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Abstract

Modern computer systems come with a large num-
ber of configurable parameters that control their behav-
ior. Tuning system parameters can provide significant
gains in performance but is challenging because of the
immense number of configurations and complex, non-
linear system behavior. In recent years, several studies
attempted to automate the tuning of system configura-
tions; but they all applied only one or few optimization
methods. In this paper, for the first time, we apply and
then perform comparative analysis of multiple black-
box optimization techniques on storage systems, which
are often the slowest components of computing systems.
Our experiments were conducted on a parameter space
consisting of nearly 25,000 unique configurations and
over 450,000 data points. We compared these meth-
ods for their ability to find near-optimal configurations,
convergence time, and instantaneous system throughput
during auto-tuning. We found that optimal configura-
tions differed by hardware, software, and workloads—
and that no one technique was superior to all others.
Based on the results and domain expertise, we begin to
explain the efficacy of these important automated black-
box optimization methods from a systems perspective.

1 Introduction
Storage is a critical element of computer systems and
key to data-intensive applications. Storage systems
come with a vast number of configurable parameters that
control system’s behavior. Ext4 alone has around 60 pa-
rameters with whopping 1037 unique combinations of
values. Default parameter settings provided by vendors
are often suboptimal for a specific user deployment; pre-
vious research showed that tuning even a small subset
of parameters can improve power and performance effi-
ciency of storage systems by as much as 9× [66].

Traditionally, system administrators pick parameter
settings based on their expertise and experience. Due to
the increased complexity of storage systems, however,
manual tuning does not scale well [87]. Recently, sev-
eral attempts were made to automate the tuning of com-
puter systems in general and storage systems in particu-
lar [71, 78]. Black-box auto-tuning is an especially pop-
ular approach thanks to its obliviousness to a system’s
internals [86]. For example, Genetic Algorithms (GA)
were applied to optimize the I/O performance of HDF5-
based applications [5] and Bayesian Optimization (BO)

was used to find a near-optimal configuration for Cloud
VMs [3]. Other methods include Evolutionary Strate-
gies [62], Smart Hill-Climbing [84], and Simulated An-
nealing [21]. The basic mechanism behind black-box
auto-tuning is to iteratively try different configurations,
measure an objective function’s value—and based on the
previously learned information—select the next config-
urations to try. For storage systems, objective functions
can be throughput, energy consumption, purchase cost,
or even a formula combining different metrics [50, 71].
Despite some appealing results, there is no deep under-
standing how exactly these methods work, their efficacy
and efficiency, and which methods are more suitable for
which problems. Moreover, previous works evaluated
only one or few algorithms at a time. In this paper, for
the first time (to the best of our knowledge), we apply
and analytically compare multiple black-box optimiza-
tion techniques on storage systems.

To demonstrate and compare these algorithms’ ability
to find (near-)optimal configurations, we started by ex-
haustively evaluating several storage systems under four
workloads on two servers with different hardware and
storage devices; the largest system consisted of 6,222
unique configurations. Over a period of 2+ years, we ex-
ecuted 450,000+ experimental runs. We stored all data
points in a relational database for query convenience, in-
cluding hardware and workload details, throughput, en-
ergy consumption, running time, etc. In this paper, we
focused on optimizing for throughput, but our method-
ology and observations are applicable to other metrics
as well. We will release our dataset publicly to facilitate
more research into auto-tuning and better understanding
of storage systems.

Next, we applied several popular techniques to the
collected dataset to find optimal configurations under
various hardware and workload settings: Simulated An-
nealing (SA), Genetic Algorithms (GA), Bayesian Op-
timization (BO), and Deep Q-Networks (DQN). We
also tried Random Search (RS) in our experiments,
which showed surprisingly good results in previous re-
search [8]. We compared these techniques from vari-
ous aspects, such as the ability to find near-optimal con-
figurations, convergence time, and instantaneous sys-
tem throughput during auto-tuning. For example, we
found that several techniques were able to converge to
good configurations given enough time, but their effi-
cacy differed a lot. GA and BO outperformed SA and
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DQN on our parameter spaces, both in terms of con-
vergence time and instantaneous throughputs. We also
showed that hyper-parameter settings of these optimiza-
tion algorithms, such as mutation rate in GA, could af-
fect the tuning results. We further compared the tech-
niques across three behavioral dimensions: (1) Explo-
ration: how much the technique searches the space ran-
domly. (2) Exploitation: how much the technique lever-
ages the “neighborhood” of the current candidate or pre-
vious search history to find even better configurations.
(3) History: how much data from previous evaluations
is kept and utilized in the overall search process. We
show that all techniques employ these three key concepts
to varying degrees and the trade-off among them plays
an important role in the effectiveness and efficiency of
the algorithms. Based on our experimental results and
domain expertise, we provide explanations of efficacy
of such black-box optimization methods from a storage
perspective. We observed that certain parameters would
have a greater effect on system performance than oth-
ers, and the set of dominant parameters depends on file
systems and workloads. This allows us to provide more
insights into the auto-tuning process.

Auto-tuning storage systems is fairly complex and
challenging. We made several necessary assumptions
and simplifications while collecting our exhaustive data,
which we detail in §3. Therefore, some of our observa-
tions might differ when applied to production systems.
However, the main purpose of this paper is not to pro-
vide a complete solution; rather, we focus on comparing
and understanding the efficacy of several popular opti-
mization techniques when applied to storage systems.
We believe this paves the way for practical auto-tuning
storage systems in real-time.

The rest of the paper is organized as follows. §2 ex-
plains the challenges of auto-tuning storage systems and
provides necessary background knowledge. §3 describes
our experimental methodology and environments. In §4
we applied multiple optimization methods and evaluated
and explained them from various aspects. §5 covers lim-
itations and future plans for our work. §6 lists related
work. We conclude and discuss future directions in §7.

