
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

HiKV: A Hybrid Index Key-Value Store
for DRAM-NVM Memory Systems

Fei Xia, Institute of Computing Technology, Chinese Academy of Sciences;
University of Chinese Academy of Sciences; Dejun Jiang, Jin Xiong, and Ninghui Sun,

Institute of Computing Technology, Chinese Academy of Sciences

https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia

HiKV: A Hybrid Index Key-Value Store for DRAM-NVM Memory Systems

Fei Xia1,2, Dejun Jiang1, Jin Xiong1, and Ninghui Sun1

1SKL Computer Architecture, ICT, CAS 2University of Chinese Academy of Sciences
{xiafei2011,jiangdejun,xiongjin,snh}@ict.ac.cn

Abstract
Hybrid memory systems consisting of DRAM and

Non-Volatile Memory are promising to persist data fast.
The index design of existing key-value stores for hybrid
memory fails to utilize its specific performance charac-
teristics: fast writes in DRAM, slow writes in NVM, and
similar reads in DRAM and NVM. This paper presents
HiKV, a persistent key-value store with the central idea
of constructing a hybrid index in hybrid memory. To
support rich key-value operations efficiently, HiKV ex-
ploits the distinct merits of hash index and B+-Tree in-
dex. HiKV builds and persists the hash index in NVM to
retain its inherent ability of fast index searching. HiKV
builds the B+-Tree index in DRAM to support range
scan and avoids long NVM writes for maintaining con-
sistency of the two indexes. Furthermore, HiKV applies
differential concurrency schemes to hybrid index and
adopts ordered-write consistency to ensure crash consis-
tency. For single-threaded performance, HiKV outper-
forms the state-of-the-art NVM-based key-value stores
by reducing latency up to 86.6%, and for multi-threaded
performance, HiKV increases the throughput by up to
6.4x under YCSB workloads.

1 Introduction
Emerging Non-Volatile Memory (NVM) technolo-

gies, such as PCM [1], ReRAM [2], and the recent 3D
XPoint [3], are drawing substantial attentions from both
academia and industry. One potential opportunity of
NVM is to act as a fast persistent memory sitting on
the memory bus, leading to hybrid DRAM-NVM mem-
ory systems [4, 5, 6]. Building storage systems, such as
key-value stores, towards hybrid memory allows one to
exploit fast memory access to achieve improved perfor-
mance compared to basing on traditional hard disks or
flash-based solid state drives (SSDs).

Persistent key-value stores (KV stores) have become
an important part of storage infrastructure in data cen-
ters. They are widely deployed in large-scale production
environments to serve search engine [7, 8], e-commerce
platforms [9], social networking [10, 11], photo stores
[12, 13], and more. In the past decade, there has been
a large body of research on KV store design and opti-
mization, on topics such as reducing write amplification

to SSDs [14, 15, 16], reducing memory usage of index-
ing [17, 18, 19], and improving concurrency to achieve
high scalability [11, 20, 21, 22]. Conventional KV stores
are not suitable for hybrid memory systems because they
are designed for the performance characteristics of hard
disks or SSDs. For instance, many of existing stud-
ies adopt Log-Structured Merge Tree as the indexing
structure [8, 11, 14, 15, 16], which avoids small random
writes to hard disks or SSDs. Differing from hard disks
and SSDs, hybrid memory systems are byte-addressable,
and provide similar performance for sequential and ran-
dom access. Maintaining sequential writes in large gran-
ularity instead introduces write amplification to NVM
when designing KV stores for hybrid memory systems.

Indexing is a fundamental issue in designing key-
value stores. The efficiency of supporting rich KV op-
erations, such as Put, Get, Update, Delete, and Scan, is
largely decided by the operational efficiency of indexing
structure. For instance, searching B+-Tree index is usu-
ally more costly than searching hash index. As we will
show in Section 2.2, the operational efficiencies of dif-
ferent indexing structures are largely varied. Recently,
a number of optimizations on B+-Tree index are pro-
posed for NVM memory systems [23, 24, 25, 26, 27,
28, 29, 30]. However, these techniques mainly focus on
reducing consistency cost when directly persisting B+-
Tree index in NVM. On the other hand, the scalability
of key-value stores is limited by the scalability of the
indexing structure. For instance, partitioning the hash
index allows one to scale the indexing structure to mul-
tiple threads, but partitioning the B+-Tree index incurs
expensive data movement when splitting large partitions
or merging small ones. Thus, we argue that the choice
of indexing structure for designing KV stores on hybrid
memory is still open.

In this paper, we propose HiKV, a Hybrid index Key-
Value store to run on hybrid memory. The central idea
behind HiKV is the adoption of hybrid index: a hash in-
dex placed and persisted in NVM, and while a B+-Tree
index placed in volatile but fast DRAM without being
persisted. The hybrid index fully exploits the distinct
merits of the two indexes. It retains the inherent effi-
ciency of hash operations to support single-key opera-
tions (Get/Put/Update/Delete). Moreover, it efficiently

USENIX Association 2017 USENIX Annual Technical Conference 349

accelerates Scan using the sorted indexing in B+-Tree.
Adopting hybrid index introduces a number of chal-

lenges. First, when serving certain KV operations, in-
cluding Put, Update, and Delete, the latency can be in-
creased as HiKV needs to update two indexes to keep
them consistent. HiKV solves this by placing the slow
B+-Tree index in fast DRAM and the fast hash index
in slow NVM. In addition, HiKV updates the B+-Tree
index asynchronously to further hide its latency. Sec-
ond, the scalability of the hybrid index requires careful
design. Partitioning the hash index provides good scala-
bility, while partitioning the B+-Tree index suffers from
high cost due to data migration. HiKV thus adopts parti-
tioned hash indexes and a global B+-Tree index. HiKV
applies Hardware Transactional Memory (HTM) for the
concurrency control of B+-Tree index, and fine-grained
locking to support concurrent accesses within individual
hash index partitions. Finally, guaranteeing crash con-
sistency of the hybrid index incurs expensive writes to
NVM. HiKV adopts selective consistency that only en-
sures the consistency of hash index and key-value items
by ordered-write. HiKV keeps the B+-Tree index in
DRAM and rebuilds it after system failure.

We implement HiKV and the state-of-the-art NVM-
based key-value stores NVStore [28] and FPTree [30].
We evaluate the three KV stores using both micro-
benchmarks and the widely used YCSB. For micro-
benchmarks, HiKV can reduce latency by 54.5% to
83.2% and 28.3% to 86.6% compared with NVStore and
FPTree, respectively. For YCSB workloads, HiKV out-
performs NVStore by 1.7x to 5.3x, and FPTree by 24.2%
to 6.4x in throughput.

This paper makes the following contributions:
1. We propose a hybrid index consisting of a hash in-

dex in NVM and a B+-Tree index in DRAM to
fully exploit the performance characteristics of hy-
brid memory to efficiently support rich KV opera-
tions.

2. We carefully design different concurrency schemes
for the hybrid index to achieve high scalability with
partitioned hash indexes and single global B+-Tree
index.

3. We propose ordered-write consistency and specific
hash index design allowing atomic writes to ensure
the crash consistency with reduced NVM writes.

4. We implement HiKV on top of the hybrid index.
We conduct extensive evaluations to show the effi-
ciency of the design choices of HiKV.

