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Abstract

Deduplication systems for traditional backups have op-
timized for large sequential writes and reads. Over
time, new applications have resulted in nonsequential ac-
cesses, patterns reminiscent of primary storage systems.
The Data Domain File System (DDFS) needs to evolve to
support these modern workloads by providing high per-
formance for nonsequential accesses without degrading
performance for traditional backup workloads.

Based on our experience with thousands of deployed
systems, we have updated our storage software to distin-
guish user workloads and apply optimizations including
leveraging solid-state disk (SSD) caches. Since SSDs are
still significantly more expensive than magnetic disks,
we make our system cost-effective by caching metadata
and file data rather than moving everything to SSD. We
dynamically detect access patterns to decide when to
cache, prefetch, and perform numerous other optimiza-
tions. We find that on a workload with nonsequential
accesses, with SSDs for caching metadata alone, we
measured a 5.7× improvement on input/output opera-
tions per second (IOPS) when compared to a baseline
without SSDs. Combining metadata and data caching
in SSDs, we measured a further 1.7× IOPS increase.
Adding software optimizations throughout our system
added an additional 2.7× IOPS improvement for non-
sequential workloads. Overall, we find that both hard-
ware and software changes are necessary to support the
new mix of sequential and nonsequential workloads at
acceptable cost. Our updated system is sold to customers
worldwide.

1 Introduction

With traditional backups, an application periodically
copies the entire contents of a file system into the backup

∗Current affiliation: Perspecta Labs

environment, with changes since the last copy added at
shorter intervals. These are called full and incremen-
tal backups, respectively [8]. Deduplicating file systems
leverage the redundancy across full backups by storing
a single copy of data, with the granularity of dupli-
cate detection varying from whole files [2] to individual
file blocks [31] or variable-sized “chunks” that are de-
termined on the fly via content characteristics [28, 36].
Leveraging a log-structured file system [32] to store
nonduplicate data results in append-only write opera-
tions. Nonsequential reads are needed for index lookups
and when deduplication results in the physical fragmen-
tation of unique data [20]. However, index lookups can
be limited to trade deduplication efficiency to improve
performance both for writes and reads by writing some
duplicates to improve data locality [13].

There have been recent reports about the impact of
evolving workloads on system performance. An arti-
cle [3] provided an overview of the impact of increas-
ing numbers of small files and higher deduplication ra-
tios (and other changing properties) on the Data Domain
File System (DDFS) as a whole, but with relatively few
details or quantitative analysis. As an example, garbage
collection (GC) was slowed by these changing workloads
and a new algorithm was needed [11].

Indeed, GC is not the only aspect of the system that
must be rethought to handle modern workloads. While
Data Domain was one of the original “purpose-built
backup appliances,” modern data protection workloads
impose very different requirements. These workloads in-
clude frequent updates to arbitrary locations in backup
files, direct access to individual files rather than the ag-
gregates created by traditional backup applications, and
direct read/write access to files in the appliance by appli-
cations on other hosts. This last class of usage is partic-
ularly demanding, as it generally involves large amounts
of nonsequential I/O (NSIO).

Thus, we are at an inflection point where we need to
rethink and redesign backup systems to enable optimized

USENIX Association 2018 USENIX Annual Technical Conference    705



performance for non-traditional data protection work-
loads with nonsequential accesses for our customers.
This goes beyond previous work on improving dedupli-
cating storage by reducing fragmentation of sequentially
read data [20], as it strives to provide improved NSIO
performance without degrading the performance of tra-
ditional, sequential, workloads. These two types of ap-
plication must coexist regardless of the distribution of
workloads between the two categories.

In this paper, we describe the evolution of DDFS to
support both traditional and nontraditional workloads
based on our experience with deployed systems. Tra-
ditional workloads mostly have large sequential writes
and reads with low metadata operations. Nontraditional
workloads have many small files, more metadata oper-
ations, and frequent nonsequential accesses. Our new
DDFS design supports higher IOPS for both metadata
operations and nonsequential reads and writes and is al-
ready used by our customers1

We expanded our storage system, which had used only
hard disk drives (HDDs), to also use solid-state disks
(SSDs). These cache index data, directory structures,
deduplicating file recipes, and ultimately file data. Be-
cause the capacity of the SSDs is a small fraction of the
overall system (e.g., 1%), we must make a number of
tradeoffs. For instance, while the index that maps finger-
prints to disk location stores information in the SSDs for
all chunks, we use a shorter form of the fingerprint that
can have occasional hash collisions. We rely on metadata
accessed when reading a chunk to provide the full finger-
print for confirmation, and when a mismatch is detected,
the full on-disk index is consulted.

In addition, we have made several changes to our
software stack. These include dynamic assessment of
prefetching and caching behavior based on access pat-
terns; data alignment, using application-specific chunk
size; scheduler changes for quality of service; increasing
the parallelism of I/O requests to a single file; minimiz-
ing writes by queuing metadata updates in memory; and
support for smaller access sizes.

Through lab experiments, we demonstrate the impact
of these changes on the performance of certain applica-
tions. With a NSIO workload, with SSDs for caching
metadata, we measured a 5.7× IOPS improvement rel-
ative to a system without SSDs. Adding data caching
in SSDs, we measured a further 1.7× IOPS increase.
Combining SSD caching with software optimizations
throughout our system added an additional 2.7× IOPS
increase for NSIO workloads. We measured similar
factors of reductions in terms of average latency of ac-
cesses for both reads and writes. Importantly, perfor-
mance for traditional workloads running concurrently re-

1The data cache is not yet commercially available.

mained high and even increased (when run separately)
due to software improvements. We provide detailed ex-
perimental results in §6.

