
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Don’t share, Don’t lock: Large-scale Software
Connection Tracking with Krononat

Fabien André, Stéphane Gouache, Nicolas Le Scouarnec,
and Antoine Monsifrot, Technicolor

https://www.usenix.org/conference/atc18/presentation/andre

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Don’t share, Don’t lock: Large-scale Software
Connection Tracking with Krononat

Fabien André
Technicolor

Stéphane Gouache
Technicolor

Nicolas Le Scouarnec
Technicolor

Antoine Monsifrot
Technicolor

Abstract

To simplify software updates and provide new services,
ISPs are interested in migrating network functions im-
plemented in residential gateways (such as DSL or Cable
modems) to the cloud. Two key functions of residential
gateways are Network Address Translation (NAT) and
stateful firewalling, which both rely on connection track-
ing. To date, these functions cannot be efficiently imple-
mented in the cloud: current OSes connection tracking
is unable to meet the scale and reliability needs of ISPs,
while hardware appliances are often too expensive. In
this paper, we present Krononat, a distributed software
NAT that runs on a cluster of commodity servers, pro-
viding a cost-efficient solution with an excellent relia-
bility. To achieve this, Krononat relies on 3 key ideas:
(i) sharding the connection tracking state across multi-
ple servers, down to the core level; (ii) steering traffic
exploiting the features of entry-level switches; and (iii)
avoiding all locks and data sharing on the data path. Kro-
nonat supports a rate of 77 million packets per second on
only 12 cores, tracking up to 60M connections. It is im-
mune to single node failures, and supports elastic work-
loads by a fast reconfiguration mechanism (< 500ms).

1 Introduction

Over the last years, network and datacenter opera-
tors have started virtualizing network functions such as
routers, firewalls or load balancers. Network Function
Virtualization (NFV) consists in replacing network func-
tions implemented in hardware appliances by software
implementations deployed on commodity servers. Thus,
major companies such as Google or cloud providers such
as Microsoft Azure rely on software implementations for
their load balancing needs [9, 29]. In these cases, soft-
ware implementations bring a number of benefits: (i) a
better scalability than hardware devices, thanks to the
use of a scale-out model, (ii) better redundancy proper-

ties and (iii) a higher flexibility, as new software can be
easily deployed while hardware is hard to change.

Because of its benefits, Internet Service Providers
(ISPs) are also embracing NFV. ISPs have expressed
a growing interest in moving network functions imple-
mented in residential gateways (also known as DSL, ca-
ble or fibre modems) to commodity servers in the core
network. In addition to the physical layer, residen-
tial gateways usually implement tunneling, stateful fire-
walling, and Network Address Translation (NAT). While
the physical layer and tunneling have to be implemented
in the gateway, there is an opportunity for moving the
firewall and NAT functions to commodity servers in the
core network. For an ISP, this brings two main bene-
fits: (i) simplifying updates by running software on a few
servers rather than millions of gateways spread across a
country, (ii) exposing the user’s local network, creating
opportunities for new services or troubleshooting.

If NFV brings many benefits to ISPs, it also comes
with two critical challenges: cost efficiency and relia-
bility. In current OSes, the performance of connection
tracking and firewalls (such as netfilter in Linux) is
such that deploying them at the scale of an ISP would
require a prohibitive amount of servers. Moreover, they
only provide limited options for fault tolerance, making
them unable to meet the reliability requirements of large
ISPs. In this paper, we tackle the problem of connection
tracking at the scale of an ISP. We introduce Krononat,
a distributed high-performance software stateful firewall
and NAT that is able to meet the requirements of an ISP.
This paper makes the following contributions:

• We highlight the features of modern CPUs
and commodity server hardware architectures
that enable the design of a resource-efficient
connection-tracking system. We propose a hard-
ware platform able to serve millions of users.

• We propose three software design principles
that enable the construction of efficient network
functions: (i) sharding the connection-tracking

USENIX Association 2018 USENIX Annual Technical Conference 453

Gateway
Physical layer
Tunneling
DHCP
Stateful firewall
NAT

Access network
IP, ATM

or Ethernet

BRAS/BNGInternet

Figure 1: Simplified view of an ISP access network

state down to the core level, (ii) using entry
level switches to steer traffic to specific cores in
multi-servers systems and (iii) avoiding all locks
on the data path. We show how these principles are
implemented in Krononat’s software architecture.

• We show that Krononat can manage 60M flows,
corresponding to an aggregated total through-
put of 70 Mpps (equivalent to 155 Gbps Simple
IMIX traffic), on just 12 cores (spread on 4 servers).

2 Background

In this section, we quickly review what NAT and stateful
firewalls are, and explain their relationship with connec-
tion tracking. We then give a simplified overview of an
ISP network to show where our software, Krononat, fits.

Connection Tracking is an essential building block
for numerous network functions. In this paper, we fo-
cus on two of them (i) NAT and (ii) stateful firewall.

We are interested in port-restricted cone NAT [35],
which is commonly implemented in residential gate-
ways. NAT is used to address the scarcity of IPv4 ad-
dresses by making several devices (e.g., laptops, smart-
phones etc.) with local IP addresses (typically in the
192.168.0.0/24 range) appear as a single IP address on
the internet, the public address of the gateway. Once a
connection between (local address; local port) and (ex-
ternal address; external port) has been established, the
NAT: (i) sends every packet from (local address; local
port) through (public address; public port), and (ii) sends
packets sent to (public address; public port) to (local
address; local port) if and only if they go to/originate
from (external address; external port). NAT thus requires
tracking connections by storing entries in a table.

A stateful firewall allows incoming traffic that belongs
to connections established by a local host and rejects all
other incoming traffic. More formally, a stateful fire-
wall allows an incoming packet for an external socket
(external address; external port) if and only if a connec-
tion between a local socket (local address; local port) and
this external socket (external address; external port) was
previously established. Just like NAT, stateful firewalls

172.17.128.1
172.17.128.2
198.51.100.1
203.0.113.1

Tunnel source IP
Tunnel destination IP

Source IP
Destination IP

Payload

Without NFV

172.17.128.1
172.17.128.2
192.168.0.3
203.0.113.1

Payload

With NFV

Figure 2: Tunneled packets on the access network

require to track established connections in a connection-
tracking table. Stateful firewalls are an essential security
measure useful for both IPv4 and IPv6 Internet access.

Residential Access Networks We depict a simplified
architecture of a residential access network on Figure 1.

The first component of an ISP network is the user’s
residential gateway. It is located at the user side and is
known as the Customer Premises Equipment (CPE). Lo-
cal devices (smartphones, laptops etc.) are connected to
the gateway either through wired Ethernet or Wi-Fi. The
gateway also connects to the ISP access network (xDSL,
Cable or Fiber). In addition to implementing the physi-
cal layer, the residential gateway performs a number of
network functions. First, the gateway attributes IP ad-
dresses to local devices through DHCP. The gateway also
restrict incoming traffic to connections established by lo-
cal devices (stateful firewall). Lastly, the gateway per-
forms Network Address Translation (NAT), so that local
devices appear as a single IP address on Internet (Fig. 1).

The access network carries customer traffic from the
DSLAM (DSL Access Multiplexer) or OLT (Optical
Line Termination) to the Broadband Remote Access
Server (BRAS). Customer traffic is tunneled using PPP,
L2TP or GRE and transported over IP, ATM or Ethernet.
Krononat uses GRE but can be easily adapted to other
tunneling protocols. For GRE, the original IP packet (in-
ner, grayed on Figure 2) is encapsulated into another IP
packet (outer, white) for routing on the access network.