2 Background and Motivation
2.1 Non-Volatile Memory

Emerging Non-Volatile Memory (NVM) technolo-
gies, such as Phase Change Memory (PCM) [1] and Re-

Table 1: Characteristics comparison of different memory
technologies [28, 31, 32, 33, 34]

Category Read
latency

Write
latency

Write
Endurance

Random
accessing

DRAM 60ns 60ns 1016 High
PCM 50∼70ns 150∼1000ns 109 High

ReRAM 25ns 500ns 1012 High
NAND Flash 35us 350us 105 Low

sistive Memory (ReRAM) [2], can provide faster persis-
tence than traditional Disk and Flash. Table 1 shows the
performance characteristics of different memory tech-
nologies. NVM provides similar read latency to DRAM,
while its write latency is apparently longer than DRAM.
Similar to NAND Flash, the write endurance of NVM
is limited, especially for PCM. Thus, reducing writes
to NVM is critical for software system design. At last,
NVM has high performance for random accessing like
DRAM, which is different from traditional Flash.

2.2 KV operations and indexing efficiency
The Put, Get, Update, and Delete are basic operations

for KV stores. Besides, the Scan (short name for Range
Scan) becomes important as required by today’s appli-
cations. For instance, Facebook has replaced the storage
engine of MySQL with a KV store MyRocks [35]. Scan
turns out to be an important operation to serve range
query of MySQL. Local file systems (i.e. TableFS [36])
and distributed file systems (i.e. CephFS [37]), use KV
stores to store metadata. Scan is the core operation to
support the second most prevalent metadata operation
readdir [38]. Thus, efficiently supporting rich KV op-
erations is significant for building key-value stores.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Put Get Update Delete Scan

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Hash
SkipList
B+-Tree

Figure 1: Throughput of different indexes

However, neither the hash indexing nor the sorted
indexing can efficiently support all these operations.
We use micro-benchmarks to quantify the efficiency of
three widely used in-memory indexes: hash, skiplist,
and B+-Tree, to support the five KV operations. Fig-
ure 1 shows the in-memory throughput results with 50M
key-values. For Put/Get/Update/Delete, hash index per-
forms the most efficiently compared to the other two in-

350 2017 USENIX Annual Technical Conference USENIX Association

dexes. Hash index usually involves less memory oper-
ations than skiplist and B+-Tree, which requires multi-
ple levels searching. However, as a non-sorted index-
ing, hash index provides extremely low throughput for
Scan due to the cost of scanning the whole index space.
Current NVM-based KV stores follow the widely adop-
tion of B+-Tree as the indexing structure. However, the
above results motivate us to propose hybrid index to ex-
ploit distinguished merits of different indexes.

3 HiKV Design and Implementation
In this section, we present the system design and im-

plementation of HiKV. We first present the design of
the hybrid index. We then describe design issues when
adopting hybrid index, including index updating, con-
currency control, and crash consistency guaranteeing.
Following that, we present the recovery of HiKV. At last,
we describe the implementation of HiKV.

3.1 Hybrid index
Basic key-value operations include Put, Get, Update,

Delete, and Scan1. To locate the requested key-value
item, the single-key operations (Put/Get/Update/Delete)
first take exactly one key to search the index. Once
the KV item is located, Get directly returns the data,
and while the write operations (Put/Update/Delete) re-
quire to persist updated index entry and new KV item
if provided. Thus, the efficiency of index searching and
data persisting is significant for these operations. Hash
indexing inherently supports highly-efficient searching.
Besides, regarding NVM reads perform similarly as in
DRAM, placing a hash index in NVM as part of the hy-
brid index is a reasonable design choice. This design
not only retains fast searching of hash index, but also
allows persisting index in NVM directly without extra
data copy from DRAM to NVM.

On the other hand, Scan takes a start key and count
(or a start key and an end key) as input, which can bene-
fit from sorted indexing. To efficiently support Scan, the
hybrid index employs the widely used B+-Tree index in
main-memory systems [39, 40]. To maintain a consis-
tent hybrid index, updating both hash index and B+-Tree
index for KV writes is fundamentally required. Updat-
ing B+-Tree index involves many writes due to sorting
as well as splitting/merging of leaf nodes. We thus place
the B+-Tree index in fast DRAM to avoid slow NVM
writes in hybrid memory.

Figure 2 shows the architecture of hybrid index in hy-
brid memory. We discuss the issue of hybrid index up-
dating in Section 3.2. Furthermore, to serve concurrent

1Existing KV stores (i.e. Redis) support batch operations, such as
MutiPut and MultiGet. HiKV can be extended to support such batch
operations, which we leave as our future work.

kv_item ...

DRAM NVM
Hash index Partition 0

(lock)

kv_item ...

Hash index

kv_item ...

Hash index

...

Global
B+-Tree index

(HTM)

Consistency
not guaranteed Consistency guranteed

Partition 1
(lock)

Partition N
(lock)

Figure 2: Architecture of hybrid index

requests, the hash index is divided into multiple parti-
tions. The B+-Tree index is instead designed as a global
one to indexes all KV items. We explain the differential
concurrency schemes in Section 3.3. HiKV only guar-
antees the consistency of KV items and the hash index
for improved performance. We present the ordered-write
consistency mechanism in Section 3.4.

3.2 Index updating
3.2.1 Asynchronous updates

When serving KV writes (Put/Update/Delete), HiKV
needs to update both the hash index and the B+-Tree
index to keep them in a consistent state. One intuitive
solution is to synchronously update both indexes. Due
to the costly tree structure-specific operations, such as
searching, sorting, splitting and merging, synchronous
updates for the B+-Tree index add extra latency to KV
writes. Thus, HiKV employs asynchronous updates for
hybrid index. In other words, HiKV retains synchronous
updates to KV items and the hash index in NVM. For
the B+-Tree index in DRAM, HiKV asynchronously up-
dates it in the background to hide the extra latency.

Figure 3 shows the procedure of HiKV to serve dif-
ferent KV operations. Taking Put as an example. HiKV
first uses a serving thread to serve the incoming request.
The serving thread is responsible for writing KV items
to NVM (step1), and then writing the newly-added in-
dex entry to the hash index (step2). At last, the serv-
ing thread inserts the Put request to an updating queue
(step3) and then returns. An asynchronous thread (called
backend thread) gets requests from the updating queue
and operates the B+-Tree index in the background. In
case of failing to update the B+-Tree index due to sys-
tem crash, HiKV can recover the B+-Tree index from
the hash index as presented in Section 3.5. In such do-
ing, the observed latency of KV writes can be reduced.

However, a Scan request faces an inconsistent state of
the B+-Tree index as long as there exists requests in the
updating queue when it arrives. Directly serving the scan
request would retrieve old or invalid data. HiKV solves
this by temporally blocking subsequent writes to enter
into the updating queue once a scan is received. The

USENIX Association 2017 USENIX Annual Technical Conference 351

KV data

B+-Tree index

DRAM NVM

Put/Get/Update/DeleteScan

updating queue

step3

async

kv_item ...

step2

Hash index

step1

thread 0

Threadpool

... thread Mthread 1

backend threads

thread 0 ... thread Nthread 1

serving threads

Figure 3: Procedure to serve KV operations

scan and subsequent writes wait until when all existing
requests in the updating queue are processed. Once the
updating queue becomes empty, it starts to receive fur-
ther requests, and meanwhile the scan is served. Then,
the concurrency control among the scan and subsequent
writes on the B+-Tree index are provided by Hardware
Transactional Memory (HTM). We limit the length of
the updating queue (i.e., holding 4096 requests in this
paper) to avoid excessive waiting.

3.2.2 Dynamic threads adaption
To serve highly-concurrent requests, HiKV needs to

increase the number of serving threads. For read-write
mixed workloads, this can rapidly fill the updating queue
as many serving threads put write requests into the
queue. If the backend threads fall behind the serving
threads, the updating queue becomes full and further
blocks serving subsequent requests. Thus, HiKV needs
to dynamically adapt the backend threads according to
the change of serving threads.