In summary, the main contributions of this paper are:

1. We extend support to modern backup applications,
with NSIO access patterns. We ensure our new design
for the DDFS software stack benefits both traditional
and nontraditional backup and restore tasks.

2. We optimize the file system to better utilize the benefits
of flash in our software stack, while minimizing the
cost of adding flash by selectively storing metadata on
SSDs.

3. Experimental results using our techniques show orders
of magnitude improvement in IOPS and reduced la-
tencies in nonsequential workloads. Even traditional
backup workloads show 25%-30% improvement in re-
store throughput because the SSD cache reduces disk
accesses. In experiments where both traditional and
NSIO workloads execute concurrently, our system
maintains high performance for both workloads.

The rest of the paper is organized as follows. §2 pro-
vides a brief overview of deduplication in file systems
and recent changes in backup applications that motivated
us to re-architect our file system design. §3 describes
our high-level architecture and design and §4 presents
the detailed file system modifications in the DDFS stack.
§5 states our experimental platform and workloads used
in our study. Detailed experimental results are provided
in §6. We discuss related work in §7. §8 concludes our
study and discusses future extensions.

2 Background and Motivation

Here we provide an overview of our protection storage
and a more detailed discussion of the changes that moti-
vated our architecture modifications.

2.1 Deduplicating Protection Storage
Deduplication is common in commercial products and
has been widely discussed including survey articles [30,
35]. Here we provide a brief overview of the specifics of
our system; see Zhu, et al. [36] for additional details.

Each file is represented by a Merkle tree [26], which is
a hierarchical set of hashes. The lowest level of the tree is
file data, and hashes to many chunks2 are aggregated into
a new chunk one level higher in the tree. The fingerprint
of that chunk is stored a level higher, and so on. The
root of the Merkle tree represents a recipe for a single

2In the interest of brevity, we shall refer to the unit of deduplication
as a chunk even if the system uses fixed-sized blocks.
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file, and the filename-to-recipe mapping is managed by
a directory manager. Chunks are aggregated into write
units, called containers, which are megabytes in size, and
may be compressed in smaller units of tens of chunks.

Thus if a file is read sequentially, the system uses the
directory manager to find the root of the Merkle tree,
makes its way to the lowest level of metadata, and iden-
tifies the fingerprints of potentially thousands of data
chunks to access. The chunks themselves may be scat-
tered throughout the system, though there are techniques
to alleviate read fragmentation [13,20]. There is an index
that maps each fingerprint to a container, and the con-
tainer has metadata identifying chunk offsets.

The storage system is log-structured [32], so when-
ever new data or metadata chunks get written, they are
added to new containers. Garbage collection is neces-
sary to reclaim free space, which can arise from deleted
files removing the last reference to a chunk, as well as
extra duplicates that are written due to imperfect dedu-
plication [11].

2.2 Changing Environments

The improvements to our deduplicating storage system
were motivated by changes in hardware and in applica-
tions [3]. Dramatic increases in the capacity of individ-
ual disks meant that a purely disk-based system would
not have sufficient input/output operations per second
(IOPS) to perform the necessary index lookups to dedu-
plicate effectively. Moving the index to SSDs was a nec-
essary step to improving performance, but it was not suf-
ficient to handle the other changes.

The most extreme requirements on performance de-
rive from two changes in workload. Initially, our systems
had to deal with the change from periodic full backups to
generating full backups by transferring changes since the
last backup with virtual synthetic full backups [3,12] and
change-block tracking [33] backups. With virtual syn-
thetic and change-block tracking, changes to a backup
would be written into protection storage, then a new “full
backup” would be created by making a copy of the file
metadata with the changes included. This would often be
done at intervals of hours, rather than the weekly periodic
backups from traditional workloads; thus the amount of
metadata in the file system would grow by orders of mag-
nitude, could not be cached in DRAM, and was slow to
access on disk. The access patterns also changed from
fully sequential writes (full backups, which would write
a backup from start to finish on a regular basis) to “incre-
mental” writes that would have monotonically increasing
offsets but might skip large regions of a file.

Even greater stress to system performance arose with
scenarios where data in protection storage are accessed
in place after a failure. As an example, a virtual ma-

chine (VM) backed by a vmdk file might be booted and
run from protection storage even while its vmdk image
is migrated to a primary storage server. Accesses to any
data not yet received by primary storage would be served
through explicit I/Os from protection storage. It is char-
acterized by nonsequential accesses, with additional se-
quential accesses introduced by storage migration in the
background. Read operations during this period often
include access of backup data for browsing and recovery
of small files from large backups. Read-write operations
from a running VM further stress deduplicating storage
due to nonsequential reads and overwrites. This is some-
what analogous to storage vMotion [24], when a virtual
disk can be accessed while it migrates. This workload
in turn has implications on data formats, deduplication
units, and physical devices.

Data formats A number of data protection applications
perform transformations on data during the backup
process. For example, some legacy backup appli-
cations have been described as creating a tar-like
file concatenating data and metadata from many in-
dividual files in primary storage, to create a single
backup file in protection storage [22]. It is not fea-
sible to restore an individual file from this large ag-
gregate, so there has been a shift towards backing up
individual files in their “native” format. This in turn
can lead to millions or billions of individual files,
making the performance of namespace operations
very important.