The Broadband Remote Access Server (BRAS) also
named Broadband Network Gateway (BNG) collects
customer traffic in a central location. The BRAS decap-
sulates tunneled packets and forwards them to Internet
routers. With NFV, ISPs are moving network functions
from the gateway (DHCP, Firewall, NAT) to the BRAS.
Low-traffic functions (e.g., DHCP which handles a few
packets per hour) are easy to move to the BRAS. By con-
trast, for firewall and NAT, every packet must be checked
against the connection-tracking table, requiring the in-
frastructure to handle millions of packets per second.

ISP Contraints are unique and challenge existing
NAT solutions. We review the most decisive ones.
Scale: ISPs operate at a very large scale: they have
millions of simultaneously connected customers, which

454 2018 USENIX Annual Technical Conference USENIX Association

CPU 2x Intel Xeon E5-2698v4
2x 20 cores, 2.2 Ghz
2x 40 PCIe v3 lanes

Memory 128 GiB (>100 GB/s bandwidth)
NICs 10x Intel XL710 40Gbps

400Gbps Total Throughput
Price $30000

Table 1: Commodity server for high-performance NAT

translates into dozens of millions of connections. In ad-
dition, at peak hours, they forward traffic in excess of
100Gbps. Thus, any solution should be computationally
and cost efficient, i.e., the cost per user should be low.
Reliability: NAT service is crucial for Internet connectiv-
ity, as a disruption of NAT service translates into a loss
of Internet connectivity for users. An ISP NAT solution
must therefore be highly reliable, and should continue
working in the event of a node failure.
Elasticity: ISPs operate in a limited geographical area
and have a load with strong diurnal patterns [21, 12, 32,
36]. Thus, there is an opportunity to reduce the operating
cost by dynamically adapting the number of servers.

Software NAT solutions OSes offer NAT functional-
ity, usually implemented in kernel-mode (e.g., netfilter
on Linux). However, a single node is not able to handle
the load generated by all users of an ISP, and these im-
plementations do not offer easy ways to aggregate multi-
ple servers (i.e., distribute load accross servers). Projects
such as Residential Cord [2] have been started to allow
the use of multiple servers but remain impaired by the
low computational efficiency of OSes NAT implementa-
tions, which translates into a high consumption of com-
puting resources and high costs. In Residential Cord [2],
their Linux-based vSG (virtual Service Gateway) hits a
memory limit at 2000-4000 users per server. In [25],
Linux NAT achieves 200 kpps (kilo packets per second)
using a single core and 1 Mpps with 8 cores while BSDs
achieve 220 kpps using 1 core and 500 kpps using 8 cores
of an Intel Atom C2758 processor.

Appliances Vendor A Vendor B COTS server

Max. Throughput 130 Gbps 140 Gbps 400 Gbps
Max. Connections 76M 180M 1000M
List Price $65000 $200000 $30000
Price / Gbps $500 $1400 $75

Table 2: NAT Hardware Solutions

Hardware NAT solutions Major vendors offer NAT
solutions that can accommodate the traffic generated by
a high number of users. However, these solutions tend to
have a high cost (see Table 2). Also, they lack elasticity:
the addition of a device requires manual configuration.

They offer limited reliability options (often limited to
1+1 redundancy). Lastly, these solutions rely on tightly
coupled specialized processors and specialized software.
They therefore do not offer the flexibility of a full soft-
ware solution, slowing down the addition of new features
and preventing independent sourcing of hardware.

3 Designing a Software NAT

In this paper, we present Krononat, a multi-user state-
ful firewall and NAT service. Krononat is distributed on
multiple servers so that it can handle the load generated
by millions of users. Krononat groups users into shards
that are dynamically mapped on servers. Krononat en-
sures that a server failure does not cause service disrup-
tion by replicating the state for a shard on two servers (a
slave and a master). Krononat sits at the BRAS level and
thus receives IP/GRE tunneled traffic and forwards NAT-
ed packets to the Internet, and handles reverse traffic.

Our implementation builds on DPDK [1] and supports
IPv4; yet our design generalizes to IPv6. We show that
a careful software design and adequate hardware choice,
allows achieving a high performance, and thus low-cost
operations, without jeopardizing fault-tolerance.

3.1 Hardware Architecture
Current commodity servers and switches offer an op-
portunity for building NAT solutions that are competi-
tive in performance with specialized solutions. Gener-
ally, specialized network appliances offer better perfor-
mance than general-purpose servers through the use of
content addressable memories (e.g., TCAM), that are no-
tably used in routers and switches. However, maintaining
connection-tracking tables requires much more memory
than maintaining routing or switching tables: several gi-
gabytes for connection tracking tables compared to tens
of megabytes for routing tables. As TCAM are strongly
limited in size (< 100 Mb), network appliances such as
those of Table 2 must store connection-tracking tables in
DRAM. Thus, for connection tracking, network appli-
ances do not have a decisive advantage over commodity
servers, which also use DRAM. Moreover, modern CPUs
compensate memory latency by caches and out-of-order
execution.

Thus, to minimize the cost, we rely on commodity
servers equipped with a large number of Network Inter-
face Cards (NICs). Current dual Intel Xeon servers offer
40 PCIe lanes, enough to handle 10 40-Gbps NICs, for
a total throughput of 400 Gbps. For a typical Internet
workload (Simple IMIX), this corresponds to 180 Mpps.
An optimal NAT solution must therefore process at least
4.5 Mpps per core, so that one server (Table 1) can for-
ward 400 Gbps, thus saturating its NICs.

USENIX Association 2018 USENIX Annual Technical Conference 455

Access
network Internet

Server #0

Server #N

Input switch Output switch

Figure 3: Hardware architecture

3.2 Software Design Principles

Achieving 4.5 Mpps per core or 400 Gbps per server re-
quires an highly efficient implementation: each packet
must be processed in less than 500 CPU cycles. We
achieve this goal by relying on three design princi-
ples that allow an optimal exploitation of the hardware
(servers, switches and NICs).

Sharding to the core To enable a high-performance
implementation of a software NAT, we completely avoid
cross-core data sharing. To this end, in Krononat, we
use the CPU core as the unit of sharding in the overall
system, thus departing from the traditional per-server or
per-NIC sharding scheme. Hence, each CPU core can
use its own dedicated connection-tracking table to pro-
cess the traffic. Each customer is independent and we do
not require a global shared connection-tracking table.

To implement this sharding scheme, each CPU core
is associated with a NIC and exposed to the network
as a distinct entity (i.e., each core has its own dedi-
cated MAC addresses for load balancers to send traffic
to it). The load balancers can thus forward the pack-
ets to a specific core. Our approach of having a ded-
icated network entity per core allows a greater control
of the traffic-to-core mapping compared to commonly-
used hashing-based methods, available on NICs (RSS)
or routers (ECMP). This enables (i) a precise control of
traffic steering whenever a failed master is replaced by its
slave, (ii) sending upstream traffic and downstream traf-
fic, which access the same connection-tracking table, to
the same core. This cannot be achieved by Symmetrical
RSS [40], because of rewritten IP headers.

