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Abstract
In the era of the Internet of Things, users desire more
valuable services by simultaneously utilizing various re-
sources available in remote devices. As a result, cross-
device resource sharing, a capability to utilize the re-
sources of a remote device, becomes a desirable feature
to enable interesting multi-device services. However, the
existing resource sharing mechanisms either have limited
resource coverage, involve complex programming efforts
for utilizing multiple devices, or more importantly, incur
huge inter-device network traffic.

We propose DynaMix, a novel framework that realizes
efficient cross-device resource sharing. First, DynaMix
maximizes resource coverage by dynamically integrating
computation and I/O resources of remote devices with
distributed shared memory and I/O request forwarding.
Second, DynaMix obviates the need for multi-device
programming by providing the resource sharing capabil-
ity at the low level. Third, DynaMix minimizes inter-
device network traffic by adaptively redistributing tasks
between devices based on their dynamic resource usage.
By doing so, DynaMix achieves efficient resource shar-
ing along with dynamic plug-and-play and reconfigura-
bility. Our example implementation on top of Android
and Tizen devices shows that DynaMix enables efficient
cross-device resource sharing in multi-device services.

1 Introduction
In the era of the Internet of Things, a user can access an
increasing number of heterogeneous devices (e.g., smart-
phones, wearable devices, smart TVs) equipped with di-
verse, and possibly different, hardware resources (e.g.,
CPU, memory, camera, screen). As a result, such an
environment poses the need for multi-device services
which simultaneously utilize the diverse resources of the
heterogeneous devices. For instance, when watching
movies or viewing PDF files, a user can use a large TV
screen rather than a smaller smartphone screen. Also, a

user can take pictures from various angles by using mul-
tiple remote cameras. In a similar sense, a number of
recent studies [33,37,38] develop and demonstrate multi-
device services utilizing resources of multiple devices.

However, the existing cross-device resource sharing
schemes suffer from several challenges. First, using net-
work libraries explicitly imposes significant program-
ming burden on developers [2, 3, 6] as they should fol-
low a server-client model that involves careful task distri-
bution between server and client processes. Distributed
programming platform [54] may reduce the program-
ming burden; however, they still impose the burden of
efficiently partitioning an application. Second, code of-
floading [19, 21, 28] and remote I/O [11] can enable
cross-device resource sharing without the programming
burden. Unfortunately, neither of them supports all com-
putation (e.g., CPU, memory) and I/O sharing at the
same time, which limits their applicability. More impor-
tantly, the existing schemes do not optimize the place-
ment of tasks and hence suffer when running on slow
wireless networks.

Motivated by the limitations of the existing mech-
anisms, we need a new cross-device resource sharing
mechanism achieving all of the following design goals.
First, it should fully integrate the diverse resources of
different devices including CPU, memory, and I/O re-
sources. Second, it should achieve good programmabil-
ity by not exposing any cross-device resource sharing de-
tails to the application layer. Third, it should dynamically
redistribute tasks between devices to minimize the nega-
tive performance impacts of slow wireless networks.

In this paper, we propose DynaMix, a novel frame-
work to enable Dynamic Mobile device integration
for efficient cross-device resource sharing. First, Dy-
naMix fully integrates diverse resources using Dis-
tributed Shared Memory (DSM) and I/O request for-
warding; DSM integrates CPU and memory, and I/O re-
quest forwarding integrates I/O resources. Second, as
DSM and I/O request forwarding enable low-level re-
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source sharing below the application level, DynaMix
does not demand applications to be aware of multiple
devices, achieving good programmability. Third, Dy-
naMix dynamically redistributes tasks between devices
in a way that minimizes inter-device communication by
monitoring per-device resource usage and inter-device
network usage. In addition, DynaMix supports seamless
plug-and-play of remote devices by monitoring their con-
nectivity and by taking checkpoints of an application’s
states.

For evaluation, we implement DynaMix on various
Android and Tizen devices (e.g., Google Nexus, Sam-
sung Smart TV). We also introduce three multi-device
services to demonstrate the effectiveness of DynaMix:
home theater, smart surveillance, and photo classifica-
tion. The experimental results clearly show that Dy-
naMix enables efficient cross-device resource sharing by
fully integrating diverse resources and by dynamically
redistributing tasks between devices. For instance, Dy-
naMix achieves the target performance goal of home the-
ater (i.e., 24 FPS when playing HD movies), whereas
the existing mechanisms suffer from severe performance
degradation (e.g., only 8.2 FPS with request forwarding).

In summary, our contributions are as follows:
• Novel Platform. We propose DynaMix, a novel

framework to fully integrate remote resources for
efficient cross-device resource sharing.
• High Applicability. DynaMix can easily be de-

ployed to existing devices, and its low-level re-
source sharing enables easy programmability.
• High Performance. DynaMix minimizes the inter-

device communication overheads by dynamically
redistributing tasks between devices.
• High Reliability. DynaMix supports seamless

plug-and-play of remote devices, improving the re-
liability of multi-device services.

2 Background and Motivation
In the IoT environment, cross-device resource sharing is
a promising solution to satisfy various service demands
of users who can access an increasing number of het-
erogenous devices. The users can select favorable re-
sources in different devices, so that they enjoy the same
application in different ways depending on their resource
configurations.