2 Background
Storage systems are often a critical component of com-
puter systems, and are the foundation for many data-
intensive applications. Usually they come with a large
number of configurable options that could affect or even
determine the systems’ performance [12, 74], energy
consumption [66], and other aspects [47, 71]. Here
we define a parameter as one configurable option, and
a configuration as a combination of parameter val-
ues. For example, the parameter block size of Ext4
can take 3 values: 1K, 2K, and 4K. Based on this,

[journal mode=“data=writeback”, block size=4K, in-
ode size=4K] is one configuration with 3 specific pa-
rameters: journal mode, block size, and inode size. All
possible configurations form a parameter space.

When configuring storage systems, users often stick
with the default configurations provided by vendors be-
cause 1) it is nearly impossible to know the impact of
every parameter across multiple layers; and 2) vendors’
default configurations are trusted to be “good enough”.
However, previous studies [66] showed that tuning even
a tiny subset of parameters could improve the perfor-
mance and energy efficiency for storage systems by as
much as 9×. As technological progress slows down, it
becomes even more important to squeeze every bit of
performance out of deployed storage systems.

In the rest of this section we first discuss the chal-
lenges of system tuning (§2.1). Then, §2.2 briefly intro-
duces several promising techniques that we explore in
this paper. §2.3 explains certain methods that we deem
less promising. §2.4 provides a unified view of these
optimization methods.

2.1 Challenges
The tuning task for storage systems is difficult, due to
the following four challenges.
(1) Large parameter space. Modern storage systems
are fairly complex and easily come with hundreds or
even thousands of tunable parameters. One evaluation
for storage systems can take multiple minutes or even
hours, which makes exhaustive search impractical. Even
human experts cannot know the exact impact of every
parameter and thus have little insight into how to opti-
mize. For example, Ext4+NFS would result in a parame-
ter space consisting of more than 1022 unique configura-
tions. IBM’s General Parallel File System (GPFS) [64]
contains more than 100 tunable parameters, and hence
1040 configurations. From the hardware perspective,
SSDs [30, 53, 57, 65], shingled drives [1, 2, 32, 45], and
non-volatile memory [40, 83] are gaining popularity,
plus more layers (LVM, RAID) are added.
(2) Non-linearity. A system is non-linear when the
output is not directly proportional to the input. Many
computer systems are non-linear [16], including storage
systems [74]. For example, Figure 1 shows the aver-
age operation latency of GPFS under a typical database
server workload while changing only the value of the
parameter pagepool from 32MB to 128MB, and setting
all the others to their default. Clearly the average la-
tency is not directly proportional to the pagepool size.
In fact, through our experiments, we have seen many
more parameters with similar behavior. Worse, the pa-
rameter space for storage systems is often sparse, irreg-
ular, and contains multiple peaks. This makes automatic
optimization even more challenging, as it has to avoid
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Figure 1: Storage systems are non-linear.

getting stuck in a local optima [36].
(3) Non-reusable results. Previous studies have
shown that evaluation results of storage systems [12,66]
and databases [78] are dependent on the specific hard-
ware and workloads. One good configuration might per-
form poorly when the environment changes. Our evalu-
ation results in Section 4 show similar observations.
(4) Discrete and non-numeric parameters. Some
storage system parameters can take continuous real val-
ues, while many others are discrete and take only a lim-
ited set of values. Some parameters are not numeric
(e.g., I/O scheduler name or file system type). This adds
difficulty in applying gradient-based approaches.

Given these challenges, manual tuning of storage sys-
tems becomes nearly impossible while automatic tuning
merely difficult. In this paper we focus on automatic
tuning and treat it as an optimization problem.

2.2 Applied Methods
Several classes of algorithms have been proposed for
similar optimization tasks, including automated tuning
for hyper-parameters of machine learning systems [7, 8,
59] and optimization of physical systems [3, 78]. Ex-
amples include Genetic Algorithms (GA) [18, 34], Sim-
ulated Annealing (SA) [15, 41], Bayesian Optimization
(BO) [11,68], and Deep Q-Networks (DQN) [46,54,55].
Although these methods were proposed originally in dif-
ferent scholarly fields, they can all be characterized as
black-box optimizations. In this section we introduce
several of these techniques that we successfully applied
in auto-tuning storage systems.

Simulated Annealing (SA) is inspired by the anneal-
ing process in metallurgy, which involves the heating
and controlled cooling of a material to get to a state with
minimum thermodynamic free energy. When applied to
storage systems, a state corresponds to one configura-
tion. Neighbors of a state refer to new configurations
achieved by altering only one parameter value of the cur-
rent state. The thermodynamic free energy is analogous
to optimization objectives. SA works by maintaining the
temperature of the system, which determines the prob-
ability of accepting a certain move. Instead of always
moving towards better states as hill-climbing methods
do, SA defines an acceptance probability distribution,
which allows it to accept some bad moves in the short

Parent 1

Parent 2

Child 1

Child 2

Journal OptionBG FS

NilFS2

NilFS2

8

256

order=strict

order=relaxed

order=relaxed8NilFS2

order=strict256

NilFS2

Figure 2: Crossover in Genetic Algorithm (GA).

run, that can lead to even-better moves later on. The
system is initialized with a high temperature, and thus
has high probability of accepting worse states in the be-
ginning. The temperature is gradually reduced based on
a pre-defined cooling schedule, thus reducing the proba-
bility of accepting bad states over time.

Genetic Algorithms (GA) were inspired by the pro-
cess of natural selection [34]. It maintains a popula-
tion of chromosomes (configurations) and applies sev-
eral genetic operators to them. Crossover takes two par-
ent chromosomes and generates new ones. As Figure 2
illustrates, two parent Nilfs2 configurations are cut at
the same crossover point, and then the subparts after the
crossover point are exchanged between them to gener-
ate two new child configurations. Better chromosomes
will have a higher probability to “survive” in future se-
lection phases. Mutation randomly picks a chromosome
and mutates one or more parameter values, which pro-
duces a completely different chromosome.