To use the hardware as efficiently as possible, we do
not dedicate one physical NIC for the input and one to
the output for each core. Instead, we use the multi-queue
capabilities of NICs (e.g., Intel VMDQ, MACVLAN fil-
ter, PCI SR-IOV) to have a dedicated queue for traffic
from/to the input switch and a dedicated queue for traf-
fic from/to the output switch1. Indeed, residential traf-

1For the sake of clarity, Figure 4 shows the NIC queues (dedicated
MAC and VLAN) to which NAT thread of high-performance nodes
are bound rather than the physical network interfaces. Despite the use
of a shared hardware infrastructure, we still provide security isolation
between the access network and the Internet. To this end, we rely on
VLANs (layer 2) and VRF (layer 3) to provide isolated networks such
that no packet can be switched/routed directly from the access network
to the Internet without going through Krononat. Hence, input/output

fic is highly assymetrical, and dedicated NICs would not
evenly use their RX and TX capabilities. Similarly, while
a single core can handle the traffic of a 10 Gbps NIC,
multiple cores are needed to handle the traffic of 40+
Gbps NICs. Thus, we also use the multi-queue capa-
bilities of the NIC to expose one set of queues/identities
per core to implement sharding to the core.

Sharding to the core is therefore highly beneficial for
two main reasons: (i) it obviates the need for cross-core
synchronization and (ii) it naturally provides NUMA-
awareness, as a core never accesses data belonging to
another core, and thus only accesses data on his socket.

Switch-based hardware load balancing To handle
more than 400 Gbps of traffic, we use several servers.
This requires balancing the traffic accross cores and
across servers. To balance the load, we rely on the IP
routing capabilities2 of the input/output switches (Fig-
ure 3) which (i) remain more efficient than software for
routing packets, especially when routing tables are small,
(ii) are already present in the system for interconnection.
Each shard has its own tunnel endpoint IP, and a dedi-
cated subnet of public IPs. For each shard mapped to
a core, a route to this core for the corresponding tunnel
endpoint IP is declared to the input switch (to receive
upstream traffic); and a route to this core for the corre-
sponding subnet of public IPs is declared to the output
switch (to receive downstream traffic). These routes are
declared to the switches via BGP. Furthermore, all cores
of Krononat thus act as IP routers by having their own
IP/MAC addresses and implementing ARP protocol. Our
sharding management is detailed in Section 3.4.

This approach avoids dedicating any CPU resources
to traffic steering by leveraging existing switches. Also,
it allows a more precise traffic steering than hash-based
methods (e.g., ECMP). This precise control is needed by
stateful network functions (e.g., NAT) that (i) require all
packets of a connection to be handled by single core, (ii)
have asymmetric headers for upstream and downstream,
(iii) require controlling the route after a failover (transi-
tioning from the master to the slave).

No locks on data path Our sharding approach ensures
that threads running on different cores can forward or
reject traffic without accessing data structures on other
cores. This approach removes the need to lock the ta-
ble to process traffic. Yet, maintenance or fault tolerance
traditionally require locking data structures. For fault tol-
erance, connection-tracking tables need to be copied to
other nodes. Traditionally, this is done by locking the ta-
ble to ensure it is not modified while it is being copied.
Because lock acquisition is costly and may block pro-

switch designate the input/output VRF on the physical switch.
2All modern entry-level 10/40 Gbps switches offer IP routing capa-

bilities for routing tables of moderate size.

456 2018 USENIX Annual Technical Conference USENIX Association

NAT thread

NAT thread

. . .

OS Mgmt thread

. . .

NAT thread

NAT thread

. . .

OS Mgmt thread

Zookeeper

OS BGP Daemon

Zookeeper

OS Shard. Manager

Zookeeper

OS

M high-performance nodes 3 support nodes

Figure 4: Software architecture

cessing on a given core, locking the table would strongly
impair forwarding and is therefore not tractable in our
use case. Therefore, we do not use a any lock on the data
path. This requires a careful design of data structures and
fault tolerance mechanisms, detailed in Section 3.5.

3.3 Software Architecture
We now present how these principles are applied to our
system. Krononat comprises software components of its
own (Figure 4, gray background) and uses external com-
ponents (Figure 4, white background). The main func-
tions of each component are detailed below.

NAT Thread The NAT Thread is the central compo-
nent of Krononat and implements the core functionality
of a NAT, as described in Section 2. Each NAT thread
is pinned to a CPU core, and has the exclusive use of a
set of NIC queues for output and input that it reads in
poll-mode. The input switch forwards outbound traffic
(GRE-encapsulated) to one input queue of a given NIC
and server, depending on the Tunnel destination IP (Fig-
ure 2), which is used as the shard identifier (Section 3.2).
The NAT thread associated with this input queue receives
the traffic, and decapsulates GRE packets. It then for-
wards traffic to its output queue, and creates entries in
its connection-tracking table for new connections. Con-
versely, each NAT thread receives inbound traffic for-
warded by the output switch on its output queue. In-
bound traffic is forwarded if and only if it belongs to a
connection that has an entry in the table.

Management Thread The management thread com-
municates with Zookeeper, a strongly-consistent datas-
tore and synchronization service that we use to coordi-
nate all instances of Krononat. It fetches instructions
(e.g., master/slave roles for NAT threads) and subscribes
to asynchronous events sent by Zookeeper. This cannot
be done directly by the NAT threads, because they can-
not be interrupted for performance reasons. The man-
agement thread is also reponsible for most bookkeeping
operations: initialization, statistics collection, etc. It syn-
chronizes with the NAT thread using only non-blocking
primitives (i.e., reads and writes to shared memory with-
out locking nor spining).

Sharding Manager To scale to a large number of cus-
tomers, we divide the load between multiple servers. The
sharding manager allocates several shards on each core
of each server based on the load of machines and on the
traffic. The sharding manager does not directly commu-
nicate with the management thread. Instead, it writes the
requested shard allocation in Zookeeper. The manage-
ment thread reacts to updates in Zookeeper and propa-
gates the allocation changes.

Zookeeper In Krononat, Zookeeper is used as central
point for storing configuration (shard allocation, network
configuration, addressing configuration, routes, etc.) and
communicating configuration changes between servers.
The use of Zookeeper for storing configuration data
greatly simplifies the design of Krononat. For instance,
the sharding manager does not need to persist shard al-
location by itself. It can be easily restarted, or moved
to another server and recover its state from Zookeeper.
Similarly, when we start a new Krononat instance to han-
dle more load it can load the global system configuration
thanks to Zookeeper. We also use Zookeeper as a dis-
tributed lock service, and for detecting server failures.

3.4 Sharding and Fault tolerance
Shard In Krononat, a shard is a fixed-size group of
users. In our experiments, we use shards of 256 users,
but this number can be adapted. Users in the same shard
share the same Tunnel destination IP, but have different
Tunnel source IPs (Figure 2). In our experiments, we
simulate 16384 users in 64 shards. Each user has a tunnel
source IP in the range 172.17.0.0/18, and users belonging
to the same shard share an address in the 172.16.0.0/26
range. Users of shard 0 have a source IP in 172.17.0.0-
255 and share the tunnel destination IP 172.16.0.0; users
of shard 1 have a source IP in 172.17.1.0-255 and share
the tunnel destination IP 172.16.0.1; etc. One could also
use the 10.0.0.0/8 range to support 4096 shards of 4096
users (i.e., a total of 224 or 16M users).