2.1 Limitations of Existing Schemes
To enable multi-device services, researchers have pro-
posed various resource sharing schemes. We group them
into three categories and compare their tradeoffs.
I/O Request Forwarding. The I/O request forwarding
is a method to utilize remote I/O resources (e.g., cam-
era, screen, audio, sensor) by forwarding I/O requests
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Figure 1: An example setup to play a video on a remote
screen and network latency to send a single frame

to the target device, which then accesses the requested
resources on behalf of the requesting device. The re-
quest forwarding schemes can forward the I/O requests
in different layers (e.g., kernel, platform, user). For ex-
ample, Rio [11] forwards I/O requests at the kernel level
to a remote device which then performs the delivered
I/O requests. M+ [43] provides cross-device functional-
ity sharing at the platform level by forwarding IPC mes-
sages. Both schemes enable the transparent access to re-
mote I/O resources. On the other hand, user-level [2,3,6]
request forwarding schemes make programmers explic-
itly handle the remote I/O requests.

However, the applicability of the existing request for-
warding schemes is limited as follows. First, they sup-
port only I/O resources for resource sharing1. Next, they
require carefully-designed abstraction layers to support
single-device applications. Furthermore, they can suf-
fer from severe network overheads unless they access
resources in an optimized task distribution. Figure 1a
shows an example kernel-level request forwarding setup
configured to use a remote screen to play a video. Since
the local device forwards the decoded frame to the re-
mote screen, it can suffer from the severe communication
overhead as the video quality increases. Figure 1b shows
that only the lowest resolution quality can barely meet
the 24 frames per second (FPS) performance goal. Ac-
tually, moving Decoder task from the smartphone to the
TV would greatly reduce the network overheads as only
the small traffic between Loader and Decoder is ex-
posed. From this example, we can see why the resource-
aware task redistribution is important.
Code Offloading and Distributed Computation. The
code offloading [19, 21] and distributed computa-
tion [28] schemes utilize remote computation resources
(e.g., CPU, memory) by offloading performance-critical
code regions to more powerful devices. They can not
only improve the performance but also save the power
consumption of the requesting device by using a faster
CPU or exploiting the increased parallelism with more
cores. In addition, COMET [28] implements a software-
based distributed shared-memory (DSM) framework to
support efficient thread offloading among devices.

However, the applicability of the existing code of-
1Note that M+ [43] restrictively uses CPU and memory resources

for specific platform services.
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Figure 2: An example workflow of the DynaMix framework. Though programmers develop single-device applications,
users can configure their services (i.e., DynaMix devices) by selecting desired resources to access remote resources.

floading schemes is limited as follows. First, they sup-
port only computation resources for cross-device shar-
ing, which leaves I/O resources to be wasted. Next, their
migration points of non-DSM schemes are restricted to
specific function entries, similar to Remote Procedure
Calls (RPC). Also, the migrated tasks should eventually
go back to the requesting device which restricts the scope
of performance-critical task redistributions.
Distributed Programming Platform. A distributed
programming platform such as Sapphire [54] is similar
to the distributed computation scheme but provides an in-
terface to enable more flexible task migrations. Once the
tasks are deployed by the platform-defined unit objects,
the platform supports a limited form of task redistribu-
tions to reduce the performance overhead.

However, such distributed programming platform suf-
fers from the following limitations. First of all, the
resource coverage is still limited to computation re-
sources for cross-device sharing. Next, the scheme
leaves the burden of difficult multi-device programming
(e.g., device-aware task partitioning, dynamic exception
handling) to application developers.

2.2 Design Goals
Motivated by the limitations, we claim that an ideal re-
source sharing framework must satisfy the following.
High Resource Coverage. The framework should cover
both I/O and computation resources for cross-device
sharing. Various types of I/O resources enable the frame-
work to provide interesting multi-device services which
are infeasible in a single device alone due to its limited
capabilities (e.g., device’s unsupported resource types
and physical location). In addition, sharing computation
resources allows an application to run in a more efficient
way by distributing its tasks across other devices.
Single-device Application Support. The framework
should transparently support single-device applications
for multi-device services. Developing multi-device ap-
plications [2, 3, 6] using a server-client model often im-
poses an excessive burden on developers (e.g., statically
separated multiple programs). Also, this approach is
practically limited toward satisfying users’ various de-
mands and developers have to manually handle dynamic
behaviors. On the other hand, if the framework trans-
parently supports a single-device application to access
remote resources, developers no longer consider how re-
mote resources are accessed. Users create their own ser-

vice by selecting favorable resources and the framework
provides seamless mechanisms to access them, signifi-
cantly reducing the programming burden.
Resource-aware Task Redistribution. The framework
should minimize the inter-device communication over-
head with dynamic inter-device task redistributions. The
communication overhead incurred by the remote access
highly depends on dynamic factors, such as the recon-
figuration of the resource sharing, the available network
bandwidth, and runtime behaviors of tasks in an applica-
tion. Therefore, it is important to adaptively redistribute
tasks to the optimal devices to minimize the overhead.

3 DynaMix Framework
3.1 Overview
Figure 2 shows an example workflow of DynaMix frame-
work. First, programmers develop DynaMix applica-
tions. To reduce the burden of the programmers, Dy-
naMix requires neither any special programming con-
cepts nor special APIs except the underlying memory
consistency model described in §4.1. Therefore, pro-
grammers can write ordinary multi-threaded programs
on a single device with multi-thread libraries without
concerns about remote resources. This single-device pro-
gramming model of DynaMix makes developing new ap-
plications and porting existing applications easy. Sec-
ond, users can select desired resources (e.g., StorageA
and ScreenB in Figure 2) to execute DynaMix applica-
tions at runtime. DynaMix framework dynamically inte-
grates the selected resources and constructs a single vir-
tual device called a DynaMix device. Third, DynaMix
detects the network traffic and automatically redistributes
tasks across the devices to minimize the network over-
head. Within the DynaMix device, tasks (i.e., threads) of
the DynaMix applications can freely access remote re-
sources or be migrated for the optimal task redistribution.

