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Abstract
Crowdsourcing mobile user’s network performance

has become an effective way of understanding and im-
proving mobile network performance and user quality-
of-experience. However, the current measurement
method is still based on the landline measurement
paradigm in which a measurement app measures the path
to fixed (measurement or web) servers. In this work, we
introduce a new paradigm of measuring per-app mobile
network performance. We design and implement Mop-
Eye, an Android app to measure network round-trip de-
lay for each app whenever there is app traffic. This op-
portunistic measurement can be conducted automatically
without user intervention. Therefore, it can facilitate a
large-scale and long-term crowdsourcing of mobile net-
work performance. In the course of implementing Mop-
Eye, we have overcome a suite of challenges to make
the continuous latency monitoring lightweight and ac-
curate. We have deployed MopEye to Google Play for
an IRB-approved crowdsourcing study in a period of ten
months, which obtains over five million measurements
from 6,266 Android apps on 2,351 smartphones. The
analysis reveals a number of new findings on the per-app
network performance and mobile DNS performance.

1 Introduction
In recent years, a number of crowdsourcing platforms
using smartphone apps are deployed to measure mobile
network performance. MobiPerf [5] and Netalyzr [7] on
Android, for example, enable users to measure a num-
ber of network performance metrics between their smart-
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phones and remote endpoints. Using these uncoordi-
nated network measurement performed by end users to
obtain accurate and meaningful insights is still under ac-
tive research [40]. Related to that, a number of speedtest
services are provided for Android [13, 16], iOS [14, 15],
and Windows Phone users [8, 17].

The existing mobile measurement apps, however, are
still based on the landline measurement paradigm. They
actively send probe packets to user-specified remote end-
points or measurement servers (e.g., M-Lab servers).
Due to the diverse locations of various servers and user
mobility, such landline measurement will not correlate
well with the user’s experience. In this paper, we pro-
pose to measure mobile network performance for each
app (i.e., from user’s smartphone to the app server). The
per-app measurement not only reflects user’s experience
with the app but also helps diagnose application-specific
problems. An effective approach to per-app measure-
ment is to perform the measurement only when there is
app traffic. Since this opportunistic measurement can be
conducted automatically without user’s intervention, it
can facilitate a large-scale and long-term crowdsourcing
of mobile network performance.

In this paper, we utilize the VpnService API avail-
able on Android 4.0+ [20] to implement opportunistic
measurement of per-app network performance in Mop-
Eye (MObile Performance Eye), our Android measure-
ment app. Figure 1 shows the two main interfaces in
MopEye. With the VpnService interface, MopEye can
passively capture the traffic initiated by all apps and for-
ward them actively to the remote app servers using socket
calls. Based on the connect() socket calls, it can es-
timate the round-trip time (RTT) for each app. There-
fore, the measurement incurs zero network overhead, and
the RTT can accurately reflect the network delay experi-
enced by each app. Moreover, MopEye can be deployed
easily, because it does not need the root privilege which
is required for tcpdump-based passive measurement. It
is also very easy to operate. Users are only required to
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(a) An all-app view. (b) An individual-app view.

Figure 1: MopEye’s two major user interfaces.

consent to enabling MopEye’s VPN interface once. Af-
ter that, MopEye performs the measurement opportunis-
tically and autonomously.

The main challenge in the design and implementa-
tion of MopEye is to mitigate the impact on other apps
by performing fast packet relaying. However, our de-
sign choices are constrained by two important restric-
tions: no relaying using a remote VPN server and no
raw sockets which require the root privilege. To sat-
isfy the constraints, we build our own user-space TCP/IP
stack to perform packet relaying between the VPN tunnel
packets and those in the socket connections. In particu-
lar, we have identified and overcome a number of seri-
ous performance degradation issues in the entire packet-
relaying process. Another challenge is to obtain high
measurement accuracy. Based on our evaluation, Mop-
Eye’s mean RTT measurement deviates from tcpdump’s
results by at most 1ms. Besides that, our evaluation
also shows that MopEye incurs very low overhead on the
throughput, battery consumption, and CPU usage.