Shard allocation Based on the traffic in each shard
and on the load of each machine, the sharding manager
allocates several shards to each NAT thread running on
each CPU core of each host. The sharding manager then

USENIX Association 2018 USENIX Annual Technical Conference 457

writes the shard allocation in Zookeeper. In order to steer
the traffic to the right core, we leverage IP routing. Each
core has its own IP and MAC addresses. Whenever a
given core is a master for a given shard, the routing ta-
bles are updated so that the given core becomes the de-
fault gateway for reaching all subnets associated to the
given shard. Each Krononat core thus appear as an inde-
pendent router in the network. This update is performed
by another process that reads the routes in Zookeeper and
announces them via BGP to the switches. For instance,
if shard 1 has been allocated to a NAT thread (i.e., core)
whose input NIC has the IP 172.27.0.1 and output NIC
has the IP 127.28.0.1, the BGP will instruct the input
switch to route traffic with destination IP 172.16.0.1/32
to 172.27.0.1, and the output switch to route traffic with
destination 172.16.1.0/24 to 172.28.0.1. In this way, traf-
fic for shard 1 will be received by the appropriate thread.

Fault tolerance NAT threads store their connection-
tracking tables in RAM, which means they will be lost
in case of hardware or software failures. One solution
would be to persist the connection tracking table to a
database. However, this solution would induce a high
recovery time. In addition, the database would need to
support a very high insertion rate, as each connection
establishment results in an insertion. Database systems
typically do not support such a high insertion rate
because of the consistency and durability guarantees
they offer. Instead, we choose to replicate the connec-
tion tracking tables in RAM, on another node. More
precisely, each NAT thread is declared as master for a
set of shards, and as slave for a distinct set of shards.
The master NAT thread for a shard receives the traffic,
updates its connection tracking table if necessary and
forwards or rejects traffic. The master NAT thread for
a given shard also forwards connection tracking table
updates to the slave NAT thread of this shard. The slave
NAT thread record these tables updates into its own
connection tracking table so that entries are replicated.
If the server on which the master NAT thread of the
shard runs fails, the slave NAT thread becomes the
master NAT thread for the shard, and a new slave NAT
thread will be assigned for the shard. Server failures
are detected using Zookeeper, and shard re-allocations
are performed by the sharding manager. We design an
ad-hoc replication protocol that allows incremental repli-
cation of the connection tracking table without locking it.

3.5 NAT Thread Implementation
The NAT thread continuously polls the NIC queues. To
increase efficiency, it processes batches of packets using
a run-to-completion model (i.e., packets are not queued
except for sending on the network) [1, 33]. It also batches
lookups in the connection-tracking table [43, 19].

Hash table Each NAT thread has a single connection-
tracking table for all shards it manages either as a mas-
ter or as a slave. The connection-tracking table is com-
posed of two hash tables: one hash table for outgoing
traffic and one hash table for incoming traffic. The out-
going traffic hash table maps 6-tuples identifying a con-
nection (customer, protocol; private source ip; private
source port; destination ip; destination port) to a 2-tuple
(public source ip; public source port) used to rewrite out-
going packets. Symmetrically, the incoming traffic hash
table maps 5-tuples (protocol; public source ip; public
source port; destination ip; destination port) to a 3-tuple
(customer, private source ip; private source port) used to
rewrite incoming packets. We use Cuckoo++ hash ta-
bles [19] to store the incoming traffic table and the out-
going traffic table. Cuckoo hash tables store an entry at
either one of two locations h1(k) or h2(k), where h1 and
h2 are two distinct hash functions, and k the key of the
entry. Therefore, a key lookup takes at most two mem-
ory accesses, allowing Cuckoo hash tables to support a
very high lookup rate. This is key requirement in Kro-
nonat, as every packet triggers a table lookup. Cuckoo++
hash tables augment Cuckoo hash tables with a small
cache-resident bloom filter that avoids checking the sec-
ond location h2(k) in most cases including for negative
lookups. This allows Cuckoo++ hash tables to maintain
their high performance in presence of large volumes of
invalid traffic or Denial-of-Service (DoS) attacks. Fur-
thermore, to support replication without blocking traffic
processing in the NAT thread, Cuckoo++ provide spe-
cific iterators, that support interleaving of updates and it-
eration steps by guaranteeing that all entries are iterated
over at least once during a full hash-table scan.

Replication As ISPs need to provide uninterrupted In-
ternet access, fault tolerance is a fundamental prereq-
uisite for any network function deployed in their core
network. Consequently, Krononat must support single
server failures. We achieve this through replication of
the connection-tracking entries. The master NAT thread
for a shard receives all traffic belonging to the shard,
and updates its hash tables accordingly. The slave NAT
thread of a shard maintains a replica of all connection-
tracking entries corresponding to that shard, so that it
can take ownership of the shard if the master NAT thread
fails. A naive approach for replication would be to lock
the hash table on the master NAT thread, and dump the
whole data structure on the network. This naive approach
has two major defects that make it intractable: (i) lock-
ing the hash tables means stopping accepting new con-
nections, which is obviously impossible for availability
reasons, (ii) constantly dumping the whole data struc-
ture on the network would generate a high replication
traffic, and also consume CPU cycles. To address both
issues, we design a more elaborate replication proto-

458 2018 USENIX Annual Technical Conference USENIX Association

col that has two modes: (i) initial replication, where
we transfer the entire contents of the hash tables with-
out locking them thanks to the aforementionned itera-
tors in Cuckoo++, and (ii) streaming replication, where
the master NAT thread sends incremental updates to the
slave NAT thread, so as to reduce network traffic.
Initial replication When a NAT Thread becomes a
slave for a shard, it has no knowledge of the connection-
tracking entries the master for that shard has: the slave
NAT thread needs to receive a full copy of the entries
for that shard. This is achieved by the initial replica-
tion mode. In this mode, the master NAT thread iter-
ates over hash tables entries, serializes them, and sends
them over the network to the slave NAT thread. Note that
this initial replication is not performed by an additional
thread, it is performed by the NAT thread itself to avoid
locking the table. After processing a batch of packets,
the master NAT thread iterates over a few entries, and
sends them over the network. It then processes the next
batch of packets and iterates over the next group of en-
tries. This procedure is repeated until the whole table has
been replicated. This interleaving ensures that the initial
replication does not preclude packet processing. When
a packet is processed, the master NAT thread may up-
date hash table entries (when creating new connections).
Therefore, the hash table may be modified in the mid-
dle of the initial replication. To support this, Cuckoo++
iterators support modifications. More specifically, we as-
sociate a modification bit with each table entry. When the
iterator sees a table entry, the modification bit is cleared.
When a hash table entry is modified, the modification bit
is set. The initial replication repeatedly iterates over en-
tries as long as it sees a modified entry to guarantee that
no unseen modified entries is left. To accelerate this pro-
cess, multiple levels of modification bits are used to skip
entire groups of unmodified entries.
Streaming replication When the initial replication is
completed, the master NAT thread switches to streaming
replication mode. In streaming replication mode, when-
ever it makes a change to the hash tables, the NAT thread
inserts a description of this change into a changelog. Af-
ter processing a batch of packets, the master NAT thread
extracts remaining entries from the changelog, serializes
them and sends them to the slave NAT thread. Because
it does not constantly iterate over the hash tables, the
streaming replication mode uses less CPU cycles and less

Server CPU Krononat (10G port) Traffic gen.
1x E5-2695v3 1 2
1x E5-2695v3 3 2
1x E5-2643v3 4 0
2x E5-2690v4 4 4

Table 3: Allocation of servers in our testbed

network bandwidth than the initial replication mode. The
replication protocol uses acknowledgments and retrans-
missions and in case of failure the slave is declared out
of sync and must go through initial replication again.