We usually set a fix-sized thread pool to run both serv-
ing threads and backend threads. The dynamic threads
adaption scheme is to decide the numbers of serving
threads (Nsthd) and backend threads (Nbthd). Basically,
we need to match the average processing rate of the
backend threads on the updating queue with the average
queue filling rate of the serving threads. The process-
ing rate and filling rate are determined by a number of
factors, such as KV operation complexity, ratio of dif-
ferent KV operations, and DRAM/NVM performance.
To decide Nsthd and Nbthd at runtime, we sample the
numbers of different KV operations as well as their av-
erage operational latencies. Based on our observation,
the operational latency of Scan is 14 times than that of
Get, and the latency gap among Put, Update, and Delete
is less than 2x. For simplicity, we do not distinguish
Put/Update/Delete when sampling but sample Scan and
Get operations separately. Within each sampling win-
dow, assuming the number of writes is normalized to 1,
the number of Get is Ng and the number of Scan is Ns.
The average latencies of Get and Scan are Lg and Ls.
The average write latencies of backend thread and serv-

ing thread are Lbw and Lsw, respectively. Then, Nsthd

and Nbthd should satisfy the following two equations, in
which Nthd is the total size of the thread pool. In such
doing, the average processing latency of backend threads
matches the one of serving threads.

(Ng ·Lg +Ns ·Ls +1 ·Lsw)/Nsthd = (1 ·Lbw)/Nbthd

(1)
Nsthd +Nbthd = Nthd (2)

3.3 Differential concurrency
Concurrency control is a key issue for improving the

scalability of KV stores in the multi-core era. In this
section, we present the differential concurrency schemes
applied to the hybrid index.

Partitioning is shown to achieve high throughput and
scalability for balanced workloads [40]. Thus, HiKV
adopts the widely-used keyhash-based partitioning [41,
37, 42] for the hash index. All KV items are distributed
to multiple partitions according to the hash value of the
key, and each partition uses a hash index as Figure 2
shows. HiKV allows concurrent accessing to a parti-
tion by multiple threads to handle skewed workloads. It
uses fine-grained locking for concurrency control inside
each partition. HiKV uses an atomic write to update the
hash index entry as illustrated in Section 3.4. As a re-
sult, HiKV can read an index entry when another thread
is updating it without locking.

Partitioning the B+-Tree index results in either un-
ordered multi-B+-Tree indexes as in Cassandra [43] and
Megastore[44] using keyhash-based approach, or or-
dered multi-B+-Tree indexes as in SLIK [45] using range
partition. However, we argue that none can efficiently
support Scan due to extra efforts. With unordered multi-
B+-Tree indexes, we need to issue the scan request to all
indexes, and then return the matching key-values from
the result. Such approach increases the concurrency
overhead. With ordered multi-B+-Tree indexes, the scan
request can be only issued to indexes that contain corre-
sponding KV items. However, such approach needs to
migrate index entries when an index becomes too large
or too small, which degrades system performance. Thus,
HiKV adopts a global B+-Tree index for all KV items in
NVM. HiKV adopts HTM to handle concurrency control
of the global B+-Tree index.

3.4 Ordered-write consistency
Guaranteeing crash consistency is a fundamental re-

quirement for persistent KV stores. Since NVM has long
write latency, HiKV needs to reduce NVM writes when
guaranteeing consistency. We first apply selective con-
sistency to HiKV to only ensure the consistency of hash
index and KV items, but not guarantee consistency for
the B+-Tree index to avoid expensive data copy from

352 2017 USENIX Annual Technical Conference USENIX Association

DRAM to NVM. Upon a system failure, HiKV recovers
the B+-Tree index as presented in Section 3.5.

Secondly, we apply ordered-write to ensure the con-
sistency of the hash index and KV items. Conventional
logging and copy-on-write incur two writes when guar-
anteeing consistency. The ordered-write consistency
first updates the KV item out-of-place. Then, it up-
dates the hash index in-place using an atomic write.
A KV item is not visible until the atomic write is fin-
ished. In such doing, crash consistency is guaranteed
without introducing extra writes. We then describe the
specific hash index design for supporting atomic write
and present the consistency algorithms.

3.4.1 Hash index design
Modern processors support 8B atomic writes natively

and 16B atomic writes using cmpxchg16b instruction
(with LOCK prefix) [46, 47]. However, the key size of
KV stores is usually 16B [13, 48]. Directly placing the
original key and the position of KV item in a hash index
entry makes it impossible to apply atomic writes.

index_entry

kv_poskey_signature

Hash
index

kv_item

kv_length key value

KV items

16B

bucket0

bucket1

Figure 4: Hash index and key-value data layout

The position of key-values needs 48bits in modern
processors. If the index entry is designed to be 8B, then
the key signature can only occupy 16 bits. There exists
many signature conflicts as 16 bits signature can only
distinguish 65536 keys. Thus, HiKV adopts 16B in-
dex entry that can also be updated atomically. Figure 4
shows the design of the hash index and KV items. A
16B index entry consists of a 64bits key signature and
a 64bits position to refer the position of KV item. A
hash bucket contains multiple 16B index entries. To sup-
port varied-length key and value, each KV item stores a
32bit kv length, key and value. Key signature may still
be conflicted among different keys. Thus, HiKV checks
corresponding KV item if the key signature in index en-
try equals to the signature of specified key.

3.4.2 Consistency algorithm
In this subsection, we present the consistency algo-

rithms of different HiKV operations. Note that, mem-
ory writes may be reordered due to the caching of CPU
or the scheduling of memory controller. HiKV uses
the sequence of sfence, clflush, sfence instruction (re-

ferred to persist) to enforce the ordering and persis-
tency of memory writes based on existing hardware
[24, 27, 28, 49, 50]. The clflush can be replaced with the
latest CLWB instruction [51] if the hardware supports it.

Put. Algorithm 1 presents the pseudo-code of Put. It
first finds an empty index entry (line 1). Then the al-
gorithm allocates free space to store the KV item (line
2). Next, it sets the KV item (line 3), and persists the
KV item to NVM (line 4). At last, it performs an atomic
write to set the index entry(line 5), and persists the index
entry (line 6).

Algorithm 1 HiKV PUT(op, key, value)
1: index entry = find empty entry(key);
2: new kv item = alloc space(sizeof(kv item));
3: set new kv item according to key and value;
4: persist(new kv item, sizeof(kv item));
5: AtomicWrite(index entry, new entry);
6: persist(index entry, sizeof(index entry));

Update. Algorithm 2 presents the pseudo-code of Up-
date. The algorithm finds the original index entry ac-
cording to the key (line 1), and uses the index entry to
find the original KV item in NVM (line 2). Since HiKV
adopts out-of-place update for KV item, it needs to allo-
cate free space to store new KV item (line 3). Then, it
sets the KV item, persists it, atomically updates the in-
dex entry, and persists it like Put (line 4-7). At last, it
deallocates the space of original KV item (line 8).

Algorithm 2 HiKV UPDATE(op, key, value)
1: index entry = find index entry(key);
2: orig kv item = get original item(index entry);
3: new kv item = alloc space(sizeof(kv item));
4: set new kv item according to key and value;
5: persist(new kv item, sizeof(kv item));
6: AtomicWrite(index entry, new entry);
7: persist(index entry, sizeof(index entry));
8: free space(orig kv item);

Delete. Algorithm 3 presents the pseudo-code of the
Delete operation. The algorithm first finds the original
index entry and KV item (line 1, 2). It invalids the in-
dex entry by setting it to 0 using an atomic write (line
3), and then persists the index entry (line 4). At last, it
deallocates the space of original KV item (line 5).