We have deployed MopEye to Google Play [6] for an
IRB-approved crowdsourcing study since May 2016. We
have so far1 attracted 4,014 user installs from 126 coun-
tries and collected the first large-scale per-app measure-
ment dataset comprising 5,252,758 RTT measurements
from 6,266 Android apps on 2,351 smartphones2. An
analysis of these crowdsourced data reveals a number of
new findings on the per-app and DNS network perfor-
mance experienced by real users under different network
types and ISPs in the wild. We also perform several case
studies to diagnose the performance issues in Whatsapp,
India’s largest 4G ISP, and two American cellular ISPs.

2 Design of MopEye
In this section, we present an overview of MopEye and
its main components. We defer the implementation de-
tails and performance enhancement to the next section.

1By the time of our submission on 7 February 2017.
2Note that many users use daily apps such as Facebook and What-

sapp. Thus, there is a large common app space among different phones.
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Figure 2: An overview of MopEye.

2.1 MopEye Overview
Figure 2 presents a high-level design of MopEye. There
are three main steps for MopEye to use an app’s traffic
to opportunistically measure the network RTT. For the
outgoing traffic, MopEye first captures an app’s pack-
ets through a tunnel, relays the captured packet to an
external TCP connection or UDP association with a re-
mote server, and sends the packets to the server. In the
last step, MopEye calculates the time between the app’s
SYN and SYN/ACK packets to measure the RTT. The
RTT measurement for UDP apps is similar (i.e., between
query and response messages). In the following we de-
scribe each step in more details.

2.2 Packet Capturing, Parsing, and Map-
ping

We leverage Android’s VpnService APIs to build a vir-
tual network interface (green box in Figure 2) to inter-
cept all traffic initiated from any app on the smartphone.
It also receives server-initiated traffic, but for the sake of
simplicity we do not discuss this traffic direction in this
paper.

Android’s VpnService APIs leverage the TUN

virtual network device (/dev/tun on Android or
/dev/net/tun on some UNIX systems) to capture
packets. Figure 3 illustrates MopEye’s packet captur-
ing and relaying mechanisms for the incoming and out-
going traffic. Once MopEye builds a TUN interface
(i.e., mInterface in the figure), the TUN device driver
will capture and deliver all outgoing app packets to
this interface. MopEye then obtains these packets us-
ing mInterface’s input stream. It is worth noting that
the packets captured here are all IP packets, because a
TUN device is essentially a virtual point-to-point IP link.
MopEye parses the captured packets to obtain the IP ad-
dresses and port numbers for packet relaying.

To support per-app measurement, MopEye must also
determine to which app a captured packet belongs. Al-
though there is no API support for this socket-to-app
mapping function, we find that four pseudo files in the
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Figure 3: MopEye’s packet capturing and relaying for incom-
ing flow (red) and outgoing flow (blue). The black link repre-
sents a bi-directional flow.
proc filesystem (/proc/net/tcp6|tcp|udp|udp6)
store each TCP/UDP connection’s local and remote IP
addresses and ports, as well as the corresponding app’s
UID which is a unique ID for each installed app. More-
over, using Android’s PackageManager APIs, MopEye
obtains the app’s name from its UID. To reduce the over-
head of this procedure, MopEye performs this opera-
tion only for the SYN packets, and the resolved names
and socket addresses are cached for the subsequent data
packets. Furthermore, we will present in §3.3 a new
mechanism to significantly minimize the mapping over-
head even for SYN packets. As for UDP packets, Mop-
Eye currently supports only DNS measurement (though
it relays all UDP packets). Since DNS is system-wide,
MopEye does not need to map UDP packets for now.