Reinforcement Learning (RL) [72] is an area of ma-
chine learning inspired by behaviorist psychology. RL
explores how software agents take actions in an environ-
ment to maximize the defined cumulative rewards. Most
RL algorithms can be formulated as a model consisting
of: (1) A set of environment states; (2) A set of agent
actions; and (3) A set of scalar rewards. In case of stor-
age systems, states correspond to configurations, actions
mean changing to a different configuration, and rewards
are differences in evaluation results. The agent records
its previous experience (history), and makes it available
through a value function, which can be used to predict
the expected reward of state-action pairs. The policy de-
termines how the agent takes action, which maintains the
exploration-exploitation trade-off. The value function
can take a tabular form, but this does not scale well to
many dimensions. Function approximation is proposed
to deal with high dimensionality, which is still known
to be unstable or even divergent. With recent advances
in Deep Learning [28], deep convolutional neural net-
works, termed Deep Q-Networks (DQN), were proposed
to parameterize the value function, and have been suc-
cessfully applied in solving various problems [54, 55].
Many variants of DQN have been proposed [46].

Bayesian Optimization (BO) [11, 68] is a popular
framework to solve optimization problems. It models
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Algorithm Origin Exploration Exploitation History
Simulated Annealing

(SA)
Annealing technology

in metallurgy
Allowing moving to

worse neighbor states
Neighbor function N/A

Genetic Algorithms
(GA) Natural evolution Mutation Crossover and selection Current population

Deep Q-Networks
(DQN)

Behaviorist psychology
and neuroscience

Taking random actions
Taking actions based on
action-reward function

Deep convolutional
neural network

Bayesian
Optimization (BO)

Statistics and
experimental design

Selecting samples with
high variances

Selecting samples with
high mean values

Acquisition function &
probabilistic model

Table 1: Comparison and summaries of optimization techniques.

the objective function as a stochastic process, with the
argument corresponding to one storage configuration. In
the beginning, a set of prior points (configurations) are
given to get a fair estimate of the entire parameter space.
BO works by computing the confidence interval of the
objective function according to previous evaluation re-
sults, which is defined as the range of values that the
evaluation result is most likely to fall into (e.g., with
95% probability). The next configuration is selected
based on a pre-defined acquisition function. Both confi-
dence intervals and the acquisition function are updated
with each new evaluation. BO has been successfully ap-
plied in various areas, including hyper-parameter opti-
mization [17] and system configuration optimization [3].
BO and its variants differ mainly in their form of prob-
abilistic models and acquisition functions. In this paper
we focus mainly on Gaussian priors and an Expected
Improvement acquisition function [68].

Other promising techniques include Tabu Search [27],
Particle Swarm Optimization [39], Ant Colony Opti-
mization [20], Memetic Algorithms [52], etc. Due to
space limits, we omit comparing all of them in this pa-
per (part of our future work). In fact, as detailed in §2.4,
most of these techniques actually share similar traits.

2.3 Other Methods
Although many optimization techniques have been pro-
posed, we feel that not all of them make good choices for
auto-tuning storage systems. For example, since many
parameters of storage systems are non-numeric, most
gradient-based methods (i.e., based on linear-regression)
are less suitable to this task [29].
Control Theory (CT). CT was historically used to
manage linear system parameters [19,37,44]. CT builds
a controller for a system so its output follows a desired
reference signal [33, 43]. However, CT has been shown
to have the following three problems: 1) CT tends to be
unstable in controlling non-linear systems [48, 49]. Al-
though some variants were proposed, they do not scale
well. 2) CT cannot handle non-numeric parameters; and
3) CT requires a lot of data during the learning phase,
called identification to build a good controller.
Supervised Machine Learning (ML). Supervised
ML has been successfully applied in various domains [9,

10, 56, 81]. However, the accuracy of ML models de-
pends heavily on the quality and amount of training
data [81], which is not available or impossible to collect
for large parameter spaces such as ours.

Therefore, we feel that neither CT nor supervised ML,
in their current state, are the first choice to directly and
efficiently apply for auto-tuning storage systems. That
said, they constantly evolve and new promising results
appear in research literature [4, 67, 69, 86]; we plan to
investigate them in the future.

2.4 Unified Framework

Most optimization techniques are known to follow the
exploration-exploitation dilemma [23, 46, 68, 79]. Here
we summarize the aforementioned methods by extend-
ing the unified framework with a third factor, the history.
Our unified view thus defines three factors or dimen-
sions: � (1) Exploration defines how the technique
searches unvisited areas. This often includes a com-
bination of pure random and also guided search based
on history. � (2) Exploitation defines how the tech-
nique leverages history to find next sample. � (3) His-
tory defines how much data from previous evaluations
is kept. History information can be used to help guide
both future exploration and exploitation (e.g., avoiding
less promising regions, or selecting regions that have
never been explored before). Table 1 summarizes how
the aforementioned techniques work by maintaining the
balance among these three key factors. For example,
GA keeps the evaluation results from the last genera-
tion, which corresponds to the concept of history. GA
then exploits the stored information, applying selection
and crossover to search nearby areas and pick the next
generation. Occasionally, it also randomly mutates some
chosen parameters, which is the idea of exploration. As
shown in §4, the trade-off among exploration, exploita-
tion, and history determines the effectiveness and effi-
ciency of these optimization techniques.

3 Experimental Settings

We now describe details of the experimental environ-
ments, parameter spaces, and our implementations of
optimization algorithms.

896    2018 USENIX Annual Technical Conference USENIX Association



Param. Abbr. Values

File System FS
Ext2, Ext3, Ext4, XFS, Btrfs,

Nilfs2, Reiserfs
Block (Leaf) Size BS 1K, 2K, 4K

Inode Size,
Sector Size

IS
n/a, 128, 256, 512, 1024, 2048,

4096, 8192
Block Group BG n/a, 2, 4, 8, 16, 32, 64, 128, 256

Journal Option JO
n/a, order=strict, order=relaxed,

data=journal, data=ordered,
data=writeback

Atime Option AO relatime, noatime

Special Option SO
n/a, compress, nodatacow,

nodatasum, notail
I/O Scheduler I/O noop, cfq, deadline

Table 2: Details of parameter spaces.