4 Evaluation
Implementation Krononat (see Fig 4) is implemented
in C (30K lines – gcc 5.4) on top of DPDK 17.08. The
sharding manager is implemented in Scala (2K lines).
The BGP part consists of a 500 lines wrapper between
ZooKeeper 3.4.8 and GoBGP 1.18.

Hardware Our hardware testbed consists of four Dell
R730 servers with varying CPU configurations (Table 3).
They are configured in performance mode, with Turbo-
boost disabled and equipped with Intel X540 10Gbps
dual-port NICs. They are interconnected by an entry-
level 10Gbps Alcatel OS6900-T20 switch, which is con-
figured to operate as an IP router with multiple VLANs
and VRFs (Virtual Routing Functions), so as to pro-
vide isolation between access, Internet, and manage-
ment networks. Our testbed uses addresses in the range
172.16.0.0/12 so as not to conflict with the enterprise
networks. This slightly limits the range of some pa-
rameters but our experiments show that those parameters
have very little impact on performance anyway (Subsec-
tion 4.1). The hardware of the testbed is shared between
Krononat and a traffic generator that we designed. Ta-
ble 3 shows the mapping of 10G NIC ports.

Traffic Generator Testing the limits of Krononat re-
quires generating a very large amount of traffic (tens of
Mpps). We did not find a traffic generator that is able
to generate such a load by utilizing several nodes, so we
designed our own traffic generator to test Krononat. Our
traffic generator builds upon DPDK, similarly to Moon-
Gen [10] or pkt-gen [39], and borrows principles from
Krononat such as (i) share-nothing, (ii) sharding to the
core, (iii) switch-based hardware load balancing. It gen-
erates stateful traffic and keeps track of established con-
nections. Each 10 Gbps NIC allocated is managed by
a group of 4 threads (RX/TX Access/Internet). All in-
stances (1 per server) emulate independant users and syn-
chronize using Zookeeper (results, parameters, phase).
This scale-out design allows a close to linear scalability
and generating traffic beyond the scale of one server.

Metrics In our evaluation, we measure:
Rate for Connection initialization correspond to the rate
at which packets (UDP) of new flows/connections are
processed (100% upstream traffic). On actual Internet
traffic, connection initialization packets represent 1-5%
of the traffic [37, 18, 24, 5, 38, 31].
Rate for Established connections is the rate at which
packets (UDP) belonging to existing flows are processed
by the system. Our objective is to exceed 4.5 Mpps. We

USENIX Association 2018 USENIX Annual Technical Conference 459

0 500 1,000
0
2
4
6
8

10

(inner) packet size

M
pp

s

0k 5k 10k 15k
0
2
4
6
8

10

number of users

M
pp

s

0M 2M 4M 6M
0
2
4
6
8

10

number of connections

M
pp

s

Connection initialization Established connections Line Rate @ 10 Gbps (bound)

Figure 5: Performance impact of parameters in single-core case for Krononat (raw performance) (1 server)

5 10
0

10

20

30

cores

M
pp

s

(a) Connection initialization

5 10
0

20
40
60
80

100

cores

M
pp

s
(b) Established connection

Krononat (Raw)
Krononat (Zero-loss)

Krononat (Raw - No rep.)
Krononat (Zero-loss - No rep.)

Linux (Raw)
Objective (10 Gbps/core IMIX)

Figure 6: Performance (Mpps) in the multi-core case (4 servers).

measure for 50% upstream and 50% downstream traffic.
They are reported [7] as: (i) raw is the rate of traffic

going through the system while flooding it; (ii) zero-loss
is the rate which can be sustained without losing pack-
ets during 15 seconds. The zero-loss rate is only relevant
for systems with real-time guarantees/non-blocking im-
plementations (i.e., not for Linux-based NAT).

We also evaluate the duration of service interruption
whenever a server leaves the system or crashes.

4.1 Influence of parameters
First, we evaluate the impact of a few parameters on Kro-
nonat performance. We report the raw rate for both con-
nection initialization and established connections on Fig-
ure 5. Performance is stable at approximately 8 Mpps for
established connections regardless of the number of users
or connections. The performance is reduced as the packet
size is increased: this is because the system achieves line
rate (10 Gbps) and is therefore NIC-bound rather than
CPU-bound. This shows the high efficiency of Krononat.

As we have shown that the packet size, number of
users and number of connections have little to no impact
on performance, we use fixed values in the remainder of
this section: (i) 64-bytes packets, (ii) 16k users, (iii) 5M
connections per core. We use the lowest packet-size (64
bytes without GRE encapsulation) to remain CPU-bound
since we aim at evaluating the CPU-efficiency. This also
allows our traffic generator, which is allocated only 8
NIC ports, to generate as many packets as necessary to
evaluate Krononat on 12 cores without being limited by
the speed of network interfaces.

4.2 Scalability
We benchmark Krononat with multiple cores, on all 4
testbed servers. Krononat is evaluated both with and
without replication to show the overhead of replication.
To give an idea of the achieved performance, we also plot
performance of a trivial NAT system that uses the Linux
kernel implementation and Linux namespaces3. We also
display our performance objective: 400 Gbps/server or
4.5 Mpps per core, which enables the use of dense
servers (i.e., fitted with as many NICs as CPUs support).

The results are reported on Figure 6 using 1 to 12
cores, averaged over 10 runs with random placement of
NAT threads on our 4 servers. Krononat on 12 cores
achieves 15 million connection initialization per second,
with replication enabled (halved from Krononat without
replication). For established connections, Krononat with
replication is able to process packets at 77 Mpps on 12
cores4. The penalty when measuring performance with
the zero-loss constraint is limited.

Krononat offers much higher performance than the
Linux-based NAT. For established connections, Linux
only achieves 0.6 Mpps on 1 core and scales to 2.9 Mpps
on 12 cores. This is because Linux is a general-purpose
system not dedicated to multi-tenant NAT; thus its design

3To maximize Linux performance, we take care to avoid extreme
settings, and limit the experiment to 32 users (i.e., 32 namespaces) and
50000 flows. We distribute traffic accross cores of our Intel Xeon E5-
2690v4 using RSS in a NUMA-aware way (i.e., on cores on the same
socket as the NIC). Despite these advantageous settings, Linux perfor-
mance remains low compared to Krononat.

4The performance for established connections without replication
is lower as in this case, the sharding manager is not able to rebalance
the load by swapping roles between master and slave cores.

460 2018 USENIX Annual Technical Conference USENIX Association

0 200 400 600 800 1,000
0

20
40
60
80

100

Service interruption (ms)
for graceful departure

O
cc

ur
en

ce
s

0 2,000 4,000 6,000
0

50

100

150

Service interruption (ms)
for failure

O
cc

ur
en

ce
s

Failure Recovery
Load Rebalancing

Figure 7: Service interruption due to failure or departure injection (4 servers)

favors configurability and generality over performance.
This shows that Linux is unusable as an ISP-grade NAT
solution. This is even more salient considering that
Krononat also provides by default distribution accross
servers and fault-tolerance. Krononat performance is
well above our objective, reaching 6.3 Mpps/core when
run on 12 cores, with replication enabled. These exper-
iments show the excellent scalability obtained thanks to
our scale-out architecture, consistently with the scalabil-
ity of the underlying hash-table [19].