2.3 Packet Relaying
Relaying packets between apps and their servers effi-
ciently is the most challenging task in the design and im-
plementation of MopEye. Our solution to this problem is
shaped by the three main considerations below.
• Measurement objective Since our goal is to mea-

sure the RTT between a user’s smartphone and the
app servers, we cannot rely on a remote VPN server
to relay the application packets to their servers.
Therefore, we require MopEye to relay packets
within the smartphone.

• Running on unrooted phones Our another objec-
tive is to run MopEye on unrooted phones. Using
raw sockets to relay packets to the servers is there-
fore not an option. Instead, MopEye must relay
packets via the regular TCP/UDP sockets for the ex-
ternal connections. We have implemented both TCP
and UDP packet relays. Due to the page limit, we
describe only the TCP relay from now on.

• User-space TCP stack As a result of using reg-
ular TCP socket, MopEye will not be able to ac-
cess the information in the TCB (Transmission Con-
trol Block [11]), such as the TCP sequence and ac-
knowledgement numbers, from the external connec-
tions. Therefore, MopEye must create its own user-

space TCP stack (in the form of TCP state machine)
for the internal connections. We refer the packets
transmitted in the internal and external connections
to as tunnel packets and socket packets, respectively.

Splicing the two connections To relay packets in a TCP
connection, MopEye “splices” the internal connection
terminated by MopEye’s TCP state machine and the ex-
ternal connection initiated by MopEye’s TCP socket.
Our approach is to link the state machine and the socket
with two-way referencing. That is, we create a TCP
client object that wraps the socket instance and include
a reference to the state machine. The state machine also
maintains a reference to the corresponding TCP client.
Processing tunnel packets MopEye processes the tun-
nel packets according to RFC 793 [11]. The processing
logics for different TCP packets are summarized as fol-
lows.

• TCP SYN: Upon receiving a SYN packet, MopEye
creates a TCP client object and uses its socket in-
stance to perform handshake with the remote server.
Only after establishing the external connection can
MopEye complete the handshake with the app.

• TCP Data: MopEye places the data from tunnel
packets to a socket write buffer and triggers a socket
write event for the socket instance to handle.

• Pure ACK: MopEye discards pure ACK packets, be-
cause there is no need to relay them to the socket
channel.

• TCP FIN: MopEye updates the TCP state to half
closed and generates an ACK packet to the app.
Meanwhile, it triggers a half-close write event for
the socket instance to handle.

• TCP RST: MopEye closes the external socket con-
nection and removes the corresponding TCP client
object from the cached TCP client list.

Processing socket packets To handle concurrent socket
instances, MopEye uses non-blocking SocketChannel

APIs to communicate with the remote app servers. In
particular, it uses a socket selector [32] to listen for read
and write events, and handles them as follows.

• Socket Read: Upon detecting a read event, Mop-
Eye retrieves the incoming data from the read buffer
and constructs data packets for the internal connec-
tion. In §3.4, we propose a method to improve
the performance of this step. However, if this read
event is for a socket close/reset, MopEye generates
a FIN/RESET packet for the internal connection.

• Socket Write: Upon detecting a write event, the
socket instance sends all the data in the write buffer
to the remote server and instructs the correspond-
ing TCP state machine to generate an ACK packet
to the app. However, if this write event is for half-
close, MopEye closes the external connection and
generates a FIN packet to the app.
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2.4 Measurement Methods
Obtaining accurate per-app RTT measurement using
MopEye faces more challenges than that using the tra-
ditional active measurement apps, such as MobiPerf [5]
and Ookla Speedtest [16]. There are two main chal-
lenges.
C1: Since MopEye has no control on the relayed pack-

ets, it cannot execute pre-negotiated measurement
logic as in active measurement apps. This challenge
is further exacerbated due to the lack of TCB infor-
mation for correlating packets for measurement.

C2: Unlike other apps that have a relatively “clean”
measurement environment, the performance and ac-
curacy of MopEye can be easily affected by mea-
surement noises, because it has to relay packets for
all applications in the phone.