Unit of deduplication While content-defined chunking
is a well studied topic, there is usually an assump-
tion of little knowledge about the data type. As an
example, without application-specific knowledge,
variable-sized chunks are generally able to local-
ize the impact of small edits when forming chunks.
When application knowledge is available, it can in-
crease efficiency such as deduplicating virtual ma-
chine disk images [14] in fixed-size units corre-
sponding to disk blocks. (That is, updates to one
part of the file do not shift content in other parts of
the file.) More generally, application-specific dedu-
plication must align the unit of deduplication appro-
priately, whether it is a database record or a block
storage system directly performing backups.

Devices In addition to using SSDs to store metadata
such as the deduplication index, we need to cache
file metadata (the recipes that uniquely identify the
individual chunks within a file) and file data blocks
themselves. SSD caching, including the implica-
tions of retrofitting this to an existing disk-based
data protection system, is a focus of this paper.
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Figure 1: SSD caches: file metadata (FMD), fingerprint
index (FPI), data, and directory manager (DM)

Mixed workloads While DDFS was originally designed
to support large sequential access patterns, the shift
to new workloads does not mean systems no longer
have sequential accesses. Instead, there can be
mixes of both across and within files. As an exam-
ple, a system may restore a VM image by sequen-
tially accessing it to create a copy on another sys-
tem, but during the restore operation the VM image
is accessed with reads and writes at more arbitrary
locations. There may also be accesses related to on-
going backups relative to this file. DDFS needs to
treat the types of accesses differently (e.g., prefetch-
ing file data and metadata for the sequential restore)
and provide different qualities of service based on
resource requirements.

3 Modernizing Protection Storage

To motivate our caching decisions, consider the steps
necessary to access data within a file at an arbitrary off-
set. Figure 1 shows four caches: file metadata (FMD),
fingerprint to container index (FPI), data, and directory
manager (DM). They are shown as SSD caches, though
initially they existed only in DRAM. First, we find the
entries in the file’s Merkle tree corresponding to the de-
sired data offset (FMD cache). Traversing the tree itself
involves a level of indirection as every chunk within the
tree is referenced by hash which is translated to a con-
tainer using a fingerprint index (FPI cache). We then
read in the portion of the file tree, which leads us back
through the fingerprint index to access data chunks (data
cache) that are returned to the client. Please note that the

fingerprint index is shown in a simplified form relative to
updates discussed in §4.7. Finding the file’s top-level in-
formation involves a directory structure (DM cache) that
is also used for namespace changes.

For largely sequential accesses, the overhead of re-
trieving various types of metadata will be amortized
across many data accesses. For instance, if an applica-
tion reads 1 MB of fixed-sized 4 KB chunks (256 in to-
tal), and the fingerprints of those chunks are all contained
in a single chunk in the Merkle tree, then the cost of the
directory lookup and the first few levels of the Merkle
tree are amortized across 256 chunk reads. If the locality
of those chunks is high, the first lookup in the FPI will
lead to a container that populates the DRAM FPI for the
rest of the 1-MB read.

For random accesses, especially to individual files,
each read can result in a DM lookup, on-disk Merkle tree
traversals, on-disk FPI lookups, and finally a data access.
While caching will not significantly help completely ran-
dom accesses, any amount of locality can result in sub-
stantial improvement.

We therefore use SSD to cache several metadata struc-
tures as well as file data. We controlled the costs of our
design by using low-cost SSD that totaled 1% of the to-
tal hard drive capacity. Our selected SSDs only sup-
port three full erasures per day, so our design attempts
to minimize writes. At the time of writing this article,
SSD costs approximately 8× more per GB than HDD, so
adding a 1% SSD cache increases the hardware capacity
costs by 8% [1]. While some backup customers appreci-
ate all-flash options, many remain sensitive to costs.

3.1 Caching the File Metadata

While our system attempts to group metadata chunks to-
gether, locality can become fragmented for multiple rea-
sons, such as GC repositioning chunks and related files
sharing previously written chunks. To decrease the la-
tency for accessing file metadata (FMD) (i.e. the Merkle
trees), we cache FMD in flash. Also for NSIO, accessing
each data chunk requires accessing a metadata chunk that
is unlikely to be reaccessed in the near future. This dou-
bles the number of I/Os needed to serve a client request,
so prefetching metadata chunks and caching in flash will
decrease overall latency. There are multiple challenges
we considered while designing the FMD cache.

We noted that metadata chunks can be of variable
size, and not align with a flash erasure unit. We there-
fore packed metadata chunks into a multi-MB cache
blocks and created a caching policy similar to Nitro [18].
Briefly, we maintain a single time stamp per cache block
and perform LRU eviction using that time stamp to evict
an entire cache block at a time. While LRU is a sim-
ple policy, and more advanced techniques [19] could be
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used, we have found that chunks within cache blocks
tend to age at similar rates. We track the amount of data
written to the FMD and will throttle new insertions to
maintain our long term average of three writes per day
times the capacity of the cache.

Importantly, we must determine which metadata
chunks to add to the cache, as our capacity is insufficient
to cache metadata chunks for all files in the system. 10%
of the SSD cache is allocated to the FMD. Rather than
simply inserting all FMD, we use admission control to
determine what is appropriate to cache (§4).