Algorithm 3 HiKV DELETE(op, key)
1: index entry = find index entry(key);
2: orig kv item = get original item(index entry);
3: AtomicWrite(index entry, 0);
4: persist(index entry, sizeof(index entry));
5: free space(orig kv item);

USENIX Association 2017 USENIX Annual Technical Conference 353

The validity of a KV item is identified by correspond-
ing index entry. Since the index entry is atomically up-
dated at last, crashes happened in any step of the three
algorithms do not destroy consistency.

Note that, HiKV faces the challenge of memory leak
when a crash occurs after allocating a free NVM space.
Solving memory leak thoroughly relies on the support
of underlying libraries and operating system. We leave
it as our future work.

3.5 Recovery
In this section, we describe the recovery of HiKV after

normal shutdown and system failure.
Recovery after a normal shutdown. On a normal

shutdown, HiKV persists the B+-Tree index in contin-
uous NVM space. Then, HiKV saves the start address
of this space to a reserved position in NVM and atomi-
cally writes a flag indicating a normal shutdown. HiKV
checks the flag when it recovers the index. If the flag
indicates a normal shutdown, then HiKV reads the B+-
Tree index stored in NVM and recovers it to DRAM.
Otherwise, HiKV executes the following recovery.

Recovery after a system failure. In case of a system
failure, HiKV must rebuild the B+-Tree index from the
consistent hash index and key-value items in NVM by
only scanning all hash indexes. For each index entry in
every hash index, if its value is not zero, the recovery
thread inserts the key and the position of correspond-
ing KV item to the B+-Tree index. Otherwise, the in-
dex entry is invalid.

3.6 Implementation
We implement HiKV on top of the hybrid in-

dex. HiKV utilizes the lossless hash index design in
MICA [42]. A hash bucket contains multiple succes-
sive index entries. HiKV sequentially searches next in-
dex entry in the hash bucket when a hash collision oc-
curs. Each index entry in the leaf nodes of B+-Tree
contains a whole key and the position of corresponding
KV item in NVM. We implement multiple lock-free up-
dating queues to reduce contention when serving highly
concurrent requests. All backend threads poll updating
queues as the cost of thread synchronization is high.

4 Evaluation
In this section, we evaluate the performance of HiKV.

We first describe the experimental setup and then evalu-
ate HiKV using micro- and macro-benchmarks.

4.1 Experimental Setup
We conduct all experiments on a server equipped with

two Intel Xeon E5-2620 v4 processors. Each one run-
ning at 2.1 GHz has 8 cores, a shared 20MB last level
cache. The memory size in the server is 256GB.

NVM emulation
As real NVM DIMMs are not available for us yet, we

emulate NVM using the DRAM similar to prior works
[49, 52, 6]. The access latency of DRAM is about 60 ns
[49], and the write latency of the latest 3D-XPoint is ten
times of DRAM [3]. Thus, we set the NVM write la-
tency to 600 ns. We add extra write latency only once
for each persist operation as described in Section 3.4.2.
We add the long write latency of NVM using the x86
RDTSCP instruction. We use the instruction to read the
processor timestamp counter and spin until the counter
reaches the configured latency. We do not add extra
read latency for NVM as it has similar read latency with
DRAM [28, 31]. The impact of longer NVM read la-
tency is evaluated in Subsection 4.6.

Workloads
We use five micro-benchmarks to evaluate the perfor-

mance of single KV operations, namely Put, Get, Up-
date, Delete, and Scan. The randomly generated scan
count is less than 100 like YCSB [53]. For each micro-
benchmark, we first warm up KV stores with 50M key-
values. Then, we execute 50M operations with randomly
selected key-values. All our micro-benchmarks gener-
ate KV data following the uniform distribution. We use
the widely used macro-benchmark YCSB to evaluate the
performance of mixed operations. We also execute 50M
key-value operations. We use the default configuration
of YCSB that is zipfian distribution with 99% skewness.

For both micro- and macro- benchmarks, we always
use a key size of 16B, which is a typical size in produc-
tion environment [13, 48]. In Facebook, over 90% value
sizes of Memcached are close but less than 500B [48].
Thus, we set the value size to 256B basically.

Compared systems
We compare HiKV with the state-of-the-art NVM KV

store NVStore [28] and hybrid memory KV store FPTree
[30]. We do not compare HiKV with disk-based KV
stores, such as RocksDB [11]. This is because HiKV
is designed for byte-addressable NVM, and its I/O stack
is quite different from that of RocksDB. We also do not
evaluate KV stores that periodically persist data, such as
Echo [54] and Masstree [39]. These KV stores cannot
guarantee the consistency of every KV operation.

We re-implement NVStore and FPTree as faithfully
as possible according to the descriptions in their papers.
The index of NVStore is an optimized B+-Tree, called
NVTree, which keeps entries in leaf nodes unsorted to
reduce NVM writes. To be fair, we place inner nodes
of NVTree in the DRAM as the way HiKV uses the
DRAM. FPTree also uses a variation of B+-Tree, which
adds a bitmap and fingerprints in each unsorted leaf node
to accelerate searching.

A typical usage of DRAM for hybrid memory systems
is using DRAM as a cache of NVM, besides placing a

354 2017 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

Get Put Update Delete Scan

N
o
rm

a
liz

e
d

 l
a
te

n
cy

NVStore
FPTree
FPTree_C
HiKV

Figure 5: Normalized latency of KV ops

 0

 1

 2

 3

 4

 5

 6

Get Put Update Delete Scan

N
o
rm

a
liz

e
d

 t
h
ro

u
g

h
p

u
t

NVStore
FPTree
FPTree_C
HiKV

Figure 6: Normalized throughput of KV ops

part of index in DRAM. For 16B keys and 256B values,
HiKV’s ratio of DRAM consumption to NVM is 15.4%
larger than FPTree (details in Subsection 4.7). Thus, we
use the extra DRAM as a cache of FPTree, called FP-
Tree C in our evaluation. FPTree C uses hash index and
LRU replacement policy to manage the cache.

4.2 Single-threaded performance
We first evaluate the single-threaded performance of

HiKV using micro-benchmarks. For benchmarks that
only read data, including Get and Scan, all four KV
stores use one thread. Note that, HiKV is designed
to adopt serving threads accompanied with backend
threads to operate the B+-Tree index when serving write
requests. Thus, for Put, Update, and Delete, HiKV is
configured to use one serving thread and one backend
thread. For fair comparison, both NVStore, FPTree, and
FPTree C are configured with two threads.

4.2.1 Latency reduction
Figure 5 shows the latency reduction of HiKV. For

Get, HiKV can reduce latency by 83.2% and 86.6% than
NVStore and FPTree, respectively. HiKV only needs to
lookup the fast hash index. However, both NVStore and
FPTree not only need to lookup the tree index, but also
need to sequentially lookup a leaf node as keys in the leaf
node are unsorted. For Put/Update/Delete, HiKV can re-
duce latency by 54.5%/58.4%/65.3% than NVStore, and
68.8%/59.1%/45.0% than FPTree, respectively. This is
because searching the hash index is fast and HiKV uses
asynchronous mechanism to hide the latency of B+-Tree
index. For Put and Update, FPTree needs to persist data
three times (bitmap, fingerprints and key-value), while
NVStore only needs to persist data twice (key-value and
leaf.number). As a result, the Put and Update laten-
cies of FPTree are higher than those of NVStore. For
Delete, HiKV only needs to invalid the corresponding
index entry and persist it to NVM. However, NVStore
needs to insert the key-value with an invalid flag and up-
date the leaf number, which persists data to NVM twice.
Although FPTree only needs to invalid bitmap and per-
sist once for Delete, its latency is still larger than that of

HiKV due to inefficient searching of tree index.
For Scan, HiKV can reduce latency by 77.7% and

28.3% than NVStore and FPTree, respectively. When
putting a key-value, NVStore does not check whether
the key-value has existed in the leaf node. As a result,
it must check whether a key-value is valid or not when
scanning a leaf node. Thus, the Scan latency of NVS-
tore is apparently larger than that of HiKV. FPTree uses
a bitmap per leaf node to identify the validity of key-
value entries in the leaf node. Thus, the Scan latency
of FPTree is lower than that of NVStore, while it is still
larger than that of HiKV.