Running such experiments proved challenging: (i) net-
work requirements inhibits the use of the cloud; (ii)
commodity networking remains relatively expensive for
large-scale experiments, (iii) simulation or virtualization
overhead would make performance evaluation of such
DPDK-based implementation irrelevant. We were thus
limited by the networking equipment that we shared be-
tween traffic generation and Krononat. Nonetheless, our
experiments involve four real servers and up to 12 cores,
reaching up to 76 Mpps (6.3 Mpps/core), which is well
above our target of 4.5 Mpps/core. The scale of these ex-
periments also show the interest of using sharding to the
core and hardware-based traffic steering to implement
stateful multi-core multi-server traffic generators.

4.3 Service interruption duration
Beyond its high-performance and scalability, a major
feature of Krononat is fault tolerance. As the state for
each shard is continuously replicated on a master and a
slave core, Krononat can recover from a server failure
without disrupting service. Replication is also useful for
dynamically adapting the number of servers (e.g., grace-
ful departure) and rebalancing the load (i.e., swapping
master and slave). We inject both graceful departures and
hard failures and measure the durations of service inter-
ruptions in both cases. We report the durations of service
interruptions due to recovery (i.e., the slave replaces the
departed master – red) and to load-rebalancing (i.e., mas-
ter and slave swap their roles – blue) on Figure 7.

Service interruptions due to graceful departure (i.e.,
the server disconnects gracefully from Zookeeper) re-
main below 500ms. This corresponds to the delay for the
sharding manager to compute a new allocation, which
is applied to NAT thread; and to announce routes via

BGP. In the case of hard failures (i.e., the server does
not disconnect gracefully from Zookeeper), the detec-
tion is left to ZooKeeper heartbeat. This increases the
recovery delay to 4-7 seconds. This recovery is auto-
matic, without any human intervention, ensuring that the
system is highly available. Finally, interruptions due to
load rebalancing last less than 100ms. Indeed, to rebal-
ance the load, the sharding manager swaps roles between
some masters and slaves. In this case, the interruption is
mainly the delay for BGP to apply the new routes.

In all cases, these durations are low enough so that
clients retransmit lost packets without declaring connec-
tions dead. This ensures that end users are not impacted.
We performed real-life experiments by redirecting our
own Internet traffic through Krononat for a few hours.
The interruptions due to injected failures remained un-
noticeable in web browsing and video streaming usages.
Indeed, short interruptions are hidden by software buffer-
ing or retransmission, thus avoiding user-visible errors.

4.4 Recovery from failure
To further illustrate the system reaction to a crash, we re-
port how Krononat (4 NAT threads on 4 servers) reacts
step-by-step when one of the servers is electrically pow-
ered down. An electrical failure is triggered at the 7th
second. For a short duration, approximately 16 shards
have lost their master, and 13 have lost their slave. The
service is thus interrupted for 16 shards. The system be-
comes fully available again within 200ms (i.e., no more
shards in slave only mode). Shards that lost their slave or
master are allocated a new slave that is being initialized
(20th to 35th second). This initialization generates lim-
ited replication traffic (< 65 Mbps) and has a very limited
impact on the performance: traffic is still processed at
approximately 24 Mpps. The performance drops slightly
during recovery because the master must read and trans-
mit its state to the new slave, and the new slave must
record this state. The performance drop is limited thanks
to the absence of locking of the connection-tracking ta-
ble allowed by our replication protocol that allows initial
replication to occur without freezing state. Without any
human operator intervention, at the 35th second, the sys-
tem becomes fully tolerant to failures again: all shards
have a master and a synchronized slave.

USENIX Association 2018 USENIX Annual Technical Conference 461

0
20
40
60

Sh
ar

ds
Master/Slave Master/Slave initializing Master only Slave only None

0
10
20
30

Tr
af

fic
(M

pp
s)

0 5 10 15 20 25 30 35 40
0

20
40
60

Time (s)

R
ep

lic
at

io
n

(M
bp

s)

Figure 8: Execution on a system with 4 workers, on 4 servers. A server crash is introduced at time t=7s.

5 Discussion

SDN For load-balacing, Krononat relies on IP rout-
ing configured through BGP, and ARP/MAC learning for
the discovery of Krononat instances. This greatly sim-
plified the implementation of hardware-based load bal-
ancing. This choice also allows using VRF-based isola-
tion, as well as easy inspection of routing table (e.g., us-
ing standard switch user interface). Furthermore, many
production-ready BGP libraries are available.

Openflow [23] or P4 [6] could have been an alterna-
tive, but it requires specific models of switches. Also, the
configuration or capabilities of switches for OpenFlow
are not always well documented. Note that BGP requires
routing based on IP addresses : OpenFlow could thus be
advantageous if we want to do traffic steering based on
other criteria (e.g., MAC addresses) or if non-IP proto-
cols were used for tunneling on the access side.

Unavailability delay Krononat relies on Zookeeper
for failure detection. This leads to uncompressible de-
lays for recovery (4-7s) mainly due to Zookeeper failure
detection. To improve this, one could rely on BFD [17]
to monitor links at the switches and declare in BGP a
primary route to the master and a secondary route to the
slave. This way, in case of server or link failure, the
switch could immediately react and route packets to the
slave without waiting for Zookeeper to detect the failure.
Yet, the unavailabilities we observe remain un-noticed in
practice with typical web traffic including live streaming,
mostly hidden by buffering and TCP retransmission.

6 Related Work

Krononat applies techniques such as kernel-bypass, run-
to-completion, and core pinning [33, 1, 4, 8, 20] which
are necessary to achieve high-performance on modern
processors. Krononat shows how to put these in prac-
tice when dealing with a mutable state by relying on
sharding-to-the-core to achieve share-nothing.

Switching or routing NFVs, targetting COTS servers,
have already been studied and implemented [8, 30, 22].
ClickOS [22] also considers advanced middleboxes such
as BRAS and CG-NAT but achieves only 2.3 Mpps with
a 4-core processor. Switching and routing NFVs rely on
a small and static state. They can thus share state be-
tween cores with limited performance penalty, which is
not tractable in connection-tracking systems. Our papers
extends the share-nothing principle beyond NIC queues
and details how to distribute traffic to cores with finer
control than classical hash-based traffic distribution.

NFV frameworks [28, 27, 42, 15, 41] consider the
communication between NFV functions. They show
that context switches have huge overhead and either
(i) avoid containers/VMs by using other types of isola-
tion [28, 42], (ii) optimize communication between con-
tainers/VMs [14, 15, 30]. They provide capabilities to
share resources between multiple VMs running services
consuming only a fraction of the resources. In Krononat,
we do not need to isolate several chained components of
our datapath, nor to share server resources between mul-
tiple small applications. Thus, these frameworks do not
fit our use case and add complexity for little benefits.

Virtual switches [15, 30], can help in providing fea-
tures missing from hardware switches or NICs. In our
case, rather than providing software-based traffic dis-
tribution to address limitations of hardware NIC and
switches, we choose to design our sharding scheme (e.g.,
using IP routing features) so that it can be supported by
entry-level 10 Gbps switches and commodity 10 Gbps
NICs. To avoid context switches, we use a single pro-
cess and the run-to-completion model similarly to Net-
Bricks [28] or BESS [15]. Yet, the modularity they bring
comes at a cost: during prototyping we noticed that dy-
namic dispatch used in BESS or NetBricks can have a
non-negligible overhead compared to static dispatch as it
prevents some compiler optimizations.