3.2 DynaMix Operations
DynaMix framework has two basic operation models: re-
mote resource integration and resource-aware task redis-
tribution. To support the operations, users should first
make their devices DynaMix-enabled by installing two
software components on each device: resource integra-
tor and thread migrator. The resource integrator inte-
grates both computation and I/O resources (or constructs
a DynaMix device) by applying a distributed shared
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Figure 3: DynaMix architectural overview

memory (DSM) model and I/O request forwarding to-
gether (§3.2.1). The thread migrator monitors both inter-
thread communication and device connectivity, and dy-
namically redistributes threads to their optimal locations
to minimize the communication overhead (§3.2.2).

3.2.1 Remote Resource Integration
The resource integrators installed on each device col-
laboratively apply a DSM model and a kernel-level I/O
request forwarding to integrate both computation (e.g.,
CPU, memory) and I/O (e.g., display, storage) resources.
This mechanism enables DynaMix to satisfy two design
goals of ideal resource sharing: single-device program-
ming model and high resource coverage.

The resource integrator performs the integration in
three steps. First, the resource integrator collects the
information of remote resources (e.g., CPU frequency,
memory size, I/O type), broadcasted by remote resource
integrators, and makes the resources available for user
applications. Second, if an application tries to use a re-
mote resource, the resource integrator forwards the re-
quest to the target resource integrator. Third, the target
resource integrator delivers the outcome to the applica-
tion through the shared memory for computation results
or through forwarding for I/O results.

3.2.2 Resource-aware Task Redistribution
With only the I/O request forwarding, DynaMix can
incur severe inter-device communications. Therefore,
DynaMix applies a resource-aware task redistribution
mechanism by adaptively migrating threads to the op-
timal devices in a way to minimize the overall inter-
device traffic. This mechanism satisfies the design goal

of resource-aware task redistributions.
The resource integrator and the thread migrator work

together to enable task redistributions as follows. First,
the resource integrator monitors per-thread resource us-
age (e.g., CPU, network) to detect possible resource con-
tentions. Second, on detecting a contention, the thread
migrator compares tradeoffs of various thread allocation
scenarios, and finds the best one. Third, the thread migra-
tor migrates threads based on the scenario by delivering
their execution contexts to the target devices.

4 Implementation
This section describes how we implement the aforemen-
tioned core components (resource integrator and thread
migrator) and a newly introduced master demon com-
ponent to correctly orchestrate operations. The master
daemon runs on a failure-free master device on which a
user launches applications. Note that we regard failures
in the master device as user-intended ones such as device
shutdown. Figure 3 illustrates the overall architecture.

4.1 Resource Integrator
The resource integrator consists of three components: a
DSM engine, an I/O engine, and a device status monitor.
The DSM and I/O engines integrate computation and I/O
resources, respectively, and the device status monitor de-
tects intra-device resource contentions.

4.1.1 DSM Engine
The DSM engine integrates the memory regions of mul-
tiple devices into a single memory space in a DSM man-
ner. On receiving a memory access request, the DSM
engine either delivers its local memory data or forwards
a request to the destination DSM engine owning the data.
It also works with the master daemon to orchestrate these
communications for globally consistent memory man-
agement (§4.3.2). The DSM engine applies three perfor-
mance optimizations as follows. First, it adopts a lazy
release consistency (LRC) model [32] to safely delay
memory synchronization within acquire-release block,
similar to previous work [27,28]. Second, it actively per-
forms memory prefetches on detecting sequential mem-
ory access patterns. Third, it uses a page-level coherence
block to reduce the coherence overheads.

To support the page-level DSM, the DSM engine
leverages a page fault handler in Linux kernel which
manages page permissions. When an application enters
a critical section (i.e., lock acquire), the DSM engine dis-
ables write permissions of all shareable pages in the tar-
get application. In this way, the DSM engine can detect
the page modifications during a critical section. On the
exit of the critical section (i.e., lock release), it recov-
ers the write permissions. Due to the LRC model, the
memory transfer of the modified pages occurs only when
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another device newly acquires the same lock, which min-
imizes unnecessary network communications.

To further reduce the network traffic, the DSM engine
transfers only the updated contents called diffs. On a
lock release, the DSM engine generates diffs by compar-
ing the contents of original and modified pages. When
another device acquires the same lock, its DSM engine
receives the corresponding diffs from the previous lock
holder and applies them into the original pages.

4.1.2 I/O Engine
The I/O engine manages the access to local and remote
I/O resources through kernel-level request forwarding.
For the purpose, the I/O engine provides a device file
boundary for cross-device I/O sharing similar to previous
approaches [10, 11]. Mobile platforms with the Linux
kernel base (e.g., Android, Tizen) use device files as
their I/O abstraction layer because such files are device-
agnostic. In this way, DynaMix can support a wide spec-
trum of I/O resources. To forward incoming requests
from the host to a remote target device, the I/O engine in-
tercepts I/O-related system calls (e.g., open, read, write,
ioctl) and delivers them to the remote device with their
input parameters. The remote device then performs the
forwarded requests and returns the results to the host.
The I/O engine also cooperates with a platform to allow
users to access remote I/O resources transparently.

For example, to access audio peripherals (e.g.,
speaker, microphone) on a remote device, the I/O en-
gine creates virtual device files corresponding to device
files for audio peripherals (e.g., /dev/snd/pcmCxDxx,
/dev/snd/control). The host I/O engine transfers re-
quests coming through a virtual device file to the remote
I/O engine which executes the requests with the corre-
sponding original device file. Note that an audio Hard-
ware Abstraction Layer (HAL) library (e.g., tinyalsa) is
modified to access virtual device files instead of origi-
nal device files. In this way, DynaMix applications can
transparently access the remote audio peripherals.