To address challenge C1, we identify and correlate
the correct packets for computing the RTT. Among the
four types of TCP socket calls (i.e., connect(), read(),
write(), and close()), our evaluation using tcpdump

shows that the connect() call always accurately corre-
sponds to a single round of packets, i.e., the SYN and
SYN-ACK pair. That is, invoking a connect() call will
immediately send out a SYN packet, and the call returns
just after receiving a SYN-ACK packet. In contrast, a
read()/write() call may involve multiple rounds of
packet exchanges, and a close() call may not always
elicit an ACK packet from the server.

However, it is difficult for MopEye to obtain the post-
connect() timestamp accurately due to C2. Since Mop-
Eye uses non-blocking SocketChannel APIs to relay
packets, it has to wait for the system’s notification for a
received ACK. This event-based notification can intro-
duce an additional delay up to several milliseconds if
there are other pending socket events (e.g., read/write
or VpnService’s incoming packets). We resolve this
inaccuracy problem by temporarily setting the socket
into blocking mode for each connect() call. That is,
MopEye runs a connect() call in a temporary new
thread, which we call socket-connect thread. Once
the connection is established, MopEye resumes the non-
blocking mode and switches back to the main thread lis-
tening for read and write events. As a result, MopEye
can obtain an accurate post-connect() timestamp for
the RTT measurement and, at the same time, provides
efficient packet relaying. As will be explained in §3, the
temporary socket-connect threads also give us several
other benefits for optimizing MopEye’s performance.

Besides the TCP-based measurement, MopEye also
supports DNS. Measuring the RTT for DNS is quite
straightforward. We can obtain it by measuring the
time between send() and receive() UDP socket calls,
which correspond to DNS query and reply, respectively.
However, obtaining an accurate post-receive() times-

tamp is still difficult because of C2. We adopt a sim-
ilar solution by setting up a temporary thread for a
blocking-mode measurement, except that this time we
run the whole DNS processing, including DNS parsing
and socket initialization, in the temporary thread (instead
of just doing so for the connect() call as in the TCP
measurement). This is because DNS is an application-
layer protocol built upon UDP, and processing it should
not block the main thread of VpnService.

3 Implementation and Enhancements
We have implemented MopEye in 11,786 LOC and de-
ployed it to Google Play [6] on 16 May 2016 for a crowd-
sourcing measurement study3. Figure 4 presents the ar-
chitecture of MopEye. It has three major components
or core threads (created by our MopEyeService that ex-
tends the Android VpnService class). The TunReader

and TunWriter threads handle read/write for the VPN
tunnel, whereas the MainWorker thread is responsible
for all the packet processing (i.e., packet parsing, map-
ping, and relaying) and RTT measurement.

In this section, we will detail how we solve the chal-
lenges of implementing TunReader, TunWriter, and
MainWorker, particularly our methods of enhancing
MopEye’s performance. For better reading and quick
reference, we include the subsection numbers in the cor-
responding components in Figure 4. Among them, §3.1
and §3.5.2 present solutions generic to all VPN-based
apps on Android, whereas the rest can benefit various
VPN-based traffic inspection systems on different OSes.

3.1 Zero-delay Packet Retrieval from the
VPN Tunnel

Reading packets from the VPN tunnel is straightforward,
but it is very challenging to fast-retrieve the packets un-
der the existing Android VPN programming paradigm.
To illustrate this problem, we use a code snippet from
ToyVpn [19], a representative VPN client in the official
Android SDK sample code. The code4 shows a 100ms
sleep before executing each read() call. The purpose
of this sleep is to reduce CPU cycles for data reading.
Therefore, the sleep period is determined by the tradeoff
between CPU consumption and packet retrieval delay.