3.2 Caching the Fingerprint Index

For any given chunk, on the read path the system must
map from its unique fingerprint to its location in stor-
age. The fingerprint to container index (FPI) performs
that function. Historically, in DDFS the index would be
on disk, with a small subset cached in DRAM. Our in-
dex design actually requires two I/Os for each access be-
cause there are typically two layers to the index. On a
read operation, where the FPI mapping was not in the
cache, there would be I/O to disk. However, the con-
tainer that would then be loaded would include metadata
for other chunks in the container, and their fingerprints
would be cached. Since reads were typically large re-
store operations, accesses would be sequential and many
other fingerprints would be found in the cache. As lower
cost, denser hard drives have become available, they have
been added to our systems. Unfortunately, IOPS per ca-
pacity have decreased for denser drives, and this further
motivates the need to use SSD to accelerate NSIO such
as fingerprint index accesses.

To support NSIO, the system keeps the entire FPI in
SSD, but because space is limited, DDFS makes a con-
cession. Each record stores a short version of each fin-
gerprint in SSD along with the corresponding container
and other information. Rather than storing all 20 bytes of
a fingerprint, it stores four bytes. In the case of duplicate
short fingerprints, only one copy is recorded in the FPI.
More details are in §4. Figure 1 labels the full finger-
prints as Lfp on disk and the short fingerprints as Sfp in
SSD. It is possible the FPI will incorrectly match a query
fingerprint based on the first bytes of a short fingerprint
in the cache, but this false positive case will be detected.
If the needed chunk is not found in the container refer-
enced by the short fingerprint, then the full on-disk in-
dex is consulted. Latency is higher in this case, but as
it is infrequent, overall performance improves dramati-
cally while controlling SSD costs. FPI occupies 50% of
the SSD cache.

For the data locality of traditional backups, for every
1MB external read, we issue an average of eight I/Os to
disk where two are for the FPI. When the FPI is moved

Figure 2: Performance evaluation of a NSIO workload
with and without the fingerprint index cache in SSD.

to SSD, we should see a benefit of at least 25% on disk
bound systems. For data with bad locality, we will is-
sue multiple FPI lookups per client read, so FPI in SSD
would offer even more benefit. In Figure 2, we com-
pare overall throughput of our system when the FPI is in
SSD versus only on HDD. We show that having a fin-
gerprint cache in SSD improves restore performance at
higher stream counts, when disk is a bottleneck, by up to
32%. More experimental details are provided in §6.

3.3 Caching the Chunks

Once the system knows where to find a chunk, it loads
the storage container holding it. With traditional work-
loads and significant spatial locality, two properties hold
that are not true for NSIO workloads:

1. Once accessed, a particular chunk is unlikely to be ac-
cessed again unless the same content appears multiple
times in the restore stream.

2. Other chunks in the same storage container are rea-
sonably likely to be accessed as well, so the system
benefits from caching that container’s data and meta-
data. The container metadata can be used to avoid FPI
lookups when locality is high [36].

For NSIO, in contrast, the locality of access within a
container may be highly variable, and the reuse of spe-
cific data may be more commonplace. For instance, a
data chunk might be written and then read, with a gap
between the accesses that would be too large for the data
to reside in a client or server DRAM cache. The SSD
data cache is intended to provide a large caching level to
optimize those access patterns, but it needs to dynami-
cally identify what patterns it encounters.

On a data miss for sequential reads, we load the de-
sired chunk as well as the following chunks that may be
accessed. This helps to warm our cache and improves
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access times. We avoid loading chunks during writes ex-
cept when read-modify-write operations are necessary.
Techniques to identify such cases and modifications to
DDFS are described in §4. 35% of the SSD cache is re-
served for data chunks.

3.4 Caching Directories
The directory manager (DM) manages the mapping from
file paths to Merkle trees. Thus, the first time a file is
opened, the system must access this mapping to find the
root of the tree. For large files such as VM images that
are opened once and then accessed over time, the cost of
the DM lookup is insignificant (once for a large file), but
if there are numerous files to open (such as the result of
backing up a file system as individual files); this cost can
be a significant performance penalty.

In DDFS, data for DM resides on HDD, but a full copy
is now cached in SSD for performance. Since such a
cache is straightforward, our experiments focus on ap-
plications that are not namespace-intensive, so we do not
consider the DM cache further. DM is allocated 5% of
the SSD cache.

4 File System Modifications to Support
Nonsequential Workloads

Our goal is to enable faster accesses for new work-
loads while continuing to support traditional sequential
backup/restore workloads without performance degrada-
tion. Besides the flash caches described previously, nu-
merous changes were needed in the file system to sup-
port NSIO. We begin by presenting our technique for
identifying the type of client access, which determines
if optimizations are applied. We then describe the most
important file system changes.

4.1 Detecting Workload Types
To decide whether NSIO processing is needed, the in-
coming I/O requests must be analyzed to determine the
type of access. Defining “sequential” is itself a chal-
lenge, as access patterns may not be strictly sequential
even if they are predictable [17].

The access pattern detection algorithm partitions large
files into regions and keeps a history of recent I/Os
(specifically, 16 I/Os) per region as shown in Figure 3.
There are two kinds of detection to check for data se-
quentiality and access patterns.

By default, all incoming I/Os are assumed to be se-
quential until there is enough history of previous I/Os to
check for other types. Once the history buffer is full,
if a new I/O is not within a threshold distance of one
of the previous 16 I/Os, it is considered nonsequential.