Unfortunately, such kernel-level request forwarding
does not directly support some I/O resources (e.g., a
screen, file system) that require special management.
For example, to display frame data from a frame buffer
(/dev/graphics/fb0) in the host, the remote I/O en-
gine should cooperate with graphics APIs in a plat-
form to follow the existing graphics stack (i.e., Surface-
Flinger). In particular, to access a file on a remote stor-
age, the I/O engine works with the master daemon which
keeps a file directory containing the file metadata. There-
fore, devices joining the DynaMix device should upload
their file metadata information to the shared file direc-
tory. On receiving a file access request, the I/O engine
first checks the local file directory. If the file does not
exist, the I/O engine asks the master daemon to find the

location in the shared file directory and forwards the re-
quest to the owner device.

4.1.3 Device Status Monitor
The device status monitor periodically collects various
system information (e.g., per-thread CPU utilization,
network stall time) to detect CPU and network con-
tentions. The device status monitor is implemented as
a kernel thread, which enables more accurate resource
monitoring. It detects CPU contentions when CPUs are
fully utilized but each thread has low CPU utilization
without the existence of other bottlenecks (e.g., no I/O
wait). On the other hands, it detects network contentions
when the stalled time due to remote I/O accesses or mem-
ory synchronization exceeds a pre-defined threshold 2

(e.g., 30% in our environment). On detecting such con-
tentions, the device status monitor immediately notifies
the master daemon to initiate thread redistributions.

4.2 Thread Migrator
The thread migrator consists of four components: a
thread manager, a migration selector, a migration engine,
and a heartbeat communicator.

4.2.1 Thread Manager
The thread manager preserves various information of
running threads such as execution states, resource usage,
and locks. On resource contentions, the thread manager
calculates threads’ data communications3 (i.e., thread-
to-thread and thread-to-resource) and sends the results
to the migration selector which determines the best vic-
tim for migration and its destination device. The thread
manager also implements kernel-level locks to synchro-
nize threads across different devices. Note that we mod-
ify a user-level multi-thread library (e.g., POSIX) to ac-
cess these locks internally. The thread manager checks
with the master daemon before allowing a thread to ac-
quire a lock. The master daemon then forces the prior
lock holder to transfer the updated memory within the
acquire-release block, following the LRC model.

For reliable execution, the master thread manager
keeps execution contexts of the migrated threads as a
checkpoint, so it can consistently recover missing threads
for an unintended device disconnection. After the check-
point is created, non-migrated threads in the same ap-
plication update memory pages in a copy-on-write man-
ner to maintain original contents of shared pages. The
checkpoint is updated only when the size of copied data
exceeds a threshold (e.g., 20% of total memory size). As

2This conservative detection using the static threshold works well in
DynaMix because the migration selector (§4.2.2) considers the trade-
offs of all candidates and eventually decides the best migration target.

3DSM and I/O engine provide the information of data communica-
tions. The profiling overhead of each engine is typically insignificant
because DSM engine measures the communication only in critical sec-
tions and I/O engine merely records the size of transferred data.
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Algorithm 1: Migration Selector
input : the analyzed data communication result, C.
input : a set of local threads, threadslocal .
input : a set of remote devices, devices.
output : a tuple of a migration victim thread group to recommend,

its destination device, and the network gain.
/* Construct thread groups */
tgroups = [[T ] for thread T in threadslocal ]
do

/* Compare the amount of inter-thread comm. */
foreach (tg1, tg2) where tg1, tg2 ∈ tgroups do

if communication(tg1, tg2,C)> Dthre then
merge groups(tg1, tg2, tgroups)

end
end

while tgroups changed;
/* Find a victim thread group and a destination device

that yields the largest network gain */
(victim tg,dest dev,max gain) = (null,null,0)
foreach tg ∈ tgroups do

/* Consider devices with enough idle CPU BW */
foreach dev ∈ possible devices(tg,devices) do

net gain = estimate net gain(tg,dev,C)
if net gain > max gain then

(victim tg,dest dev,max gain) = (tg,dev,net gain)
end

end
end
return (victim tg,dest dev,max gain)

the threshold can affect memory pressure on a device,
it is experimentally decided by considering an available
memory size not to hurt other applications’ performance.

4.2.2 Migration Selector

With the information delivered by a thread manager, the
migration selector determines the best victim thread for
migration and its destination device. The estimation re-
lies on recent access patterns of an application with the
assumption that similar behaviors appear in the near fu-
ture. This assumption is reasonable in DynaMix’s target
applications which mainly access remote resources (e.g.,
repeatedly accessing a remote screen or camera) unless a
user changes the resource configuration. The migration
selector determines the best victim thread for migration
and its destination device, and notifies the information to
the master daemon as migration recommendation. Al-
gorithm 1 describes how the migration selector finds the
migration recommendation.

The migration selector first groups tightly coupled
threads as a thread group which is a minimal migra-
tion unit. Such grouping simplifies the selection pro-
cess and prevents unnecessary migration initiations. The
algorithm sets threads as a thread group if their inter-
thread communication amount is larger than a pre-
defined threshold (Dthre). Next, it finds the best victim
group and its destination device in a way to maximize the
network overhead reduction, network gain. Note that the
selected victim group is temporarily excluded in the next
target selection during a specific time period to avoid fre-
quent migration invocations on the same group. The time
period is extended using exponential backoff.