Hardware. We performed experiments on two sets of
machines with different hardware categorized as low-
end (M1) and mid-range (M2). We list the hardware
details in Table 3. We also use Watts Up Pro ES power
meters to measure the energy consumption [82].

Workload. We benchmarked storage configuration
with four typical macro-workloads generated by
Filebench [25, 75]. � (1) Mailserver emulates the I/O
workload of a multi-threaded email server. � (2) File-
server emulates the I/O workload of a server that hosts
users’ home directories. � (3) Webserver emulates the
I/O workload of a typical static Web server with a high
percentage of reads. � (4) Dbserver mimics the behav-
iors of Online Transaction Processing (OLTP) databases.
Before each experiment run, we formatted and mounted
the storage devices with the targeted file system.

The working set size affects the duration of an ex-
periment [74]. Our goal in this study was to explore
a large set of parameters and values quickly (although
it still took us over two years). We therefore decided
to trade the working set size in favor of increasing the
number of configurations we could explore in a practi-
cal time period. We used the default working set sizes
in Filebench, and ran each workload for 100 seconds;
this is long enough to get stable evaluation results under
this setting. The experiments demonstrate a wide range
of performance numbers and are suitable for evaluating
different optimization methods.

Parameter Space. Since the main goal of our paper is
to compare multiple optimization techniques, we want
our storage parameter spaces to be large and complex
enough. Alas, evaluations for storage systems take a
long time. Considering experimentation on multiple
hardware settings and workloads, we decided to experi-
ment with a reasonable subset of the most relevant stor-
age system parameters. We selected parameters in close
collaboration with several storage experts that have ei-
ther contributed to storage stack designs or have spent
years tuning storage systems in the field. We experi-

Hardware M1 M2
Model Dell PE SC1425 Dell PE R710

CPU Intel Xeon single-core
2.8GHz CPU × 2

Intel Xeon quad-core
2.4GHz CPU × 2

Memory 2GB 24GB

Storage

HDD1 (73GB
Seagate

ST373207LW SCSI
drive)

HDD2 (147GB SAS),
HDD3 (500GB SAS),

HDD4 (250GB
SATA), SSD (200GB)

Table 3: Details of experiment machines.

mented with 7 Linux file systems that span a wide range
of designs and features: Ext2 [13], Ext3 [77], Ext4 [24],
XFS [73], Btrfs [61], Nilfs2 [42], and Reiserfs [60].

Our experiments were mainly conducted on two sets
of parameters, termed as Storage V1 and Storage V2.
We started with seven common file system parameters
(shown in the first 7 rows of Table 2), and refer it as Stor-
age V1. Storage V1 was tested on M1 machines. We then
extended our search space with one more parameter, the
I/O Scheduler, and refer to it as Storage V2. Storage V2
was evaluated on M2 servers. Note that certain combi-
nations of parameter values could produce invalid con-
figurations. For example, for Ext2, the journaling option
makes no sense because Ext2 does not have a journal. To
handle this, we added a value n/a to the existing range of
parameters. Any parameter with n/a value is considered
invalid. Invalid configurations will always come with
evaluation results of zero (i.e., no throughput); this en-
sures they are purged in an upcoming optimization pro-
cess. There are 2,074 valid configurations in Storage
V1 and 6,222 in Storage V2 for each workload and stor-
age device. We believe our search spaces are large and
complex enough to demonstrate the difference in effi-
ciency of various optimization algorithms. Furthermore,
many of the chosen parameters are commonly tuned and
studied by storage experts; having a basic understanding
of such parameters helped us understand auto-tuning re-
sults.
Experiments and implementations. Our experi-
ments and implementation consist of two parts. First,
we exhaustively ran all configurations for each work-
load and device on M1 and M2 machines, and stored
the results in a relational database. We collected the
throughput in terms of I/O operations per second, as re-
ported by Filebench, the running time (including setup
time), as well as power and energy consumption. To ac-
quire more accurate and stable results, we evaluated each
configuration under the same environment for at least 3
runs, resulting in more than 450,000 total experimen-
tal runs. This data collection benefited our evaluation
on auto-tuning as we can simply simulate a variety of
algorithms by just querying the database for the evalua-
tion results for different configurations, without having
to rerun slow I/O experiments. The exhaustive search
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Hardware- File Block Inode BG Journal Atime Special I/O Through-
Workload-Device System Size Size Count Options Options Options Scheduler put (IOPS)
M1-Mail-HDD1 Nilfs2 2K n/a 256 order=relaxed relatime n/a - 3,677
M2-Mail-HDD3 Ext2 4K 256 32 n/a relatime n/a noop 18,744
M2-File-HDD3 Btrfs 4K 4,096 n/a n/a relatime compress deadline 16,549
M2-Mail-SSD Ext2 4K 256 8 n/a relatime n/a noop 18,845
M2-DB-SSD Ext4 1K 128 2 data=ordered noatime n/a noop 41,948

M2-Web-SSD Ext4 4K 128 4 data=ordered noatime n/a noop 16,185
Table 4: Global optimal configurations with different settings and workloads.

also lets us know exactly what the global optimal con-
figurations are, so that we can calculate how close each
optimization method gets to the global optimum.

Second, we simulated the process of auto-tuning stor-
age systems by running the desired optimization method
and querying the database for the average evaluation re-
sults from multiple (3+) repeated runs. We focused on
optimizing for throughput in this paper. The computa-
tion cost of optimization algorithms are ignored in our
experiments. We believe our observations are applica-
ble to other optimization objectives as well. Our im-
plementations of optimization methods are mostly based
on open-source libraries. We use Pyevolve [58] for
Genetic Algorithms, Scikit-Optimize [70] for Bayesian
Optimization, and TensorFlow [76] for the DQN im-
plementation. We implemented a simple version of
Simulated Annealing, with both linear and geometric
cooling schedules. (We also fixed bugs in Pyevolve
and plan to release our patches.) Most of our imple-
mentation was done by converting storage-related con-
cepts into algorithm-specific ones. For example, for
GA, we defined each storage parameter as a gene, and
each configuration as a chromosome. For DQN we
provided storage-specific definitions for states, actions,
and rewards. The complete implementation uses around
10,000 lines of Python code.