Figure 3: Access history for three regions of a file, la-
beled sequential, NSIO monotonic, and NSIO random.

The reason for comparing with several past accesses is to
avoid detecting re-ordered asynchronous I/O operations
from a client as NSIO. By keeping multiple regions of
access patterns within a file, we allow combinations of
sequential and NSIO accesses to the same file to coexist
without NSIO patterns hiding the existence of simulta-
neous sequential access. One example of this is NSIO
from accessing a live VM image while simultaneously
performing vMotion; another is the result of reordering
of asynchronous I/O operations on a client. Our region
size is a minimum of 2GB and grows to maintain at most
16 regions per file. The memory required for tracking a
file is ≤3KB.

Referring to Figure 3, besides sequential I/O, we also
label two variants of NSIO: NSIO monotonic and NSIO
random. Monotonic refers to accesses that are to the
same or non-consecutive increasing offsets. Random
refers to accesses that do not have a discernible pattern.
The monotonic pattern is particularly common when a
backup client generates a synthetic full backup by first
copying the previous full backup (an efficient metadata
operation in deduplicated storage) and then overwrites
regions at increasing offsets in the file. Distinguishing
NSIO monotonic from random patterns allows us to im-
plement different caching and eviction methodologies.

4.2 Prefetching Content

One of the uses of identifying accesses based on history
per region is to prefetch and cache content. Importantly,
we also avoid caching content that will not be reused.
Our options are to load data into DRAM for immediate
use or load into SSD if reuse is expected.

Specifically, when access patterns are labeled as se-
quential or NSIO monotonic, we can prefetch and load
into DRAM, because we know the data or metadata will
be used soon and SSD caching is unlikely to provide fur-
ther benefit. For NSIO random I/O, we prefetch into
SSD because we need to cache most of the active data
set, which is larger than DRAM, to get the benefit of
caching. In order to warm-up the cache sooner for every
file with NSIO random I/O, we first load 128KB around
the current I/O (e.g. 8KB) for caching in SSD since it
may be reused, and there is little additional latency for
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Figure 4: The fingerprint index is updated to map from
fingerprint to container and compression region. The
structured is presented in a simplified form.

loads of that size in our system.

4.3 Direct Read of Compression Regions
As described in §3, accessing a region of a file involves
identifying the fingerprint representing that chunk from
the file recipe, checking the fingerprint index for the cor-
responding location on disk, and then reading the chunk.
For sequential accesses, we implemented an optimiza-
tion in the early versions of the file system. The fin-
gerprint index maps to container, so we read in the con-
tainer’s metadata region into RAM, which consists of a
list of fingerprints for chunks within each compression
region. We then determine which compression region to
read and decompress to find the needed chunk. For se-
quential (or nearly sequential) accesses, we typically find
most needed fingerprints in the RAM cache without the
need to query the fingerprint index [36].

While this previous optimization dramatically reduces
fingerprint index accesses for sequential I/O, it is ineffi-
cient for NSIO. A client’s nonsequential read requires
a fingerprint index read, container metadata read, and
compression region read, i.e. three reads in total. Be-
cause future accesses are unlikely to remain within the
same container, there is no amortization of reading a
container’s metadata. To remove the container metadata
read for NSIO cases, we adjusted our fingerprint index to
map from fingerprint to a compression region offset and
size within a container (Figure 4). This allows us to per-
form direct compression region reads without first read-
ing in container metadata, reducing the number of ac-
cesses from three to two. We dynamically decide based
on access patterns whether to read compression region
metadata or not.

To reduce SSD space for the FPI entries, we limit the
entry size to twelve bytes. Four bytes come from the
shortened fingerprint. Four bytes are used for the con-
tainer ID, which is sufficient since it is relative to the low-
est container ID within the system. The remaining four

bytes are used to describe the compression region within
the container with bits allocated to the compression re-
gion offset and size within the container as well as in-
ternal uses. To reduce the number of bits required, com-
pression regions are written at sector boundaries. When
indexing a fingerprint, we use a hash of the first eight
bytes to select a FPI bucket. In combination with the four
bytes short fingerprint, the collision rate is below 0.01%.

4.4 Higher Concurrency with Queue
Changes

Applications directly accessing files from backup stor-
age have high performance requirements, and latency is
an important aspect, so I/Os must be processed as soon as
they enter the file system. Unlike traditional workloads
that tend to be highly sequential, with one client I/O ef-
fectively dependent on earlier I/Os to complete, NSIO
has a greater need and opportunity for parallelism. For
NSIO, FMD required to process the I/O may not be in
memory and will require disk I/Os. Requests that are de-
pendent on the same FMD will be processed serially in
the order received; however, requests that do not require
the same FMD are processed in any order and in paral-
lel. Once the required FMD is loaded for any I/O, that
request is given priority for further processing to avoid
starvation. Apart from issuing parallel I/Os for FMD
on disk, fingerprint lookups for multiple reads within the
same file take place in parallel for NSIO.

4.5 Adjusting the Chunk Size to Improve
Nonsequential Writes

For traditional large backup files, variable chunking
achieves better deduplication than fixed-size chunks be-
cause it better identifies consistent chunks in the presence
of insertions and deletions [34, 36], which we refer to as
shifts. For new use cases that have block-aligned writes,
such as change block tracking for VMs, shifts do not oc-
cur, and fixed-sized deduplication is effective [14]. Al-
though variable-sized chunking has better deduplication,
the performance gains achieved with fixed-size chunks
outweighs the deduplication loss [27].