The aforementionned frameworks focus on directing
packets within a server, while Krononat provides a solu-
tion for directing packets accross servers through switch-

462 2018 USENIX Annual Technical Conference USENIX Association

based load balancing. Also, these frameworks [15, 28]
have limited features for directing packets for both flow
directions to a single core (e.g., tunneled traffic, rewrit-
ten headers) as they rely on hash-based distribution (e.g.,
RSS), or attach a thread per NIC. By using MAC ad-
dresses to direct packet to per-core queues, we borrow
from SoftBricks [8], an interesting paper that considers
distribution accross server but for routing and VPN appli-
cations. It features an inspiring description of hardware
capabilities and their impact on software router design.

Interestingly, designing for multi-tenancy can impact
efficiency. CORD vSG [2] relies on namespace per
user. This leads to one queue or datastructure per user.
It prevents batching, which is yet key to high perfor-
mance in large hash tables [19]. Indeed, a received
batch is unlikely to contain only packets for a single user.
On the contrary, Krononat relies heavily on batching to
achieve its performance objective as commonly practiced
in high-performance networking [1, 33].

Systems tracking connections such as load-
balancers [9, 13, 29] or NAT/FW [16] also deal
with the difficulty of preserving mutable state. A first
approach is to rely on an external reliable database such
as Memcached [11], RamCloud [26] or Adhoc [13];
while simplifying design, this comes with the cost of
running the database (additional servers) and accessing
it (dedicated NICs consuming PCIe lanes). A second ap-
proach is to rely on consistent-hashing, like the Maglev
load balancer [9]. One enabler for this approach is that
Maglev handles only unidirectionnal traffic as reverse
traffic relies on DSR (Direct Server Return). MagLev
achieves 2-3 Mpps/core. Krononat tackles a more
challenging use case than Maglev (NAT versus load
balancing), which requires handling bidirectional traffic.
The NAT in [16] achieves 5 Mpps on 12 cores using
RAMCloud. Krononat largely exceeds the performance
of [16]. This is because Krononat underlying hash table
is much faster (e.g., 10M insertions/second/core, 35M
lookups/second/core and 350M lookups/second for 12
cores) than a remote RAMCloud (0.7M insertion/second
and 4.7M lookups/second on 12 cores [16]). In addition,
remote database accesses prevent run-to-completion.

Despite not relying on an external database, Krononat
still offers reliability as it passively replicates of all con-
nection entries. This design allows Krononat to offer
a much higher performance than [16], strongly reduc-
ing costs for ISPs. An alternative design [34] to using
a reliable databases is to snapshot the NFV periodically
and log all packets to allow restarting the NFV from a
snapshot and replaying traffic if needed. Interestingly,
this approach allows adding reliability to any middlebox
with little to no modification. Yet, this also comes at
the cost of performance as FTMB is limited to 6 Mpps
using 16 cores. Overall, Krononat favors liveness and

performance over strong consistency. Indeed, for net-
working applications, strong consistency has a high per-
formance impact, and may even be undesirable. A com-
mon choice in databases is to block or delay updates if
they cannot be durably recorded, but for networking this
means dropping any new connection thus interrupting
the service. An alternative choice is thus to favor live-
ness: in the rather unlikely event of simultaneous failure
of two servers, software clients will re-establish connec-
tions, causing little trouble.

Load-balancers [9, 29] often rely on IP routing as a
first layer for traffic distribution from the Internet. Each
load-balancer owns one or several of the VIP (virtual IPs)
to capture traffic from the Internet. This is similar in de-
sign to our Tunnel end point IP addresses. Krononat fur-
ther exploit this to also capture reverse traffic and use a
different granularity by sharding down to the core-level
so as to allow an highly efficient implementation.

Interesting concurrent work by, Araujo et al [3], de-
scribes a load-balancer design that shares a few key ob-
servation with Krononat : (i) commodity switches are in-
credibly efficient at distributing packets, both papers thus
offload as much of their work as possible onto the switch,
(ii) doing so requires to adapt the sharding and the net-
work addressing scheme so that it is supported by com-
modity switches. Yet, as we target different applications
(i.e., NAT and stateful firewall for us and load-balancing
for them), other points of the design differ (e.g., per-
manent replication vs on-demand draining, handling bi-
directional traffic, updating the routing table rather than
updating the ARP table).

7 Conclusion

We presented Krononat, a high performance stateful net-
working service providing NAT and firewall for large-
scale residential access network of ISPs. Krononat has a
close to linear scalability thanks to its design relying on
sharding to the core, and was shown to handle 77 Mpps
on 12 cores, fully exploiting our testbed. It is designed
for scale-out both accross cores and accross servers; it
should scale linearly well beyond 12 cores and 4 servers.

Our design relies on sharding to the core, by expos-
ing each core as an independent entity on the network.
This allows traffic steering accross cores and servers to
be performed by the switches freeing precious CPU re-
sources. Traffic steering is based on IP routing as it
allows a fine control, useful for stateful NFV functions
for which RSS/ECMP offer insufficient control. Beyond
Krononat, these principles proved useful for building the
scale-out traffic generators that we use for the perfor-
mance evaluation. We believe these principles can also
apply widely to high-performance implementations of
stateful NFV functions.

USENIX Association 2018 USENIX Annual Technical Conference 463

References
[1] DPDK: Data Plane Development Kit. http://dpdk.org.

[2] Residential CORD. https://wiki.opencord.org/pages/

viewpage.action?pageId=1278090.

[3] ARAUJO, J. T., SAINO, L., BUYTENHEK, L., AND LANDA,
R. Balancing on the edge: Transport affinity without network
state. In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation (Renton, WA, 2018),
NSDI’18, USENIX Association, pp. 111–124.

[4] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast userspace
packet processing. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (Washington, DC, USA, 2015), ANCS ’15, IEEE
Computer Society, pp. 5–16.

[5] BOCCHI, E., KHATOUNI, A. S., TRAVERSO, S., FINAMORE,
A., MUNAFÒ, M., MELLIA, M., AND ROSSI, D. Statistical net-
work monitoring: Methodology and application to carrier-grade
nat. Computer Networks 107 (2016), 20 – 35. Machine learning,
data mining and Big Data frameworks for network monitoring
and troubleshooting.

[6] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKE-
OWN, N., REXFORD, J., SCHLESINGER, C., TALAYCO, D.,
VAHDAT, A., VARGHESE, G., AND WALKER, D. P4: Pro-
gramming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[7] BRADNER, S. Benchmarking terminology for network intercon-
nection devices. IEETF RFC 1242, 1991.

[8] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. Routebricks: Exploiting parallelism to scale
software routers. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles (New York, NY, USA,
2009), SOSP ’09, ACM, pp. 15–28.

[9] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev:
A fast and reliable software network load balancer. In 13th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (Santa Clara, CA, 2016), USENIX Associ-
ation, pp. 523–535.

[10] EMMERICH, P., GALLENMÜLLER, S., RAUMER, D., WOHL-
FART, F., AND CARLE, G. Moongen: A scriptable high-speed
packet generator. In Proceedings of the 2015 Internet Measure-
ment Conference (New York, NY, USA, 2015), IMC ’15, ACM,
pp. 275–287.