The destination device should have idle CPU band-

Smartphone

TV

Storage

Loader Decoder

Screen

50KB

Player

50KB

Group 1

10KB 5KB

Group 2

(a) Thread grouping

Status Value

CPUthread 30%
idletv 70%

Per ftv,phone 0.9
NAcqload,dec 10

lattv,phone 0.01s
BWtv,phone 100KB/s

(b) Device status

Thread Placement Tct Tdt Tgain

Group 1 on TV -0.1 s -0.15 s -0.25 s
Group 2 on TV -0.1 s 0.45 s 0.35 s

(c) Network gain estimation

Figure 4: Migration victim and destination selection

width enough to accommodate the migrated threads. To
consider the different CPU performance of devices, the
algorithm uses a scaling factor, Per fdest,source. For exam-
ple, if Per fdest,source is 0.9, the destination device’s CPU
is slower than the source’s CPU by 10%.
Calculating the network gain. The network gain Tgain
quantifies how much the thread migration will improve
the network performance in terms of the latency to trans-
fer control messages (Tct ) and data (Tdt ): Tgain = Tct +Tdt .

A lock-acquire operation is the most critical source of
the control messages, and each one incurs a three-hop la-
tency (§4.2.1). The latency between thread i and j is the
number of acquire operations (NAcqi, j) times the three-
hop latency between them (latD(i),D( j)), where D(i) and
D( j) indicate the devices running thread i and j. There-
fore, the total transfer latency is Σi∈tgΣ j∈tcomNAcqi, j ×
latD(i),D( j), where tg is the thread group and tcom is a
set of communicating threads. Then, the network gain
of control message transfer, Tct , is the latency difference
due to the migration to the destination, dst:

Tct = ∑
i∈tg

∑
j∈tcom

NAcqi, j× (latD(i),D( j)− latdst,D( j))

The data transfer latency gain can also be calculated
in a similar manner. If Di, j is the size of transferred
data between thread i and j, and BWDi,D j is the net-
work bandwidth between them, the data transfer latency
is Di, j/BWDi,D j. Then, the network latency gain of data
transfer, Tdt , is the latency difference due to the migration
to the destination, dst:

Tdt = ∑
i∈tg

∑
j∈tcom

(Di, j/BWD(i),D( j)−Di, j/BWdst,D( j))

Example Victim/Destination Selection Scenario. We
illustrate example operations of the migration selector.
Figure 4a shows the data communication status collected
by the thread manager, and Figure 4b shows the sta-
tus of devices collected by the device status monitor
and the heartbeat communicator. Figure 4a also shows
two thread groups, where the Loader and the Decoder
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thread are allocated in the same group because they heav-
ily communicate each other. As the TV has enough idle
CPU bandwidth (70%×0.9 = 63%) to accommodate ei-
ther thread group (30% for Group 1, 30%×2 = 60% for
Group 2), both groups can be migrated to the TV. Next,
the migration selector compares the network gains of mi-
grating either thread group (Figure 4c), and reports the
best group and destination (i.e., Group 2 and TV) to the
master daemon.

4.2.3 Migration Engine
After the migration selector decides the victim threads
(i.e., thread group) and its destination device, the mi-
gration engine eventually performs a thread migration.
DynaMix supports a low-overhead migration by adopt-
ing thread cloning and live migration. It minimizes the
downtime, a suspended time period during migration, by
transferring essential pages in a short time.

First, the source device sends only the memory layout
(e.g., heap, stack) of the victim threads to the destination
device which then creates their clone threads suspended
during the migration. Next, for a short period (e.g., 2
secs), the migration engine transfers the most recently
accessed pages (e.g., using the LRU-based page cache
in Linux kernel) to the destination device, while the vic-
tim threads run on the original device. Using write per-
mission faults (similar to §4.1.1), the migration engine
detects and records the updated pages during the mem-
ory transfer. After finishing (i.e., timeout) the memory
transfer, it sends the victim thread’s execution context
(e.g., process control blocks) with the updated pages in
the meanwhile. This transparent live migration (similar
to [20]) effectively hides the migration latency and min-
imizes the service downtime. Finally, the clone threads
continue their execution on the destination device after
the victim threads are suspended on the original device.

4.2.4 Heartbeat Communicator
For dynamic resource integration, DynaMix supports
seamless operations whiles devices are plugged in and
out. The heartbeat communicators periodically exchange
heartbeat messages to check the device connectivity and
share their resource status (e.g., CPU idleness, network
latency, bandwidth). The resource status information is
then delivered to the migration selector. Note that the
inter-device network latency can be estimated from the
round-trip latency of heartbeat messages.

The heartbeat communicator can detect which remote
device joins or leaves a DynaMix device. For a newly
joined device, its heartbeat communicator broadcasts
heartbeat messages. On receiving the message, the mas-
ter daemon enlists the new device in the DynaMix de-
vice. The heartbeat communicator also detects unstable
devices by monitoring the connectivity (e.g., the number
of packet drops). If a device becomes unstable, the heart-

beat communicator notifies the master daemon to initiate
migrating the threads in the device to more stable devices
to avoid thread recovery that may cause the loss of the
overall progress. For an unexpected disconnection. the
master heartbeat communicator notifies the thread man-
ager to recover from the latest checkpoint (§4.2.1).

4.3 Master Daemon
A DynaMix device has a single master daemon4 that
manages various system states (e.g., threads, locks,
memory pages, files) to orchestrate DynaMix operations
and components. The master daemon runs on the failure-
free master device, and consists of three components: a
thread directory, a page directory, and a file directory.

4.3.1 Thread Directory
The thread directory manages the global states of threads
such as thread locations, and arbitrates the thread migra-
tion process. It collects resource contention signals from
the device status monitors, and migration recommenda-
tions from the migration selectors. On receiving recom-
mendations, the thread directory selects the best migra-
tion victim and its destination to achieve the highest net-
work gain, and then manages the migration engines to
perform the designed migrations.