Based on customer configuration or backup software
integration, we label workloads that will benefit from
fixed-sized chunks. This simplifies the write path, as we
do not need to find chunk boundaries or perform a read-
modify-write for a partial overwrite of a chunk. For cer-
tain applications, such as VMs and databases, the block
size is predetermined, and we set our chunk size accord-
ingly for further efficiency.
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4.6 Delayed Metadata Update

Switching to fixed-sized chunks has the added benefit
that it allows for more efficient updates of file recipes
during nonsequential writes. Traditionally, we would
need to read in portions of the file recipe to provide fin-
gerprints for chunks that must be read before being mod-
ified. With fixed-size chunks, we never need to modify
existing chunks as they are simply replaced. We do need
to update the file recipe to reference new chunks, but this
can be delayed until sufficient updates have been accu-
mulated. Since our chunk references are 28 bytes, 1MB
of non-volatile memory can buffer references for nearly
300MB worth of logical writes.

4.7 Selective Fingerprint Index Queries

While our file system is designed to perform deduplica-
tion by identifying redundant chunks, we may choose to
skip redundancy checks to improve performance [3]. We
have found that nonsequential writes tend to consist of
unique content. So to avoid fingerprint index queries that
are unlikely to find a match, we disable querying the fin-
gerprint index for small nonsequential writes (<128KB).
Any duplicate chunks written to storage will be removed
during periodic garbage collection [11].

4.8 Quality of Service and Throttling

DDFS has a quality of service (QoS) mechanism that
assigns shares for external and internal workloads such
as backup, restore, replication and garbage collection.
These shares are used in the CPU and disk scheduler to
provide QoS for the workloads. NSIO can happen as
part of backup or restore, so we made changes to fur-
ther split the backup and restore workload shares into se-
quential and nonsequential shares. The number of shares
assigned to these workloads is tunable based on a cus-
tomer’s desired system behavior. By default, the shares
for NSIO workloads are kept at 20% so as to not impact
other critical workloads, but as reads and writes on back-
ups during a restore becomes commonplace, shares may
need to be increased for NSIO.

On non-uniform memory access architectures, jobs
pertaining to a task are assigned a particular CPU for
cache locality. Our earlier implementation used round
robin assignment of jobs to CPUs. However, the resource
requirements between NSIO workloads vary greatly and
hence a simple round robin is insufficient. In the lat-
est version of DDFS we have changed this assignment
to least-loaded CPU instead. NSIO performance greatly
depends on read performance, so we have modified our
I/O scheduler to avoid read starvation and provide higher
priority for read requests.

With all of the changes to increase NSIO perfor-
mance, accepting more I/Os in parallel at the protocol
layer usually improves overall performance. However,
beyond a limit, further client requests will cause RPC
timeouts, and hence I/O throttling per workload type be-
comes important. Based on the type of workload and
the average latency, we have implemented an edge throt-
tling mechanism where the protocol layer can query the
subsystem health and insert queue delays to dynamically
change the number of client accesses supported.

5 Experimental Methodology

This section describes our experimental methodology
and the test environment including the system configu-
ration and workloads used. All our results are measured
on a Data Domain DD9800 [10] configured with maxi-
mum capacity. It has 60 Intel(R) Xeon(R) CPU E7-4880
v2 processors @2.50GHz, with 775GB DRAM, 8 10Gb
network ports, 10.9TB SSD, and 1008 TB disk storage
across 6 shelves with 4TB HDDs. Each shelf has be-
tween 1 and 4 packs, with 15 HDDs per pack. There are
20 spare HDDs. We produce accesses to the DD9800
using up to 8 clients running Linux version 2.6.32 with
Intel(R) Xeon(R) CPU E5-2620 with 2.00GHz cores, 64
GB of memory, and a 10Gb Ethernet card.

We primarily use traditional and NSIO workloads for
our measurements. Performance numbers for traditional
backup and restore are reported using an in-house syn-
thetic generator that randomly creates first generation
backups for each stream and then modifies following
generations with deletions (1%), shuffles (1%), and addi-
tions (1%) [7]. Across clients, the total size of first gener-
ation backups is 3TB, and metadata is approximately 1%
of the data size. We wrote every 5th generation, though
we allowed changes to accumulate in memory even for
unwritten generations. This workload has 100% sequen-
tial read/write accesses to data for all generations. How-
ever, metadata accesses are NSIO. We report throughput
numbers as the average of generations 41 and 42.

For a NSIO workload, we use the industry stan-
dard FIO benchmark [6] to simulate large sequential and
NSIO reads as well as small NSIO reads and writes. We
also present results when accessing 32 100GB VM im-
ages with mixtures of sequential I/O and NSIO, as de-
scribed in each experiment. While customer VMs often
share content, in order to reduce factors affecting our ex-
periments, we have confirmed that there was no potential
deduplication within or across the images. Here we re-
port performance numbers in terms of IOPS and average
latency. Unless otherwise noted, experiments were per-
formed on an isolated system configured with fixed-sized
chunks and without other read/write operations or back-
ground tasks such as garbage collection or replication.
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All metadata fit within SSD without the need for admis-
sion control.