4 Evaluations
Our evaluation mainly focuses on comparing the effec-
tiveness and speed of applying multiple optimization
techniques on auto-tuning storage systems, and provid-
ing insights into our observations. §4.1 overviews the
data sets that we collected for over two years. §4.2 com-
pares five popular optimization techniques from several
aspects. §4.3 uses GA as a case study to show that hyper-
parameters of these methods can also impact the auto-
tuning results. §4.4 takes the first step towards explain-
ing these black-box optimization methods, based on our
evaluation results and our storage expertise.

4.1 Overview of Data Sets
As per §3, our experimental methodology is to first ex-
haustively run all configurations under different work-
loads and test machines. We stored the results in a
database for future use. This data collection benefits

future experiments as we can simulate a variety of al-
gorithms by querying the database for the evaluation re-
sults of different configurations. Due to space limits, in
this section we show only 6 representative data sets out
of 18: 2 workloads on M1 and 4 devices × 4 workloads
on M2. They were picked to (1) show a wide range of
hardware and workloads’ impact on optimization results
and (2) to present more SSD results, given SSDs’ in-
creasing popularity.

Figure 3 shows the throughput CDF among all con-
figurations for each hardware setting and workload. The
Y-axis is normalized by the maximum throughput un-
der each experiment setting. The symbols on each line
mark the default Ext4 configurations. As seen, for most
settings, throughput values vary across a wide range.
The ratios of the worst throughput to the best one are
mostly between 0.2–0.4. In one extreme case, for File-
server on M2 machines and with the HDD3 device (ab-
breviated as M2-Fileserver-HDD3), the worst configu-
ration only produces 1% I/O operations per unit time,
compared with the global optimal one. This under-
lines the importance of tuning storage systems: an im-
properly configured system could be remarkably under-
utilized, and thus wasting a lot of resources. How-
ever, M2-Webserver-SSD shows a much narrower range
of throughput, with the worst-to-best ratio close to 0.9.
This is attributed mainly to the fact that Webserver
consists of mostly sequential read operations that are
processed similarly by different I/O stack configura-
tions. Figure 3 also shows that default Ext4 configu-
rations are always sub-optimal and, under most settings,
ranked lower than the top 40% configurations. For M1-
Mailserver-HDD1, the default Ext4 configuration shows
a normalized throughput of 0.39, which means that the
optimal configuration performs 2.5 times better.

Table 4 lists optimal configurations for the same six
hardware and workload settings. As we can see, optimal
configurations depend on the specific hardware as well
as the running workload. For M1-Mailserver-HDD1,
the global best is a Nilfs2 configuration. However, if
we fix the workload, change the hardware, and get M2-
Mailserver-HDD3, the optimum becomes an Ext4 con-
figuration. Similarly, fixing the hardware to M2-*-SSD
and experimenting under different workloads leads to
different optimal configurations. This proves our early
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Figure 3: Throughput CDF with different hardware and work-
loads, with symbols marking the default Ext4 configurations.

claim that performance is sensitive to the environment
(e.g., hardware, configuration, and workloads); this ac-
tually complicates the problem as results from one envi-
ronment cannot be directly applied in another.

4.2 Comparative Analysis
Many optimization techniques have been applied to var-
ious auto-tuning tasks [71, 78]. However, previous ef-
forts picked algorithms somewhat arbitrarily and eval-
uated only one algorithm at a time. Here we provide
the first comparative study of multiple black-box opti-
mization techniques on auto-tuning storage systems. As
discussed in §2.2, we focus our evaluations on a rep-
resentative set of optimization methods, and their com-
mon hyper-parameter settings, including 1) Simulated
Annealing (SA), with a linear cooling schedule; 2) Ge-
netic Algorithms (GAs) with population size of 8, mu-
tation rate of 2%; 3) Deep Q-Networks (DQN) with
experience replay [55] and ε = 0.2, where ε; repre-
sents the probability of an agent taking random actions.
4) Bayesian Optimization (BO) with Expected Improve-
ment (EI) and Gaussian prior; and 5) Random Search
(RS), which merely performs random selection without
replacement. We provide more discussion on the im-
pact of hyper-parameters in §4.3. Note that SA, DQN,
and RS experiments start with the default Ext4 configu-
ration. GA and BO require several initial configurations
(prior points), which we set to default configurations of
all seven file systems. This allows us to simulate real-
world use cases, where users often deploy their system
with the default settings (and may manually optimize
starting from the defaults). In the current experiments
we assume that changing parameter values comes at no
cost. In reality, parameters like Block Size may require
re-formatting file systems.

Figure 4 presents one simulated run of each optimiza-
tion method on M2-Mailserver-HDD3; the Y-axis shows
the throughput value of the best configuration found so
far, and the X-axis is the running time. All time-related
metrics in this paper are based on the actual running
time of evaluating each storage configuration, which is
stored in our database. This includes both setup time and
benchmarking time. We are not comparing the running
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Figure 4: Highest throughput found over time, zooming in the
Y ∈ [15 : 19] range. The blue number (15.2) on the Y-axis
shows the default, and the red one (18.7) shows the optimal.

costs (including any necessary training phases) for opti-
mization methods here, which is our future work. Fig-
ure 4 is plotted by zooming in the range of Y ∈ [15 : 19],
with the blue number (15.2) on Y-axis represents the de-
fault, while the red one (18.7) shows the global optimal.
Here we define a near-optimal configuration as one with
throughput higher than 99% of the global optimal value.
As shown in Figure 4, all five methods were able to grad-
ually find higher performing configurations, but their ef-
fectiveness and speed differed a lot. SA performed the
worst, and got stuck in a configuration with throughput
value of less than 18K IOps. DQN was able to con-
verge to a good configuration, but spent more time to
achieve that than RS. GA and BO performed best out of
these five tested optimization methods. They both suc-
cessfully identified a near-optimal configuration within
one hour. Interestingly, we observed that pure Random
Search (RS) produced better results than some other op-
timization methods; the reason is that within the search
space M2-Mailserver-HDD3, 4.5% of total configura-
tions are near-optimal. RS needs only to hit one of them
to reach good auto-tuning results.