The thread directory also keeps the lock information
(e.g., current owner, status). To acquire a lock, each de-
vice should consult the master device’s thread directory.
To reduce the lock acquisition overhead, the thread di-
rectory can speculatively grant the lock to frequent lock
holding devices. When another device attempts to ac-
quire the lock, the thread directory reclaims the spec-
ulatively given lock. Note that when a device is dis-
connected, the thread directory immediately reclaims all
locks held by the device to avoid a deadlock.

4.3.2 Page Directory
The page directory manages the sharing state of memory
pages to orchestrate memory synchronization operations.
When a device sends a remote read request due to a page
fault, the page directory consults a sharer table which
keeps the sharer device lists of each page. It then relays
the request to one of the sharer devices which will deliver
the page to the requesting device.

On a lock release, the lock owner device reports the
address list of updated pages to the page directory. In this
way, the page directory identifies which pages should be
sent to the next owner. When another device acquires
the lock, the page directory manages its prior owner to
forward the updated pages or their diffs if the new owner
has old copies. Note that the transfers of shared pages

4Such a centralized approach enables easy management but might
limit scalability. We believe that composing multiple DynaMix devices
rather than a single large one is much preferable in our scenarios.
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Figure 5: Two example DynaMix applications

mostly occur when a device newly acquires a lock due to
LRC memory model.

4.3.3 File Directory
The file directory manages the file metadata and the
physical locations of shared files for the globally con-
sistent file view. Whenever a new device joins the Dy-
naMix device or a device updates the metadata, the mas-
ter daemon updates its file directory and then notifies the
updated information to other devices. Note that except
the device which owns a file, each device holds the file’s
read-only copy in memory.

5 Evaluation

5.1 Experimental Setup
We implemented our example DynaMix prototype which
can be easily installed on top of existing Android and
Tizen devices. For our evaluation, we installed DynaMix
on Google Nexus smartphones (i.e., Nexus 4 and 5) and
an in-house Samsung Smart TV. The smartphones run
Android 5.1.1 (CyanogenMod 12.1) with Linux kernel
version 3.4 patch, and the Samsung Smart TV runs Tizen
2.3 with Linux kernel version 3.0 patch. All devices are
connected to the same Wi-Fi network (IEEE 802.11ac)
with the maximum bandwidth of 100Mbps.

To evaluate the DynaMix prototype, we introduce
three example multi-device use cases (i.e., home theater,
smart surveillance, and photo classification) designed to
utilize both computation and I/O resources simultane-
ously. We believe users can easily make other interesting
services using our framework.
Home Theater. The home theater is a typical multi-
threaded movie player application which loads and de-
codes a movie file from a storage, shows the video on
a screen, and plays the audio through a speaker. Dy-
naMix allows users to configure resources (e.g., a large
TV, an HQ speaker) used to run the home theater. Fig-
ure 5a shows the example home theater setup with three
devices. We used FFmpeg [4] to decode video and audio
frames. Here, the home theater plays a movie with both
video and audio frames synchronized.
Smart Surveillance. The smart surveillance is another
possible service that performs image processing (e.g.,
edge detection) with preview images from a remote cam-
era. Figure 5b shows the example smart surveillance
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Figure 6: Perf. timeline of the home theater application

setup using four devices. A processing thread performs
edge detection on preview images from a selected cam-
era device, and a UI thread displays the processed image
on the screen. We used the Canny edge detection algo-
rithm [16] to detect moving objects in the service.
Photo Classification. Lastly, integrating storage re-
sources enables a shared storage system across devices
where users can observe scattered remote files (e.g.,
photos, videos) in the same hierarchy and easily ac-
cess them at any device. To evaluate the storage sys-
tem, we perform object classifications for photos scat-
tered in the connected devices. For the purpose, we
used an object classifier with the pre-trained CNN model
(SSD MobileNet [31]) using a TensorFlow [9] library.
Each thread classifies its assigned photos with the classi-
fier and reports the results to the collector thread.

5.2 Operation Models
This evaluation revisits the basic operation models of
DynaMix in §3.2. We use the multi-threaded home the-
ater with loader, decoder, and player threads. It runs on
the DynaMix device (Figure 5a) configured with a Sam-
sung Smart TV as the remote screen, an HQ speaker at-
tached to Nexus 4 as the remote audio, and a Nexus 5
smartphone as the master device. We play an HD (720p)
movie and measure its frames per second (FPS).

Figure 6 shows its performance timeline. When the
user initially plays a movie on the master device, the
home theater displays video frames on the local smart-
phone screen with the target performance of 24 FPS.
However, after the user suddenly switches the screen de-
vice to the remote TV (8 sec), it suffers from signifi-
cant FPS drops due to the huge network traffic caused
by forwarding HD video frames to the TV. Therefore,
DynaMix immediately detects a network contention (10
sec), decides the best task redistribution plan (11 sec),
and migrates the video decoder and player threads to the
TV (13 sec). Although the performance temporarily de-
grades due to the increased network consumption caused
by the migration, DynaMix quickly restores the target
performance (14 sec) with a negligible service down-
time. This experiment verifies that DynaMix enhances
the service quality with resource-aware task redistribu-
tion even in the sudden resource reconfiguration.

5.3 Service Quality
We now evaluate three use cases (i.e., home theater,
smart surveillance, and photo classification) to verify that
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Figure 8: The smart surveillance performance for Request Forwarding (RF) and DynaMix (DM)

DynaMix significantly enhances the service quality. To
show the benefit of resource-aware task redistribution,
we compare DynaMix with Request Forwarding (RF)
as a representative baseline because its resource shar-
ing mechanism conceptually includes the state-of-the-art
work (e.g., Rio [11]), which accesses a remote resource
and receives the result via a wireless network. We also
evaluate DynaMix without memory prefetching.
Home Theater. We configure a DynaMix device as ex-
plained in §5.2, and measure the throughput (i.e., frames
per second) of the home theater on the DynaMix device.
RF forwards decoded frames to the remote device be-
cause all threads run on the master device.