We show the benefits of our hardware and software
optimizations in the following experiments. Each data
point in our experiments with traditional backup work-
load was collected in runs that lasted multiple days and
on data sets that were aged up to 42 generations of back-
ups. Multiple clients were used to generate the backup
workload, and results are averaged across clients. Each
data point in our experiments with NSIO workload was
collected by measuring the average performance (IOPS
and latency) with at least three runs, and the standard de-
viation of results is <1.5% in all cases.

6 Evaluation

We begin by exploring the impact of caching meta-
data and data as well as software optimizations within
DDFS for NSIO workloads. Then we investigate the
impact on traditional, sequential workloads using differ-
ent protocols. Finally, we study the sensitivity to differ-
ent read/write ratios in NSIO workloads and the impact
when storage vMotion occurs in parallel.

6.1 Caching and Software Optimizations
We investigate the impact of progressively adding meta-
data and data to a SSD cache as well the value of software
optimizations in terms of average IOPS (Figure 5(a)) and
latency (Figure 5(b)). Metadata include the FPI, FMD,
and DM caches, though our tests do not perform direc-
tory operations. To avoid direct comparisons, the ex-
periments with optimizations disabled are separated by
a dashed line in each set of bars

We vary the number of VM images accessed from 1
to 32 and plot the average IOPS and latency for a NSIO
workload. In these experiments, we study a read-only
workload, and each VM is issued a maximum of 8 con-
current I/Os. When the flash cache is disabled, each ex-
ternal I/O will translate to six internal I/Os to disk. This
includes two I/Os for FPI lookup to then perform one
I/O for file metadata. From the file metadata, we have
the chunk fingerprint and then perform two I/Os for FPI
lookup and one I/O to load the data. The total number
of HDD IOPS available on the test system is 24K. So,
the theoretical achievable client IOPS when the cache is
not available would be 4,000. Software optimizations are
enabled except in one set of runs.

We see in the experiment with 32 VMs and the cache
disabled, we achieve 3,200 IOPS with a latency of 35ms.
When we enable the caching of metadata, every external
NSIO will result in one I/O to HDD for data. We show
that we can achieve 28K IOPS in a 32 VM experiment,
with an average latency of 10ms. When both data and

metadata are in the flash cache, IOPS are only limited by
the data set size we can cache. On the test system, we
can cache 100% of the data for up to 24 VMs and 75%
of the data with 32 VMs. We achieve peak performance
of 57K IOPS for 24 VMs with a cache hit ratio of 95%.
The overall latency stays under 5ms even at peak IOPS.

We next consider the benefit of software optimizations
(§4) to improve NSIO performance. Results show that
using a SSD cache for NSIO without software changes
would limit us to a peak NSIO performance of 20K
IOPS, compared to 56K IOPS when software enhance-
ments are enabled. Similarly, even when data and meta-
data are cached, latency decreases from 13ms to 5ms
with the addition of software optimizations.

With a small cache and high churn in application
workload, some portion of the I/Os will be serviced from
disk. Our software optimizations remove unnecessary
I/Os to disk (§4.2, §4.3, and §4.5), increase parallelism
(§4.3), and improve the I/O scheduler (§4.8). With these
changes, we are able to to achieve high NSIO IOPS and
maintain a low latency with a SSD cache sized at 1% of
the total system capacity.

6.2 Traditional and NSIO Workloads

In this experiment, we evaluate both traditional and
NSIO workloads running concurrently to measure the
impact on traditional workloads. We run both workloads
through NFS and DDBOOST protocols. DDBOOST is
our proprietary protocol where segmenting and finger-
printing of data is offloaded to backup clients and only
changed data is sent across the network [12]. DDBOOST
performance is typically higher than NFS because dedu-
plication reduces the amount of data transferred, and the
backup server has fewer computational demands.

In this experiment, we throttle NSIO workloads on
32 VMs to a total of 10K IOPS. 2.4TB of the 3.2TB
data set fit in the data cache. In Figure 6, we measure
the performance of 96 streams of backup and restore
workloads while varying the protocol and the fraction of
reads versus writes of the NSIO workload. A 100% read
NSIO workload is possible when the client writes are
redirected to primary storage during a recovery opera-
tion. 70% reads are common in other recovery use cases
where both writes and reads are directed to backup stor-
age. Read/write numbers represent restore and backup
performance for high-generation backups with an equal
split of 48 backups and 48 restores.

Considering the difference between NFS and
DDBOOST, we find the expected result that DDBOOST
has higher overall throughput because of offloading
tasks to clients. Across protocols, backup and restore
performance is not degraded more than than 10% when
NSIO runs in parallel, though there is greater impact
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(a) IOPS (b) Latency

Figure 5: Average IOPS and latency as caching and software optimizations are varied. Up to 24 VMs, 100% of the
data can be cached. Caching decreases to 75% for 32 VMs. Experiments without software optimizations are separated
from the rest by a dashed line.

Figure 6: Traditional backup workloads have a 10%
degradation when NSIO workloads are added with the
DDBOOST protocol outperforming NFS.

when NSIO includes writes.
When more NSIO performance is required than the

sustained IOPS specified for the product, a system level
QoS parameter (§4.8) allows users to choose the amount
of impact on traditional workloads they find acceptable
to further increase NSIO performance. Though not
shown due to space limitations, we experimented with
varying the QoS share allotted to NSIO versus sequential
workloads. As the share for NSIO increased from 25%
to 50%, IOPS increased by 32%. Increasing the share
from 50% to 75% increased IOPS 18% more. When
NSIO was allocated 100% of the resources, IOPS in-
creased an additional 125% due to the complete removal
of sequential I/O interference.