FPTree C performs worse than FPTree for single-key
operations. This is because the micro-benchmarks have
uniform distribution, which results in low cache hit ra-
tio. FPTree C incurs extra performance overhead for the
cache replacement.

4.2.2 Throughput improvement
Figure 6 shows the throughput improvement of HiKV.

HiKV can improve throughput by 5.0x/3.8x than NV-
Store, and 6.4x/41.2% than FPTree for Get/Scan, re-
spectively. For Put/Update, HiKV outperforms NVStore
and FPTree by 10.4%/19.6%, and 55.9%/19.6%, respec-
tively. The Delete throughput of HiKV is 43.2% higher
than that of NVStore, and 10.0% lower than that of FP-
Tree. The throughput improvement of HiKV is lower
in Put/Update/Delete than in Get/Scan. This is because
NVStore and FPTree use two threads to run these write
requests, while HiKV only uses one serving thread. For
read requests, these three KV stores use one thread. FP-
Tree C achieves lower throughput than FPTree due to
the overhead of DRAM cache management.

4.3 Scalability
We then evaluate the scalability of HiKV using the

macro-benchmark YCSB. We do not use the original
YCSB framework with client-server mode due to its
long latency of network stack. Here, we use a lo-
cal YCSB workload generator following the default
YCSB configurations like MICA [42]. HiKV dynam-
ically adapts the number of serving threads and back-

USENIX Association 2017 USENIX Annual Technical Conference 355

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(a) YCSB-A: 50% Get - 50% Update

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(b) YCSB-B: 95% Get - 5% Update

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(c) YCSB-C: 100% Get

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(d) YCSB-D: 95% Get - 5% Put

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(e) YCSB-E: 95% Scan - 5% Put

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(f) YCSB-F: 50% Get - 50% ReadModify-
Write

Figure 7: Scalability on YCSB workloads

end threads according to different workloads. To be fair,
we configure NVStore, FPTree, and FPTree C to use
the same total number of threads as HiKV in all eval-
uations. We run these benchmarks at most 32 threads as
the server we used has 16 cores.

Figure 7 presents the throughputs of YCSB work-
loads as the number of threads varies from 2 to 32.
The performance of HiKV with 32 threads is increased
by a factor of 13.6/15.5/10.5/15.4/4.3/18.3 for YCSB-
A/B/C/D/E/F against the two-threaded execution, re-
spectively. For the same scalability evaluation, the scal-
ing factors for NVStore, FPTree, and FPTree C are
5.5/7.6/8.2/8.2/4.6/5.5, and 10.0/7.5/7.5/7.7/3.4/10.1,
and 7.9/8.2/8.8/7.8/3.5/8.8, respectively. In summary,
HiKV achieves better scalability than NVStore and FP-
Tree. The Get ratio is 95%, 95%, and 75% for YCSB-
B, YCSB-D, and YCSB-F, respectively. HiKV provides
more than 20 serving threads with 32-threaded execution
due to the dynamic threads adaption. However, HiKV
only has one serving thread with 2-threaded execution.
As a result, HiKV executed with 32 threads can improve
throughput by large than 15x than 2-threaded execution
for YCSB-B/D/F.

With 32-threaded execution, HiKV outperforms NV-
Store by 1.7x to 5.3x, FPTree by 24.2% to 6.3x, and
FPTree C by 24.1% to 3.5x. For read-intensive and
skewed workloads, such as YCSB-B/C, FPTree C per-
forms better than FPTree for as the cache hit ratio is
high. For YCSB-E, HiKV can scale to 8 threads almost
linearly and keeps stable with more threads. This is be-
cause HiKV must lock all updating queues temporally
before serving Scan, which would block the Put of other
threads. NVStore, FPTree and FPTree C can scale to

16 threads for YCSB-E. Even so, HiKV still improves
throughput by 1.7x, 24.2%, and 24.1% than NVStore,
FPTree and FPTree C, respectively.

4.4 Sensitivity analysis

In this section, we conduct sensitivity analysis to
HiKV considering NVM write latency and workload
dataset size. We use 16 threads for all the experiments.

4.4.1 Sensitivity to NVM write latency

The write latencies are different among various NVM
devices. Thus, we evaluate the impact of NVM write la-
tency on the performance. Figure 8 shows the through-
put results when we vary NVM write latency from 50 ns
to 1400 ns. The Get and Scan performance have no re-
lation with the write latency. Thus, we only show the
results of Put, Update, and Delete. We do not show the
results of FPTree C as it performs worse than FPTree for
uniform distributed workloads.

We find that the throughput decreases as NVM write
latency increases for NVStore and FPTree. This is
due to the increase of persist latency. For Delete, the
throughput of HiKV remains stable when the write la-
tency is lower than 1400 ns. This is because the con-
current deletion latency of B+-Tree index is still longer
than that of the hash index even though the write la-
tency increases to 1000 ns. Compared to NVStore and
FPTree, HiKV still improves the throughput of Delete
by 17.6%/80.0%/39.9%, and 32.9%/38.4%/24.6% for
Put/Update/Delete, respectively even if the write latency
of NVM reaches 1400 ns.

356 2017 USENIX Annual Technical Conference USENIX Association

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(a) Put

 0

 1

 2

 3

 4

 5

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(b) Update

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(c) Delete

Figure 8: Impact of NVM write latency

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(a) Put

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(b) Update

0.0

1.0

2.0

3.0

4.0

5.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(c) Delete

Figure 9: Impact of dataset size

4.4.2 Sensitivity to dataset size
HiKV adopts a global B+-Tree index to support Scan.

A doubt is whether the B+-Tree index limits the scal-
ability of HiKV as the dataset size increases. Figure 9
shows the throughput as the number of key-values in-
creases from 10M to 250M. The Put throughput of NVS-
tore is not available for 250M key-values as they run out
of our server memory due to the sharply increased size
of the NVTree index. The total number of key-values is
500M for Put as we first warm up with 250M key-values.

The throughput of HiKV remains unchanged for Up-
date, while the throughput of NVStore and FPTree de-
creases by 19.3% and 13.1%, respectively. When the
number of key-values increases 25 times, the through-
put of HiKV, NVStore, and FPTree decreases by 14.6%
/22.4%, NA/15.6%, and 7.2%/16.3% for Put and Delete,
respectively. The performance degradation is due to the
increased searching latency with increased dataset size.
The update throughput of HiKV is determined by serv-
ing threads under such configuration. Thus, we can con-
clude that the global B+-Tree index does not limit the
scalability compared to NVStore and FPTree.

4.5 Performance breakdown
In this section, we first analyze the effectiveness

of asynchronous updates, differential concurrency, and
ordered-write consistency of HiKV. HiKV sync updates
the hash index and B+-Tree synchronously within one
thread. HiKV par adopts partitioning-based concur-
rency control for B+-Tree index, which has ordered

multi-B+-Tree indexes. HiKV wal uses the traditional
Write-Ahead Log to guarantee consistency.