Figure 7a compares the throughput (FPS) of the home
theater for RF and DynaMix. While RF suffers from in-
creasing throughput degradations with the target video
quality improved, DynaMix successfully achieves the
target throughput up to the decent quality (480p) even
without memory prefetching. Enabling the prefetching
further enhances the throughput, which makes DynaMix
achieve the throughput close to the maximum for the
full HD quality (1080p). DynaMix achieves 8.3x higher
throughput than RF, while paying only 11% performance
drop from the maximum throughput for 1080p.

Figure 7b compares the network stall time of three de-
sign points to process a video frame for the various video
qualities. The network stall time means how much net-
work traffic affects the per-frame latency, and helps to
clearly investigate why RF suffers from the low through-
put. First, RF incurs severe network traffic to transfer a
decoded frame between the player thread and the remote
TV screen even for a relatively inferior quality (360p).
Moreover, RF suffers from a huge amount of network
stall as the video quality increases. On the other hand,
as DynaMix can migrate the video decoder and player
threads to the TV, the loader thread on the master de-

vice can timely transfer small-sized encoded frames to
the decoder threads on the TV. As a result, DynaMix ef-
fectively hides the network stall up to 480p, and applying
the memory prefetching further amortizes the network
overheads (i.e., near-zero network stall for 1080p).
Smart Surveillance. We configure a DynaMix device to
use a Nexus 5 device as a master device with a screen,
and three Nexus 4 devices as remote cameras, as shown
in Figure 5b. As this application allows a user to select
a target remote camera, we randomly choose one camera
as the current input feeder. RF receives preview images
from the remote camera because a processing thread runs
on the master device. We now assume that DynaMix is
equipped with memory prefetching by default.

Figure 8a compares the throughput (FPS) of the smart
surveillance for RF and DynaMix. While RF suffers
from significant throughput degradation with the preview
resolution increased, DynaMix retains moderate perfor-
mance drop as only 24.7% compared with the target
throughput for the highest preview resolution (720x480).
Figure 8b shows the breakdown of the average latency in
detecting edges of a preview image. After analyzing the
tradeoff, DynaMix migrates the edge-detector threads to
the camera devices to avoid the network contention. As a
result, it achieves far less network latency than forward-
ing raw preview images from the camera to the master
device. Note that the computation still occupies a signif-
icant portion of the total latency due to the lack of suf-
ficient computation resources. This result suggests de-
ploying faster CPUs on remote cameras so that DynaMix
can completely remove the computation overhead.
Photo Classification. We configure a DynaMix device
to use up to four Nexus 5 smartphones to construct the
shared storage system. Each device has 100MB of pho-
tos with different sizes ranging from 4KB to 10MB. A
user can choose the number of classifier threads and
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Remote File Size (B)
<10K <100K <1M <5M ≤10M

RF (%) 87.8 64.4 33.3 13.9 0
Mig. (%) 12.2 35.6 66.7 86.1 100

Table 1: DynaMix’s request forwarding (RF) vs. migra-
tion (Mig.) ratio on the photo classification

would launch threads in proportion to the total size of
photos. In our four-device configuration, we assume that
four threads classify total 400MB of photos.

We then measure the latency to perform the classifi-
cation for all photos, and compare the performance of
RF and DynaMix. We also mark the ideal performance
to identify the bottleneck. We assume that the ideal one
classifies all files on the remote devices without any net-
work overheads. Note that RF forwards remote files to
the threads running on the master device.

Figure 9 compares the performance of the total clas-
sification latency. As the number of connected devices
increases, RF suffers from high latency due to the in-
creasing network overheads incurred by forwarding re-
mote files to the classifiers. On the other hand, Dy-
naMix is barely affected by the network overheads and
thus achieves the latency close to the ideal one, even for
the four-device configuration. It is because DynaMix dy-
namically redistributes the threads across devices to min-
imizes the network overheads.

Furthermore, DynaMix can dynamically use either
of request forwarding and the adaptive task migration,
based on their tradeoffs. Note that the migrated threads
should use request forwarding during a certain time pe-
riod to prevent frequent migrations (§4.2.2). To em-
phasize the point, Table 1 shows the percentage of the
two cases in the four-device configuration. DynaMix is
likely to use the request forwarding more for small files
(i.e., <100KB) to avoid the migration overhead, whereas
it is likely to migrate threads for large-sized files (i.e.,
>1MB) to avoid the transfer overhead.

5.4 Network Sensitivity
To identify the performance impact for a given network
bandwidth, we measure the performance of the home
theater by playing an HD movie on RF and DynaMix.
For this experiment, we vary the available bandwidth
with Linux tc utility, and measure the average FPS as
the performance metric.

Figure 10 shows that RF severely suffers from its per-
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work bandwidth to play an HD video

Average Power (mW)
Master Device Screen Device Total

RF 4985.90 5151.37 10137.27
DynaMix 2956.55 6480.51 9427.06

Table 2: The power consumption of the home theater for
Request Forwarding (RF) and DynaMix

formance drops even with the maximum network band-
width available (100Mbps) and further as the network
bandwidth decreases. On the other hand, DynaMix
maintains the target 24 FPS with only 40Mbps of band-
width available. This result indicates that DynaMix ef-
fectively minimizes the network overhead by adaptively
redistributing tasks among devices.