[11] FITZPATRICK, B. Distributed caching with memcached. Linux
J. 2004, 124 (Aug. 2004), 5–.

[12] FUKUDA, K., CHO, K., AND ESAKI, H. The impact of resi-
dential broadband traffic on japanese isp backbones. SIGCOMM
Comput. Commun. Rev. 35, 1 (Jan. 2005), 15–22.

[13] GANDHI, R., HU, Y. C., AND ZHANG, M. Yoda: A highly avail-
able layer-7 load balancer. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (New York, NY, USA,
2016), EuroSys ’16, ACM, pp. 21:1–21:16.

[14] GARZARELLA, S., LETTIERI, G., AND RIZZO, L. Virtual de-
vice passthrough for high speed vm networking. In Proceedings
of the Eleventh ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems (Washington, DC, USA,
2015), ANCS ’15, IEEE Computer Society, pp. 99–110.

[15] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D., AND
RATNASAMY, S. Softnic: A software nic to augment hardware.
Tech. Rep. UCB/EECS-2015-155, EECS Department, University
of California, Berkeley, May 2015.

[16] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F. State-
less network functions: Breaking the tight coupling of state and
processing. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2017), NSDI’17, USENIX Association, pp. 97–112.

[17] KARTZ, D., AND WARD, D. Bidirectional forwarding detection
(bfd). IETF RFC 5880, 2010.

[18] KIM, M.-S., WON, Y. J., AND HONG, J. W. Characteristic
analysis of internet traffic from the perspective of flows. Comput.
Commun. 29, 10 (June 2006), 1639–1652.

[19] LE SCOUARNEC, N. Cuckoo++ Hash Tables: High-Performance
Hash Tables for Networking Applications. ArXiv e-prints (Dec.
2017).

[20] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2014),
NSDI’14, USENIX Association, pp. 429–444.

[21] MAIER, G., FELDMANN, A., PAXSON, V., AND ALLMAN,
M. On dominant characteristics of residential broadband internet
traffic. In Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement (New York, NY, USA, 2009), IMC ’09,
ACM, pp. 90–102.

[22] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. Clickos and the
art of network function virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2014), NSDI’14, USENIX As-
sociation, pp. 459–473.

[23] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. Openflow: Enabling innovation in campus net-
works. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008),
69–74.

[24] MUSCARIELLO, L. On Internet Traffic Measurements, Char-
acterization and Modelling. PhD thesis, Politecnico Di Torino,
2006.

[25] NEVILLE-NEIL, G., AND THOMPSON, J. Measure twice, code
once: Network performance analysis for freebsd. In ASIA BSD
Conference (2015).

[26] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A.,
LEE, C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H.,
ROSENBLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG,
S. The ramcloud storage system. ACM Trans. Comput. Syst. 33,
3 (Aug. 2015), 7:1–7:55.

[27] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-
NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A frame-
work for nfv applications. In Proceedings of the 25th Symposium
on Operating Systems Principles (New York, NY, USA, 2015),
SOSP ’15, ACM, pp. 121–136.

[28] PANDA, A., HAN, S., JANG, K., WALLS, M., RATNASAMY,
S., AND SHENKER, S. Netbricks: Taking the v out of nfv. In
Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation (Berkeley, CA, USA, 2016),
OSDI’16, USENIX Association, pp. 203–216.

[29] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREEN-
BERG, A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS, M.,
WU, H., KIM, C., AND KARRI, N. Ananta: Cloud scale load
balancing. In Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM (New York, NY, USA, 2013), SIGCOMM
’13, ACM, pp. 207–218.

464 2018 USENIX Annual Technical Conference USENIX Association

http://dpdk.org
https://wiki.opencord.org/pages/viewpage.action?pageId=1278090
https://wiki.opencord.org/pages/viewpage.action?pageId=1278090

[30] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E. J., ZHOU,
A., RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J.,
SHELAR, P., AMIDON, K., AND CASADO, M. The design and
implementation of open vswitch. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2015), NSDI’15, USENIX As-
sociation, pp. 117–130.

[31] QIAN, L., AND CARPENTER, B. E. A flow-based performance
analysis of tcp and tcp applications. In 2012 18th IEEE Interna-
tional Conference on Networks (ICON) (Dec 2012), pp. 41–45.

[32] QUAN, L., HEIDEMANN, J., AND PRADKIN, Y. When the
internet sleeps: Correlating diurnal networks with external fac-
tors. In Proceedings of the 2014 Conference on Internet Measure-
ment Conference (New York, NY, USA, 2014), IMC ’14, ACM,
pp. 87–100.

[33] RIZZO, L. Netmap: A novel framework for fast packet i/o. In
Proceedings of the 2012 USENIX Conference on Annual Techni-
cal Conference (Berkeley, CA, USA, 2012), USENIX ATC’12,
USENIX Association, pp. 9–9.

[34] SHERRY, J., GAO, P. X., BASU, S., PANDA, A., KRISHNA-
MURTHY, A., MACIOCCO, C., MANESH, M., MARTINS, J. A.,
RATNASAMY, S., RIZZO, L., AND SHENKER, S. Rollback-
recovery for middleboxes. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication (New
York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 227–240.

[35] SRISURESH, P., AND EGEVANG, K. Traditional ip network ad-
dress translator (traditional nat). IETF RFC 3022, 2001.

[36] STROWES, S. D. Diurnal and weekly cycles in ipv6 traffic. In
Proceedings of the 2016 Applied Networking Research Workshop
(New York, NY, USA, 2016), ANRW ’16, ACM, pp. 65–67.

[37] THOMPSON, K., MILLER, G. J., AND WILDER, R. Wide-
area internet traffic patterns and characteristics. Netwrk. Mag.
of Global Internetwkg. 11, 6 (Nov. 1997), 10–23.

[38] VELAN, P., MEDKOVA, J., JIRSIK, T., AND CELEDA, P. Net-
work traffic characterisation using flow-based statistics. In NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium (April 2016), pp. 907–912.

[39] WILES, K. pktgen-dpdk. http://pktgen-dpdk.

readthedocs.io/.

[40] WOO, S., AND PARK, K. Scalable TCP Session Monitoring with
Symmetric Receive-side Scaling. Tech. rep., KAIST, 2012.

[41] WOO, S., SHERRY, J., HAN, S., MOON, S., RATNASAMY, S.,
AND SHENKER, S. Elastic scaling of stateful network func-
tions. In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation (Renton, WA, 2018),
NSDI’18, USENIX Association, pp. 299–312.

[42] ZHANG, W., LIU, G., ZHANG, W., SHAH, N., LOPREIATO, P.,
TODESCHI, G., RAMAKRISHNAN, K., AND WOOD, T. Open-
netvm: A platform for high performance network service chains.
In Proceedings of the 2016 Workshop on Hot Topics in Mid-
dleboxes and Network Function Virtualization (New York, NY,
USA, 2016), HotMIddlebox ’16, ACM, pp. 26–31.

[43] ZHOU, D., FAN, B., LIM, H., KAMINSKY, M., AND ANDER-
SEN, D. G. Scalable, high performance ethernet forwarding with
cuckooswitch. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies (New York,
NY, USA, 2013), CoNEXT ’13, ACM, pp. 97–108.

USENIX Association 2018 USENIX Annual Technical Conference 465

http://pktgen-dpdk.readthedocs.io/
http://pktgen-dpdk.readthedocs.io/