Figure 10 shows the average latency of Put as the
NVM write latency increases from 50 ns to 1400 ns.
Compared with HiKV sync, HiKV can reduce latency
by 46.7% to 57.8%. This is due to the asynchronous
updates of HiKV that the critical path only contains op-
erating the hash index. HiKV can reduce latency by
11.2% to 17.4% compared to HiKV par. The perfor-
mance degradation of HiKV par is caused by the two
reasons. First, migrating index entries among B+-Tree
indexes blocks normal put operations. Second, the mi-
gration thread preempts CPU resources in 16-threaded
execution. HiKV wal stores key and value position (in-
dex entry) in hash index. To guarantee consistency,
HiKV wal first writes key-value in log area, then write
value to NVM and writes the index entry in hash in-
dex for Put. Writing value and index entry in hash ta-
ble without logging will result in inconsistency. This is
because the index entry and value in HiKV wal can not
be update atomically. We can find that HiKV wal needs
to persist data to NVM three times although HiKV wal
does not need to guarantee the order of writing value
and index entry to NVM. However, HiKV only needs to
persist data to NVM twice due to the order-writing. The
evaluation result shows that HiKV can reduce latency
than HiKV wal by up to 27.4% when the NVM write
latency reaches 1400 ns.

Secondly, we evaluate the effectiveness of dy-
namic threads adaption in HiKV. We first warmup
50M key-values, then we execute back-to-back YCSB-

USENIX Association 2017 USENIX Annual Technical Conference 357

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 200 600 1000 1400

A
v
e
ra

g
e
 l
a
te

n
cy

 o
f

P
u
t

(u
s)

NVM write latency (ns)

HiKV_sync
HiKV_par
HiKV_wal
HiKV

Figure 10: Effectiveness of asynchronous updates, dif-
ferential concurrency, and order-writing consistency

A/B/C/D/E/F. The percentages of Put/Get/Update/Scan
are varied in these workloads. Each workload is ex-
ecuted by 60 sec. The total number of threads is
16. HiKV-8-8 and HiKV-12-4 represents executing with
static 8 serving threads and 8 backend threads, and 12
serving threads and 4 backend threads, respectively.

Figure 11 shows the throughputs as the workload
changes from YCSB-A to YCSB-F. HiKV can achieve
the highest throughput except for YCSB-A. For YCSB-
B/C/D/E/F, HiKV outperforms HiKV-8-8 and HiKV-12-
4 by 10.5% to 1.0x and 10.4% to 37.5%, respectively.
For YCSB-A, the throughput of HiKV is same through-
put with HiKV-8-8, and slightly lower than HiKV-12-
4 by 1.6%. HiKV dynamically adapts the number of
serving threads and backend threads, such as 8 and 8 for
YCSB-A, 13 and 3 for YCSB-B, 9 and 7 for YCSB-F.
For read-intensive workloads, increasing the number of
serving threads can improve throughput of HiKV.

 0

 5

 10

 15

 20

 25

 30

 35

 40

20 40 60 80 100
120

140
160

180
200

220
240

260
280

300
320

340
360

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Time (sec)

HiKV-8-8
HiKV-12-4
HiKV

Figure 11: Effectiveness of dynamic threads adaption.
0-60s:YCSB-A. 60-120s:YCSB-B. 120-180s:YCSB-C.
180-240s:YCSB-D. 240-300s:YCSB-E. 300-360s:YCSB-
F.

4.6 Impact of NVM read latency
A few researches indicate that the read of NVM is

longer than that of DRAM [47, 55]. Thus, we evaluate
the impact of NVM read latency on system performance.
We emulate the longer read latency similar to emulating
write latency. We set the NVM read latency to 120 ns,
which is twice as that of DRAM [55].

Figure 12 shows that the average serving latency in-

creases as NVM read latency does. This is because
HiKV spends more time to search hash index. However,
NVStore and FPTree also takes more time when search-
ing unsorted leaf nodes and splitting/merging leaf nodes.
Thus, HiKV can still apparently reduce latency than NV-
Store and FPTree. For example, HiKV can reduce la-
tency by 80.0%/61.8% than NVStore, and 82.3%/13.0%
than FPTree for Get/Scan with doubled read latency, re-
spectively.

 0

 5

 10

 15

 20

 25

Get Put Update Delete Scan

A
ve

ra
ge

 la
te

nc
y

(u
s)

NVStore-SL
NVStore-DL
FPTree-SL
FPTree-DL
HiKV-SL
HiKV-DL

Figure 12: Impact of NVM read latency. (SL and DL
represent same latency and doubled latency as DRAM.)

4.7 Memory consumption
Figure 13 shows the DRAM and NVM consumptions

after randomly putting 50M key-values to different KV
stores. The value size varies from 64B to 1KB. The
curves show the ratio of DRAM consumption to NVM
consumption. Since DRAM is used to store the indexes
of key-values, the DRAM consumptions are related to
the number of key-values and keep constant with varied
value sizes for both KV stores. On the contrary, in both
KV stores, NVM is used to store data items and its con-
sumption increases as the value size increases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

64 128 256 512 1024
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
R

A
M

 a
n

d
 N

V
M

 c
o
n

su
m

p
ti

o
n

 (
G

B
)

R
a
ti

o
 o

f
D

R
A

M
 t

o
 N

V
M

Value size (B)

NVStore-DRAM
NVStore-NVM
FPTree-DRAM

FPTree-NVM
HiKV-DRAM
HiKV-NVM

NVStore-ratio
FPTree-ratio
HiKV-ratio

Figure 13: DRAM consumption

We observe that NVStore consumes DRAM as high
as 38.27 GB. This is mainly because NVStore creates
one parent-leaf-node per leaf node when rebuilding the
contiguous inner nodes of NVTree. The index size of
NVTree increases exponentially as the tree height in-
creases. HiKV always consumes 2.21 GB DRAM to
store B+-Tree index, which is larger than FPTree. This

358 2017 USENIX Annual Technical Conference USENIX Association

is because the fine-grained B+-Tree of HiKV must index
every unsorted key-value in NVM, while FPTree only
stores its inner nodes in DRAM. However, the HiKV-
ratio decreases from 40% to 4% as the value size in-
creases from 64B to 1KB. For 256B value, the HiKV-
ratio is 15.8%. Our evaluation shows that even though
the extra DRAM space is used as a cache of FPTree
(namely FPTree C), HiKV still achieves higher perfor-
mance than FPTree C. Reducing the DRAM consump-
tion of B+-Tree, such as migrating part of leaf nodes to
NVM, is our future work.

4.8 Recovery time
We finally evaluate the recovery performance of

HiKV, NVStore, and FPTree. NVStore and FPTree takes
11.03s and 1.74s to recover 50M key-values, respec-
tively. NVStore takes more time than FPTree as it al-
locates much larger contiguous inner nodes for tree in-
dex and insert keys more randomly than FPTree. Since
the hash index is unsorted, HiKV needs to read valid
index entry in NVM and insert corresponding key and
key-value position to the B+-Tree index one by one.
Thus, HiKV takes 88.24s to recover 50M key-values
with one thread. However, increasing recovery threads
allows to reduce the recovery time. For instance, HiKV
takes 6.28s to recover 50M key-values with 16 threads.

5 Related Work
In this section, we discuss related works from three

aspects: indexing structure, concurrency control, and
NVM consistency guaranteeing.

Indexing Structure. Several distributed KV stores,
such as Cassandra [43], Megastore [44], and SLIK [45],
construct multiple indexes for multi-key-value data,
such as secondary index for non primary key query.
However, HiKV constructs a hybrid index according to a
single key, and focuses on reducing the latency of updat-
ing hybrid index. SILT [18] and dual-stage index [19]
construct multiple indexes to reduce DRAM consump-
tion of indexes. These two techniques are orthogonal to
HiKV to reduce the DRAM consumption of B+-Tree.

NVM, especially PCM, suffers from limited write en-
durance. Thus, a number of research efforts are made
to optimize the indexing structure for NVM to reduce
writes to NVM [23, 25, 56, 57]. For example, Chen
et al. [23] propose the unsorted leaf nodes of B+-Tree
to writes caused by sorting. Instead of focusing on re-
ducing NVM writes, HiKV mainly optimizes indexing
structure to support rich KV operations.