Since exploration is one critical component of opti-
mizations (see §2.4), their evaluation results could also
exhibit some degree of randomness. To compare them
more thoroughly, we ran each optimization technique on
the same environment for 1,000 runs. Figure 5 shows
the results, which evaluate the techniques’ probability to
find near-optimal configurations, defined the same as in
Figure 4. The Y-axis shows the percentage of total runs
that found a near-optimal configuration within a certain
time (X-axis). Under M2-Mailserver-HDD3, seen in the
upper part of Figure 5, SA had the lowest probability
among 5 algorithms. Even after 5 hours, only around
80% of its runs found one near-optimal configuration,
which shows that SA sometimes gets stuck in a local op-
timum. For other optimization methods, given enough
time, over 90% of their runs converged to a near-optimal
configuration, with BO outperforming GA, and GA out-
performing DQN. RS shows the highest probability of
finding near-optimal configurations when approaching 5
hours. This is reasonable because given enough time, a
random selection will eventually hit near-optimal points.

USENIX Association 2018 USENIX Annual Technical Conference    899



20%

40%

60%

80%

100%

     

P
er

ce
n
ta

g
e 

o
f 

R
u
n
s

M2-Mailserver-HDD3

RS
SA
GA

DQN
BO

20%

40%

60%

80%

100%

 0  1  2  3  4  5

P
er

ce
n
ta

g
e 

o
f 

R
u
n
s

Time (hrs)

M2-Fileserver-HDD3

Figure 5: Comparing optimization methods’ efficacy in finding
near-optimal configurations. The Y-axis shows the percentage
of total runs (1,000) that found near-optimal configurations
within certain time (X-axis).

However, when conducting the same experiments under
M3-Fileserver-HDD3, it becomes more difficult to find
near-optimal configurations. GA and BO are still the
best, though only 65% of their runs were able to find
near-optimal configurations within 5 hours. SA, RS,
and DQN have a probability of lower than 40% to do
so, with DQN perform the worst. This is because the
global optimum under M2-Fileserver-HDD3 is a Btrfs
configuration (see Table 4). It is more difficult for opti-
mization algorithms to pick such configurations for the
following reasons: 1) Few Btrfs configurations reside
in the neighborhood of the default Ext4 configurations;
2) Fewer than 2% of all valid configurations are Btrfs
ones, which make them less likely to be selected through
mutation; 3) Only 0.2% of all configurations are consid-
ered near-optimal, compared with 4.5% in Mailserver-
HDD3.

The above results focused on finding near-optimal
configurations. However, another important aspect to
compare is the system’s performance during the auto-
tuning process. This is especially important if the tar-
geted system is deployed and online. Some random-
ness (exploration) is necessary when searching a com-
plex parameter space, but ideally optimization algo-
rithms should spend less time on bad configurations. To
compare this, in Figure 6 we plotted the instantaneous
throughput (Y-axis) over time (X-axis) for one run with
each method under M2-Mailserver-HDD3.

BO and GA are still the best two methods in terms
of instantaneous throughput. During the tuning process,
occasionally they pick a worse configuration than the
current one. However, they both possess the ability to
quickly discard these unpromising configurations. GA
achieves this by assigning the probability of surviving to
next generation based on the fitness values (i.e., through-
put). Configurations with low throughput values have
a lower chance to be picked as parents, and thus their
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Figure 6: Comparing optimization methods’ instantaneous
performance (Y-axis) over time (X-axis).

genes (parameter values) have a lower chance of appear-
ing in configurations of the next generation (i.e., “sur-
vival of the fittest”). The reason for stable instantaneous
throughputs with BO is that it uses an intelligent acqui-
sition function to guide the selection of the next genera-
tion, with the goal of maximizing the potential gain; this
makes BO less likely to choose a bad configuration. In
contrast, SA performs poorly possibly because it lacks a
history to guide the exploitation and exploration phases,
and only uses its neighborhood information (and current
temperature) to pick the next configuration. DQN shows
similar results with RS, which is likely caused by the fact
that DQN was originally designed as an agent interacting
with an unknown environment, and thus a lot of explo-
ration (randomness) occurs in the training phase [55,85].

In conclusion, our results demonstrated that the effi-
cacy of different optimization algorithms vary a lot while
applied in auto-tuning storage systems. The trade-off
among exploitation, exploration, and history plays an
important role in find near-optimal configurations effi-
ciently. However, a well-known problem for many op-
timization techniques is that their performance depend
heavily on hyper-parameter settings. Some of our ob-
servations may only apply to our specific settings and
search spaces. This paper’s main goal is not to provide
guidelines on which methods are more suitable for auto-
tuning storage systems; rather, we focused on comparing
multiple methods and understanding their efficacy under
different conditions.

4.3 Impact of Hyper-Parameters
Many optimization methods’ efficacy depend on the spe-
cific hyper-parameter settings, and choosing the right
hyper-parameters has caused headache to researchers for
a long time [7, 8]. In this section we use GA as a case
study, and show the impact of one hyper-parameter, the
mutation rate, on auto-tuning results. The mutation rate
controls the probability of randomly mutating one pa-
rameter to a different value, and aligns with the idea of
exploration, as per §2.4.

Figure 7 shows the results from 7 sets of GA exper-
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Figure 7: Impact of mutation rates on GA.

iments with different mutation rates (from 1% to 64%)
under M2-Mailserver-HDD3. Each experiment was re-
peated for 1,000 runs. It is similar to Figure 5, but with
the goal of finding near-optimal configurations whose
throughput values are higher than 99.5% of the global
optimal. This makes the optimization more challeng-
ing, as GA already performs quite well on easier tasks
(§4.2). As shown in the figure, when increasing the
mutation rate, GA has a higher probability to converge
to near-optimal configurations within a shorter time pe-
riod. This is because GA works by identifying promis-
ing combination of alleles (parameter values) for the
subset of dominant genes (parameters). We define dom-
inant parameters as those having a higher impact on per-
formance than all others. A higher mutation rate means a
higher chance of exploration, and thus finding combina-
tions of well-performing alleles for the dominant genes
within a shorter time. We explain this effect more in
§4.4. However, a mutation rate of 64% actually performs
worse than 32%. This is because in order to reach near-
optimal configurations, GA needs both exploration and
exploitation. Exploration lets GA identify processing
subspaces (i.e., combinations of certain parameter val-
ues) while exploitation helps GA search within promis-
ing subspaces. In this case, with a mutation rate of 64%,
GA spends too much time on exploration (too much ran-
domness), resulting in fewer chances for exploitation.