5.5 Power Consumption
In this experiment, we measure the power consumption
of DynaMix while playing an HD movie clip, and com-
pare it against RF. To measure the impact of inter-device
traffic reduction, we use two Nexus 5 smartphones as
a master device and a screen device. We use Monsoon
power monitor [5] to measure the power consumption.

Table 2 measures the power consumption of the de-
vices. First, the master device consumes much less
power with DynaMix than RF by migrating a rendering
task to the remote device and thus reducing the network
traffic. On the other hand, the screen device consumes
little more power with DynaMix than RF by running a
relocated rendering task. As a result, DynaMix reduces
the total power by 7% mainly due to the reduced net-
work overhead. More importantly, as DynaMix’s ser-
vice quality (or performance) is 3-4 times higher than
RF (Figure 10) and their power consumptions are simi-
lar (Table 2), DynaMix’s overall energy efficiency can be
considered 3-4 times higher for the target service quality.
For further energy reduction, DynaMix may redistribute
tasks in a way to maximize the energy efficiency.

6 Discussion
Heterogeneous ISA/OS. One interesting issue related to
our work is to extend the coverage of architecture and
operating system used by DynaMix devices. However, it
is a well-known challenge to seamlessly share resources
in heterogeneous devices using different ISAs and OSes.
Therefore, existing work often assume either homoge-
neous ISA/OS [11,43] or expensive VM supports to em-
ulate the homogeneous platform [19, 21, 28].
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In this work, DynaMix also assumes homogeneous
ISA/OS environments for the most popular mobile plat-
form (i.e., Andriod/ARM). However, we showed that
its OS coverage can be easily extended to Tizen which
shares the Linux kernel base. To improve the platform
coverage further, we believe that the following directions
seem to be promising. For non-Linux based OSes (e.g.,
iOS), DynaMix may implement a compatibility layer be-
tween kernel and application by taking approaches simi-
lar to existing OS-compatibility schemes [8,12]. To sup-
port cross-ISA (e.g., ARM to x86) migrations, DynaMix
may implement a native offloading using the compiler-
assisted method [39] or dynamic binary translation [51].
Developing DynaMix Applications. To fully utilize
DynaMix’s resource-aware task redistribution, program-
mers are recommended to compose applications with
multiple threads, specialized in certain computing jobs
or I/O resource accesses. We believe this guideline is not
burdensome to programmers, as many recent program-
ming conventions also recommend similar guidelines for
optimal performance [1, 7]. To further accommodate
easy application development, DynaMix may adopt ex-
isting automatic code parallelization techniques [34, 40,
49] to maximize the effectiveness of resource-aware task
redistribution without additional programming effort.
Security Concerns. Another assumption of this work is
that a user shares resources in only user-owned trusted
devices, as existing schemes such as task offloading [19,
21, 28] and remote IO forwarding [11]. In fact, resource
sharing with untrusted devices is not common scenarios
that DynaMix considers. Therefore, the security issues
related to untrusted devices are beyond the scope of our
work. However, we believe that DynaMix can resolve
such security issues by adopting existing secure task-
offloading schemes [26,42,45,47], without a noticeable
increase in complexity.

7 Related Work
Cross-device Resource Sharing. Single system image
(SSI) [17, 18, 25] is traditional work to integrate re-
sources by creating one single system with a cluster of
machines connected to a fast and stable wired network.
However, its complex operations and huge synchroniza-
tion overheads are not suitable to the mobile environ-
ment with limited communication capabilities. Thus,
similar studies in mobile computing have focused on
how to selectively integrate remote resources. For ex-
ample, offloading schemes [19, 21, 28] offload compute-
intensive tasks to powerful servers, even for hetero-
geneous ISAs [39, 51]. Solutions to utilize other re-
sources such as GPU [22], screen [14], storage [23, 44,
46], generic I/O resources [11] and platform-level ser-
vices [43] have also been proposed. While they only
support specific types of resources, DynaMix integrates a

wide spectrum of computation and I/O resources. On the
other hand, some studies [50, 53] have optimized spec-
trum utilization sharing in cellular networks. Such tech-
niques are orthogonal to our work but we can adopt them
to more efficiently communicate between devices.
Multi-device Programming Platform. To facilitate
easy application development in the multi-device envi-
ronment, [54] allows programmers to develop unit ob-
jects and automatically deploys them across devices. [27]
also provides a DSM platform and APIs for multi-device
applications. Such platforms, however, still force pro-
grammers to explicitly partition applications with special
APIs. [24] provides a control interface to access various
home appliances with unified APIs, but it does not dis-
tribute tasks for efficient resource utilization. DynaMix,
on the other hand, enables task redistributions of single-
device applications for multi-device services, without ex-
plicit application partitioning.
Thread Migration. The thread migration is a widely
supported feature in distributed computing platforms
[13,41,52,55]. Especially, to reduce a service downtime
during migration, various VM platforms [15,29,36] have
implemented the pre-copy [20] or the post-copy [30, 35]
live migrations, depending on the timing to send execu-
tion contexts. DynaMix also applies such live migration
schemes to our environment. Researchers have proposed
an online thread distribution algorithm [48] to minimize
inter-thread network overheads. However, DynaMix re-
solves CPU contention as well as network contention,
optimized to the mobile environment.

8 Conclusion
In the era of the Internet of Things, a user can access an
increasing number of heterogeneous devices. We pro-
posed DynaMix, a novel framework to enable efficient
cross-device resource sharing by integrating diverse re-
sources and dynamically redistribute tasks. Our exam-
ple implementation on the top of Android and Tizen
devices showed that DynaMix can efficiently support
multi-device services using single-device applications.
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