Concurrency Control. Concurrency control for
multi-core processor has been widely studied in KV
stores. Echo [54] and NVStore [28] use the MVCC
for concurrency control. Chronos [58] and MICA [42]
uses partitioning for concurrency control of hash tables.

PALM [59] is lock-free concurrent B+-Tree. FPTree
adopts HTM to handle the concurrency of inner nodes,
and fine-grained locks for the concurrency access of leaf
nodes[30]. HiKV adopts similar techniques according
to the features of hybrid index, which are partitioning
for hash tables and HTM for B+-Tree index.

NVM consistency guaranteeing. Recent research
works propose techniques to reduce the cost of consis-
tency guaranteeing. A few research works [60, 61, 62]
use the differential logging [63] to only record modified
bytes of a block on journal to reduce NVM writes. How-
ever, differential logging cannot avoid twice writes. Sev-
eral works propose a combination of multiple techniques
to reduce consistency cost according to data granular-
ity. Atomic-write is used to update file system meta-
data, whose granularity is usually small such as 8B or
16B [5, 47, 64]. For large-granularity data, write-ahead
logging and copy-on-write are used [5, 47]. NVStore
[28], FPTree [30] also use ordered-write to guarantee
consistency. However, HiKV adopts ordered-write ac-
companied with atomic-write to hash index, which can
always achieve the minimum count of persists for differ-
ent KV write operations.

6 Conclusion
Persistent key-value stores are widely deployed in

real-world applications. Hybrid memory consisting
of DRAM and NVM allows storage systems to per-
sist data directly in the memory. Building KV
stores towards hybrid memory can exploit its perfor-
mance characteristic. Supporting rich KV operations
(Put/Get/Update/Delete/Scan) efficiently is highly re-
quired by today’s applications. However, either hash in-
dex or B+-Tree index employed by existing KV stores
cannot efficiently support all these operations. In this
paper, we propose hybrid index to adopt a hash index
in NVM for fast searching and directly persisting, and a
B+-Tree index in DRAM for fast updating and support-
ing range scan. On top of the hybrid index, we build
HiKV, a hybrid index based key-value store with the
well-performed scalability and crash consistency guar-
anteeing. Extensive experiments show that HiKV out-
performs the state-of-the-art NVM-based KV stores.

7 Acknowledgments
We would like to thank the anonymous reviewers and

our shepherd, Donald E. Porter, for their helpful com-
ments. We also thank Ismail Oukid and Jun Yang for
their help in figuring out the details of FPTree and NVS-
tore, respectively. We thank Wenlong Ma for useful dis-
cussions. This work is supported by National Key Re-
search and Development Program of China under grant
No. 2016YFB1000302 , National Science Foundation of
China under grant No. 61502448 and No. 61379042.

USENIX Association 2017 USENIX Annual Technical Conference 359

References
[1] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg,

B. Rajendran, M. Asheghi, and K. Goodson, “Phase
change memory,” Proceedings of the IEEE, vol. 98,
pp. 2201–2227, 2010.

[2] I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh,
J. Park, S. Park, H. Kim, and I. Yoo, “Highly scalable
nonvolatile resistive memory using simple binary ox-
ide driven by asymmetric unipolar voltage pulses,” in
2004 IEEE International on Electron Devices Meeting,
IEDM’04, pp. 587–590, 2004.

[3] “Intel and Micron produce breakthrough mem-
ory technology.” https://newsroom.
intel.com/news-releases/intel-and-
micron-produce-breakthrough\-memory-
technology/.

[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
high performance main memory system using phase-
change memory technology,” in Proceedings of the 36th
annual international symposium on Computer architec-
ture, ISCA ’09, pp. 24–33, 2009.

[5] X. Jian and S. Steven, “NOVA: A log-structured file sys-
tem for hybrid volatile/non-volatile main memories,” in
Proceedings of the 14th USENIX Conference on File and
Storage Technologies, FAST’16, pp. 323–338, 2016.

[6] J. Ou, J. Shu, and Y. Lu, “A high performance file sys-
tem for non-volatile main memory,” in Proceedings of the
Eleventh European Conference on Computer Systems,
EuroSys ’16, pp. 12:1–12:16, 2016.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber, “Bigtable: A distributed storage system for struc-
tured data,” in Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’06, pp. 15–15, 2006.

[8] S. Ghemawat and J. Dean, “LevelDB.” https://
leveldb.org.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pp. 205–220, 2007.

[10] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. So-
man, and S. Shah, “Serving large-scale batch computed
data with project voldemort,” in Proceedings of the 10th
USENIX conference on File and Storage Technologies,
FAST’12, pp. 18–18, 2012.

[11] Facebook, “RocksDB.” https://rocksdb.org.
[12] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel,

“Finding a needle in haystack: Facebook’s photo stor-
age.,” in Proceedings of the 9th Symposium on Operating
Systems Design and Implementation, OSDI’10, pp. 1–8,
2010.

[13] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui,
and J. Cong, “Atlas: Baidu’s key-value storage system
for cloud data,” in Proceedings of the 31st Symposium

on Mass Storage Systems and Technologies, MSST’15,
pp. 1–14, IEEE, 2015.

[14] P. Shetty, R. P. Spillane, R. Malpani, B. An-
drews, J. Seyster, and E. Zadok, “Building workload-
independent storage with VT-trees,” in Proceedings of
the 11th USENIX Conference on File and Storage Tech-
nologies, FAST’13, pp. 17–30, 2013.

[15] L. Marmol, S. Sundararaman, N. Talagala, and R. Ran-
gaswami, “NVMKV: A scalable, lightweight, ftl-aware
key-value store,” in Proceedings of the 2015 USENIX An-
nual Technical Conference, USENIX ATC’15, pp. 207–
219, 2015.

[16] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Wisckey: Separating keys from values
in SSD-conscious storage,” in Proceedings of the 14th
USENIX Conference on File and Storage Technologies,
FAST’16, pp. 133–148, Feb. 2016.

[17] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High
throughput persistent key-value store,” Proceedings of
the VLDB Endowment, vol. 3, pp. 1414–1425, Sept.
2010.

[18] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky,
“SILT: A memory-efficient, high-performance key-value
store,” in Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, pp. 1–
13, 2011.

[19] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky,
L. Ma, and R. Shen, “Reducing the storage overhead
of main-memory oltp databases with hybrid indexes,”
in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pp. 1567–1581,
2016.

[20] J. Levandoski, D. Lomet, and S. Sengupta, “The Bw-
Tree: A b-tree for new hardware platforms,” in Proceed-
ings of the IEEE 29th International Conference on Data
Engineering, ICDE’13, pp. 302–313, 2013.

[21] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar,
“Scaling concurrent log-structured data stores,” in Pro-
ceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pp. 32:1–32:14, 2015.

[22] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang,
and J. Cong, “An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd,” in
Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pp. 16:1–16:14, 2014.

[23] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking
database algorithms for phase change memory,” in Pro-
ceedings of the 5th Biennial Conference on Innovative
Data Systems Research, CIDR’11, pp. 21–31, 2011.

[24] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell, “Consistent and durable data structures for
non-volatile byte-addressable memory,” in Proceedings
of the 9th USENIX conference on File and stroage tech-
nologies, FAST’11, pp. 5–5, 2011.

[25] J. Ni, W. Hu, G. Li, K. Tan, and D. Sun, “Bp-tree: A
predictive b+-tree for reducing writes on phase change
memory,” IEEE Transactions on Knowledge and Data
Engineering, vol. PP, no. 99, pp. 1–1, 2014.