4.4 Peering into the Black Box
Despite some successful applications of black-box op-
timization on auto-tuning system parameters, few have
explained how and why some techniques work better
than others for certain problems. Here we take the first
step towards unpacking the “black box” and provide
some insights into their internals based on our evalua-
tion results and storage domain knowledge.

Our attempts for explanations stem from a somewhat
unexpected but beneficial behavior of GA in the experi-
ments. We found that as GA runs, there is often a small
set of alleles (parameter values) that dominate the cur-
rent population and are unlikely to change. We present
and explain this observation in Figure 8. The exper-
iment was conducted on a parameter space consisting
of 2,208 Ext3 configurations under M2-Fileserver-SSD.
The X-axis shows 5 genes (parameters) separated by red

Figure 8: Number of alleles in the first 8 GA generations, with
more frequent ones colored with darker colors.

gridlines, while one column represents one allele (pa-
rameter value). The parameters are denoted with their
abbreviations from Table 2. The Y-axis shows the gen-
eration number, and we plotted only the first 8 genera-
tions. Cells were colored based on the number of alleles
in each generation. More frequent alleles are colored
with darker colors. In the first generation, the gene’s
alleles (parameter values) were quite diverse. For ex-
ample, there were 3 alleles (1K, 2K, 4K) for the Block
Size gene, and 3 alleles (journal, ordered, writeback) for
the Journal Option gene. However, the diversity of al-
leles decreased in later generations, and several genes
began to dominate and even converged to a single allele.
For the Block Size gene, only the 4K allele survived and
other two became extinct. Since GA was proposed by
simulating the process of natural selection, where alleles
with better fitness are more likely to survive, this sug-
gests that GA works by identifying the combination of
good alleles (storage parameter values), and producing
offspring with these alleles. As shown in Figure 8, in
the 8th generation, all configurations have a Block Size
of 4K and Journal Option of writeback.

To confirm the above observations, in Figure 9 we
plotted all Ext3-SSD configurations, with one dot corre-
sponding to one configuration. Configurations are sep-
arated based on the Journal Option, shown as the X-
axis, and colored based on their Block Size. To clearly
see all points within each X-axis section, we ordered
configurations by their unique identification number in
our database. The Y-axis represents throughput val-
ues. This resulted in the formation of nine “clusters” on
the graph, each corresponding to a fixed 〈Journal Op-
tion, Block Size〉 pair. We can see that configurations
with data=ordered tend to produce higher throughput
than those with data=journal, and data=writeback pro-
duces the best throughput. This is somewhat expected
from a storage point of view, as Ext3’s more fault tol-
erant journal option (data=journal) may hurt through-
put by writing data as well as meta-data to the jour-
nal first. Moreover, among journal configurations with
data=writeback, those with a 4K Block Size turn out
to produce the highest throughput. This aligns with
our observation from Figure 8 that GA works by iden-
tifying a subset of genes that have a greater impact
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Figure 9: Scatter plot for all Ext3-SSD configurations, with
one dot corresponding to one configuration.

on performance—Block Size and Journal Option—and
finding the best alleles for them ([4K, data=writeback]).

Based on these observations, one interesting question
to ask is whether the conclusion that a subset of pa-
rameters have greater impact on performance than other
parameters, also holds for other file systems and work-
loads. To answer this question, we quantified the cor-
relation between each parameter and throughput values.
As most of our parameters are categorical or discrete nu-
meric, whereas the throughput is continuous, we took a
common approach to quantify the correlation between
categorical and continuous variables [14]. We illustrate
with the Block Size parameter as an example. Since it
can take 3 values, we convert this parameter to three bi-
nary variables x1, x2, and x3. If the Block Size is 1K,
we assign x1 = 1 and x2 and x3 are set to 0. Let Y
represent the throughput values. We then do a linear
regression with ordinary least squares (OLS) on Y and
x1, x2, x3. R2 is a common metric in statistics to mea-
sure how the data fits a regression line. In our approach,
R2 actually quantifies the correlation between the se-
lected parameter and throughput. We considerR2 > 0.6
as an indication that the parameter has significant impact
on performance, as is common in statistics [14]. The
same calculation is applied to all parameters for each
file system under M2-Fileserver-SSD and M2-Dbserver-
SSD. Parameters with the highest R2 values are colored
in yellow background in Table 5. If all R2 values are
below 0.6, we simply leave the entries blank, meaning
no highly correlated parameters were found. To find
the second important parameter, the same process is ap-
plied to the remaining parameters, but with the value of
the most important one fixed (to isolate its effect on the
remaining parameters’ importance). Taking Ext4 under
M2-Fileserver-SSD as an example, we calculate R2 val-
ues for all other parameters among configurations with
the same Journal Option. For one parameter, 3 Journal
Options lead to three R2 values; we then take the maxi-
mum one as the R2 value for this parameter. We color
the parameter with the highestR2 in Table 5 with a green
background.