6.3 Performance during Restores
Some backup applications provide a Instant Ac-
cess/Instant Restore feature where an application may be
able to perform read/writes from the backup copy while
a restore takes place. This feature may expose a read-
only copy of a backup image for the applications to ac-
cess while redirecting any writes to a write log typically
located on primary storage. We simulate this workload

using 100% NSIO reads. Other backup applications ex-
pose a read/write copy and send both reads and writes
from the application to the exposed copy. This is simu-
lated using a 70/30% reads/write NSIO workload. While
a VM image is being accessed, backup applications also
offer an option to perform storage vMotion of the VM
back to primary storage. This workload is simulated by
issuing sequential reads on the same VM image on which
NSIO is taking place.

Figures 7(a) and 7(b) show an experiment where
NSIO activity takes place with either 100% reads or
70/30% read/writes. With 24 VMs we see a peak of 56K
IOPS and under 4 ms of latency with 100% reads. For the
70/30% read/write mix, we see a peak of 44k IOPS at 24
VMs where the cache gets nearly 95% hits. We also show
that when vMotion on the same VM takes place, IOPS
for NSIO drop by at most 20% and achieves a peak of
45K IOPs for 100% reads. At 70/30% read/write with
vMotion, we achieve 40K IOPS. The overall result is
acceptably high performance NSIO performance while
vMotion takes place.

6.4 Fingerprint Cache Impact on Backup
and Restore Workloads

For traditional backup workloads, even with software op-
timizations, disk I/O becomes a bottleneck. We previ-
ously presented experimental results for placing a FPI
cache in SSD in Figure 2. For this test, we limited the
total IOPS available on the test system to 4,200 by using
only four disk groups, the smallest configuration possi-
ble. Other metadata and data accesses may still go to
HDD, so the overall throughput improvement has many
components besides fingerprint access speed. With a
high stream count of 96, overall throughput increases
with the SSD cache by up to 32%, which corresponds to
the fraction of I/O that can be satisfied by the FPI cache
in SSD.
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(a) IOPS (b) Latency

Figure 7: Average IOPS and latency for NSIO read/write access to VMs, with and without vMotion in parallel.

7 Related Work

A recent article [3] described the changes to data protec-
tion workloads and some of the changes DDFS made to
address them. However, the changes were described very
generally, focusing on qualitative issues but not quantita-
tive ones. As an example, the article mentioned the ad-
dition of SSDs, short fingerprints in SSD, and selectively
writing duplicates, but there were few implementation
details and no experiments. While we have focused on
improvements to backup storage for NSIO, backup soft-
ware drives most of the client-initiated workloads [4, 8].
The work on improving garbage collection enumeration
performance [11] to handle high deduplication rates and
numerous individual files provided detailed performance
measurements, but that effort is largely orthogonal to the
improvements for NSIO described here.

SSD-assisted deduplication has taken many forms.
DedupeV1 [25] and ChunkStash [9] were two early sys-
tems that moved the fingerprint index into SSD to im-
prove performance. ChunkStash used Cuckoo Hash-
ing [29] to reduce the impact of hash collisions, some-
thing we have not found to be a significant performance
issue. PLC-cache [23] categorized deduplicated chunks
by popularity to determine what to cache. Nitro [18] pre-
sented a technique for caching and evicting data chunks
in large units to SSD to improve performance while re-
ducing SSD writes, which influenced our metadata and
data cache design. Kim et al. [16] modeled deduplica-
tion overheads and benefits within SSD and then accel-
erated performance with selective deduplication against
recently written fingerprints. We view the contribution of
our work as lessons learned from a deployed storage sys-
tem pertaining to caching, prefetching, and scheduling,
and not simply the addition of SSDs.

While there have been multiple papers regarding se-
quential write and read performance for deployed dedu-
plicated storage products [5, 15, 20, 21], there has been
little discussion of nonsequential workloads. Discussing

the architectural changes needed to support both sequen-
tial and NSIO workloads in deduplicated storage will
hopefully drive further research.

8 Conclusion and Future Work

New workloads for backup appliances and denser HDDs
have placed demands on backup storage systems. DDFS
has had to evolve to support not only traditional work-
loads (full and incremental backups with occasional re-
stores) but also newer nonsequential workloads for thou-
sands of customer deployments. Such workloads include
direct access for reads and writes in place, as well as
other workload changes such as storing individual files
and eschewing periodic full backups. Additionally, tra-
ditional and newer workloads must peacefully coexist
within the same product.

Because of the cost difference between SSDs and disk,
we have chosen to cache a limited amount of metadata
and file data in SSD rather than moving the entire sys-
tem to SSD. We demonstrate that these caches not only
improve NSIO by up to two orders of magnitude, but
our system can also simultaneously support traditional
workloads with consistent performance. In summary,
improvements to our software and the addition of SSD
caches allow DDFS to support both new and traditional
workloads.

In the future, we expect NSIO workloads to become
more common as customers increase the frequency of
backups. In combination with decreasing SSD prices
(though likely still more expensive than HDD), it may
become worthwhile to increase our SSD cache to include
most metadata and a larger fraction of active data. We
will need to revisit our software design as bottlenecks
shift between I/O and CPU.
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