360 2017 USENIX Annual Technical Conference USENIX Association

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://leveldb.org
https://leveldb.org
https://rocksdb.org

[26] P. Chi, W.-C. Lee, and Y. Xie, “Making b+-tree efficient
in pcm-based main memory,” in Proceedings of the 2014
International Symposium on Low Power Electronics and
Design, ISLPED ’14, pp. 69–74, 2014.

[27] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile
main memory,” Proceedings of the VLDB Endowment,
vol. 8, pp. 786–797, Feb. 2015.

[28] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He, “NV-Tree: Reducing consistency cost for nvm-
based single level systems,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies,
FAST’15, pp. 167–181, 2015.

[29] G. S. Choi, B. W. On, and I. Lee, “Pb+-tree: Pcm-aware
b+-tree,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 27, no. 9, pp. 2466–2479, 2015.

[30] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner, “FPTree: A hybrid scm-dram persistent and
concurrent b-tree for storage class memory,” in Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, pp. 371–386, 2016.

[31] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Archi-
tecting phase change memory as a scalable dram alter-
native,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pp. 2–
13, 2009.

[32] K. Suzuki and S. Swanson, “The non-volatile memory
technology database (NVMDB),” Tech. Rep. CS2015-
1011, Department of Computer Science & Engineering,
University of California, San Diego, 2015.

[33] M. F. Chang, J. J. Wu, T. F. Chien, Y. C. Liu, T. C.
Yang, W. C. Shen, Y. C. King, C. J. Lin, K. F. Lin,
Y. D. Chih, S. Natarajan, and J. Chang, “19.4 embed-
ded 1mb reram in 28nm cmos with 0.27-to-1v read using
swing-sample-and-couple sense amplifier and self-boost-
write-termination scheme,” in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Pa-
pers, ISSCC’14, pp. 332–333, Feb 2014.

[34] Micron, “SLC NAND flash products.” http:
//www.micron.com/products/nand-
flash/slc-nand#fullPart,Dec.2014.

[35] “MyRocks: A space- and write-optimized mysql
database.” https://code.facebook.com/
posts/190251048047090/myrocks-a-
space-and-write-optimized-mysql-
database/.

[36] K. Ren and G. Gibson, “TABLEFS: Enhancing metadata
efficiency in the local file system,” in Proceedings of the
2013 USENIX Annual Technical Conference, USENIX
ATC’13, pp. 145–156, 2013.

[37] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” in Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’06, pp. 307–320, 2006.

[38] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS:
Scaling file system metadata performance with stateless
caching and bulk insertion,” in Proceedings of the 2014

International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’14, pp. 237–
248, 2014.

[39] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness
for fast multicore key-value storage,” in Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, pp. 183–196, 2012.

[40] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden,
“Speedy transactions in multicore in-memory databases,”
in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pp. 18–32,
2013.

[41] “Memcached.” https://memcached.org.

[42] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“MICA: A holistic approach to fast in-memory key-value
storage,” in Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI’14, pp. 429–444, 2014.

[43] A. Lakshman and P. Malik, “Cassandra: a decentral-
ized structured storage system,” ACM SIGOPS Operat-
ing Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[44] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage
for interactive services,” in Proceedings of the 5th Con-
ference on Innovative Data system Research, CIDR’11,
pp. 223–234, 2011.

[45] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and
J. Ousterhout, “SLIK: Scalable low-latency indexes for
a key-value store,” in Proceedings of the 2016 USENIX
Annual Technical Conference, USENIX ATC’16, pp. 57–
70, 2016.

[46] “Intel64 software developers manual (vol 2, ch 3.2),”
2013.

[47] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System software
for persistent memory,” in Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14,
pp. 15:1–15:15, ACM, 2014.

[48] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-
value store,” in Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE joint international confer-
ence on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’12, pp. 53–64, 2012.

[49] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
lightweight persistent memory,” in Proceedings of the
sixteenth international conference on Architectural sup-
port for programming languages and operating systems,
ASPLOS ’11, pp. 91–104, 2011.

[50] X. Wu and A. L. N. Reddy, “Scmfs: a file system for stor-
age class memory,” in Proceedings of 2011 International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, pp. 39:1–39:11, 2011.

[51] “Intel architecture instruction set extensions program-
ming reference.” https://software.intel.

USENIX Association 2017 USENIX Annual Technical Conference 361

http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://memcached.org
https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf

com/sites/default/files/managed/69/
78/319433-025.pdf.

[52] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-
aware logging in transaction systems,” Proceedings of the
VLDB Endowment, vol. 8, no. 4, pp. 389–400, 2014.

[53] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with
ycsb,” in Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pp. 143–154, 2010.

[54] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and
H. M. Levy, “Exploring storage class memory with key
value stores,” in Proceedings of the 1st Workshop on In-
teractions of NVM/FLASH with Operating Systems and
Workloads, INFLOW ’13, pp. 4:1–4:8, 2013.

[55] Y. Zhang and S. Swanson, “A study of application per-
formance with non-volatile main memory,” in Proceed-
ings of the 31st Symposium on Mass Storage Systems and
Technologies, MSST’15, pp. 1–10, IEEE, 2015.

[56] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and
C. Ungureanu, “Revisiting hash table design for phase
change memory,” ACM SIGOPS Operating System Re-
view, vol. 49, pp. 18–26, Jan 2016.

[57] P. Zuo and Y. Hua, “A write-friendly hashing scheme
for non-volatile memory systems,” in Proceedings of the
33st Symposium on Mass Storage Systems and Technolo-
gies, MSST’17, pp. 1–10, 2017.

[58] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat, “Chronos: Predictable low latency for data
center applications,” in Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pp. 9:1–
9:14, 2012.

[59] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey,
“PALM: Parallel architecture-friendly latch-free modifi-
cations to b+ trees on many-core processors,” Procedings
of the VLDB Endowment, vol. 4, no. 11, pp. 795–806,
2011.

[60] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn, “Shortcut-jfs:
A write efficient journaling file system for phase change
memory,” in Proceedings of the IEEE 28th Symposium
on Mass Storage Systems and Technologies, MSST’12,
pp. 1–6, 2012.

[61] J. Chen, Q. Wei, C. Chen, and L. Wu, “FSMAC: A file
system metadata accelerator with non-volatile memory,”
in Proceedings of the IEEE 29th Symposium on Mass
Storage Systems and Technologies, MSST’13, pp. 1–11,
IEEE, 2013.

[62] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won,
“Nvwal: Exploiting nvram in write-ahead logging,” in
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’16, pp. 385–
398, 2016.

[63] J. Lee, K. Kim, and S. K. Cha, “Differential logging: A
commutative and associative logging scheme for highly
parallel main memory database,” in Proceedings of the
17th International Conference on Data Engineering,
ICDE’01, pp. 173–182, IEEE, 2001.

[64] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better I/O through byte-
addressable, persistent memory,” in Proceedings of the
Twenty-Second ACM Symposium on Operating Systems
Principles, SOSP ’09, pp. 133–146, 2009.

362 2017 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf
https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf

	Introduction
	Background and Motivation
	Non-Volatile Memory
	KV operations and indexing efficiency

	HiKV Design and Implementation
	Hybrid index
	Index updating
	Asynchronous updates
	Dynamic threads adaption

	Differential concurrency
	Ordered-write consistency
	Hash index design
	Consistency algorithm

	Recovery
	Implementation

	Evaluation
	Experimental Setup
	Single-threaded performance
	Latency reduction
	Throughput improvement

	Scalability
	Sensitivity analysis
	Sensitivity to NVM write latency
	Sensitivity to dataset size

	Performance breakdown
	Impact of NVM read latency
	Memory consumption
	Recovery time

	Related Work
	Conclusion
	Acknowledgments

