.

9 Conclusions
Concurrency bugs severely affect system availability.
This paper presents BugTM that leverages HTM avail-
able on commodity machines to help automatically re-
cover concurrency-bug failures during production runs.
BugTM can recover failures caused by all major types of
concurrency bugs and incurs very low overhead (1.39%).
BugTM does not require any prior knowledge about con-
currency bugs in a program and guarantees not to intro-
duce any new bugs. We believe BugTM improves the
state of the art of failure recovery, presents novel ways
of using HTM techniques, and provides a practical and
easily deployable solution to improve the availability of
multi-threaded systems with little cost.
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