We can see that the correlated parameters are quite
diverse, and depend a lot on file systems. For exam-
ple, under M2-Fileserver-SSD, the two most important

WL-Dev FS BS IS BG JO AO SO I/O

File-SSD Ext2 - - - - - - 0.68
Ext3 0.84 - - 0.90 - - -
Ext4 0.92 - - 0.99 - - -
XFS 0.94 - 0.82 - - - -
Btrfs - - - - - - -
Nilfs2 0.99 - - - - - 0.94

Reiserfs - - - 0.74 - - 0.99

Db-SSD Ext2 - - - - - - -
Ext3 0.72 - - 0.96 - - -
Ext4 - - - 0.96 0.68 - -
XFS - - - - - - -
Btrfs - - - - - - -
Nilfs2 0.62 - - - - - 0.80

Reiserfs - - - 0.99 - - -

Table 5: Importance of parameters (measured by R2), with the
most important one colored in yellow and second in green.

parameters for Ext3 (in descending order) are Journal
Option and Block Size; this aligns with our observation
in Figures 8 and 9. However, for Reiserfs, the top 2
changes to I/O Scheduler and Journal Option. Interest-
ingly, all parameters for Btrfs come with low R2 values,
which indicates that no parameter has significant impact
on system performance under M2-Fileserver-SSD with
Btrfs. Correlation of parameters can also depend on
the workloads. For instance, the two dominant param-
eters for XFS under M2-Fileserver-SSD are Block Size
and Allocation Group. When the workload changes to
M2-Dbserver-SSD, all parameters for XFS seem to have
minor impact on performance. In this paper we are iso-
lating the impact of each parameter, thus assuming that
their effect on throughput is independent. Note that the
above observations are made based on our collected data
sets, and might change on different workloads and hard-
ware. However, our methodology is generally applica-
ble. Moreover, this paper’s main goal is not to suggest
guidelines on what specific storage configurations to de-
ploy under certain workloads; rather, we focus on com-
paring multiple optimization methods and providing in-
sights into their operation.

The fact that parameters have varied impact on per-
formance can also help explain the auto-tuning results
in §4.2. Although our parameter space comes with 8
parameters, only a subset of them are highly correlated
with performance. As long as the optimization algo-
rithm identifies the “correct” combination of values for
these dominant parameters, it will be able to find a near-
optimal configuration. Similar behavior has been re-
ported in hyper-parameter optimization problems [7].
For the experiments shown in Figure 4, near-optimal
configurations take up 4.5% of the whole search space.
Random Search (RS) needs to hit only one of them to
achieve good auto-tuning results. GA’s efficacy comes
from assigning a higher chance of survival to configura-
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tions with a certain combination of values for the dom-
inant parameters. BO stores its previous search experi-
ence (history) in a probabilistic surrogate model that it
is building, which eventually encodes the combination
of dominant parameter values that can result in good
throughput values. SA does not work as well because
it lacks history information to identify the dominant pa-
rameters: it wastes time changing less useful parame-
ters and converges slowly. Similarly, DQN also spends
lots of its effort on exploring unpromising spaces, which
slows its ability to find near-optimal configurations.

5 Limitations and Future Work

In this paper we provided the first comparative analy-
sis of applying multiple optimization methods on auto-
tuning storage systems. However, auto-tuning is a com-
plex topic and more effort is required. We list some
limitations of this work and our future research direc-
tions below. � (1) We plan to extend the scope of
evaluation with more complex workloads and search
spaces. We will investigate more techniques, such as
experiment design [80], as will as the impact of algo-
rithm hyper-parameter settings [8]. � (2) We plan to im-
prove traditional optimization techniques with new fea-
tures, such as penalty functions to cope with costly pa-
rameter changes, stopping/restarting criteria, workload
identification, handling noisy and unstable results [12],
etc., which makes auto-tuning algorithms more robust to
environment changes and more generally applicable in
production systems.

6 Related Work

Auto-tuning computer systems. In recent years, sev-
eral attempts were made to automate the tuning of stor-
age systems. Strunk et al. [71] proposed to use util-
ity functions combining different system metrics and
applied GA to automate storage system provisioning.
Babak et al. [5] utilized GA to optimize I/O performance
of HDF5 applications. GA has also been applied for
storage recovery problems [38]. More recently, Deep Q-
Networks has been successfully applied in optimizing
performance for Lustre [85]. Auto-tuning is also a hot
topic in other computer systems: Bayesian Optimiza-
tion was applied to find near-optimal configurations for
databases [78] and Cloud VMs [3]. Other applied tech-
niques include Evolutionary Strategies [62], Simulated
Annealing [26, 35], Tabu Search [63], and more. How-
ever, previous work all focused on one or a few tech-
niques. One contribution of our work is to provide the
first comparative study of multiple, applicable optimiza-
tion methods on their efficacy in auto-tuning storage sys-
tems from various aspects. We also provide some in-
sights into the working mechanism of auto-tuning.

Hyper-parameter tuning. Evolutionary Algo-
rithms [59], Reinforcement Learning [6], and Bayesian
Optimization [22] have been applied to hyper-parameter
optimization for ML algorithms. Bergstra and Ben-
gio [8] found that randomly chosen trials are more
efficient for hyper-parameter optimization than trials on
a grid, and explained the cause as the objective function
having a low effective dimensionality. Another direction
of research focuses on eliminating all hyper-parameters
and tries to propose non-parametric versions of opti-
mization methods. Examples of this include GA [31,51]
and BO [68].

7 Conclusions
Optimizing storage systems can provide significant ben-
efits especially in improving I/O performance. Alas,
storage systems are getting more complex, contain
many parameters and an immense number of possi-
ble configurations; manual tuning is therefore imprac-
tical. Worse, many of those parameters are non-linear
or non-numeric; traditional linear-regression-based opti-
mization techniques do not work well for such problems.
Several efforts were made to apply black-box optimiza-
tion techniques to auto-tune storage systems, but they
all used only one or few techniques. In this work, we
performed the first comparative study, and offered the
following four contributions. (1) We evaluated five pop-
ular but different auto-tuning techniques, varied some of
their hyper-parameters, and applied them to storage and
file systems. (2) We show that the speed at which the
techniques can find optimal or near-optimal configura-
tions (in terms of throughput) depends on the hardware,
software, and workload; this means that no single tech-
nique can “rule them all.” (3) We explain why some
techniques appear to work better than others. (4) For
more than two years, we have collected a large data set
of over 450,000 data points; this data set was used in this
study and we plan to release it.
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