We are not aware of any solution addressing this de-
layed VPN read problem. The ToyVpn example [19] im-
plements an “intelligent” sleeping algorithm to partially
mitigate this problem. The basic idea is to stop sleep-
ing when detecting consecutive packet reads. The re-
cently proposed Haystack [42] adopts a similar idea, but
the system performance is not acceptable, e.g., achieving

3IRB approval was obtained from Singapore Management Univer-
sity on 9 October 2015 under application IRB-15-093-A077(1015).

4Due to the page limit, we skip the code here and refer interested
readers to http://tinyurl.com/ToyVPN.
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Figure 4: The architecture of MopEye.

only 17.2Mbps throughput from a 73Mbps upload link.
PrivacyGuard [46], another system using VpnService,
simply sets the sleep interval to 20ms.

We propose to fundamentally solve this problem by
putting the VPN read() API into a blocking mode. That
is, each in.read() call will be blocked until a packet is
retrieved from the tunnel. This will effectively relieve the
CPU from checking for data continuously. As a result,
we must run the VPN read() API in a dedicated thread,
i.e., TunReader in MopEye, and the retrieved packets
will be put in a read queue shown in Figure 4.

Unfortunately, there is no API provided for setting
the blocking mode of the VPN interface’s file descrip-
tor until Android 5.0. To implement our idea also for
Android 4.0 to 4.4, we propose the following two so-
lutions. First, at the native code level, we can invoke
the fcntl() API with the F SETFL command to set the
blocking mode. Second, we can leverage Java reflection
to invoke a non-API function called setBlocking in the
unexported libcore.io.IoUtils class. We verify that
this private function exists on Android from its inception.

Although we can achieve zero-delay packet retrieval,
there is a side effect of not being able to timely stop the
TunReader thread in a blocking mode. We have tried
the Thread.interrupt() API, but it does not work be-
cause in the absence of incoming packets the read() call
will be blocked. To address this issue, we send a dummy
packet to the VPN tunnel to release the blocked read()

call. The dummy packet can be sent by MopEye itself for
Android versions below 5.0. For Android 5.0+, however,
MopEye no longer has the capability of letting its own
packets go through the VPN tunnel due to the need of
calling addDisallowedApplication(mopeye) to im-
prove the performance (see §3.5.2). The only solution is
to trigger a network request from other apps. After care-
ful consideration, we use Android DownloadManager
APIs [3] to stably trigger dummy download requests.

3.2 Monitoring Selector and Read Queue
As shown in Figure 4, we use a socket selector to lis-
ten for non-blocking read/write events from each socket
instance and a read queue for receiving tunnel packets

from TunReader. Being implemented as a single thread,
MainWorker, however, cannot monitor both the socket
selector and the tunnel read queue at the same time.
To circumvent this problem, we leverage the existing
select() waiting point to also monitor the read queue.
That is, TunReader will issue a Selector.wakeup()

event whenever it adds a new packet to the read queue.
As a result, when the selector is woken up, MopEye will
check for both socket and tunnel events, because either
could have activated the selector. Moreover, to process
the events timely, we interleave the code for checking
these two types of events.

3.3 Lazy Packet-to-App Mapping
As presented in §2.2, MopEye performs a packet-to-app
mapping for SYN packets in order to obtain per-app
network performance. Our evaluation, however, shows
that such mapping is expensive. Figure 5(a) shows the
cumulative distribution function (CDF) of the overhead
for parsing /proc/net/tcp6|tcp for each SYN packet.
The experiment was performed on a Nexus 6 phone, con-
taining 196 samples, and in the experiment we browsed
a list of websites using the Chrome app. Over 75% of
the samples required more than 5ms for the parsing; over
10% of them needed even more than 15ms. Furthermore,
the overhead will increase with the number of active con-
nections in the system.

Overhead (ms)
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Figure 5: CDF plots of packet-to-app overhead per packet.

We propose a lazy mapping mechanism to address this
problem. First, we defer the mapping from the main
thread to each temporary socket-connect thread men-
tioned in §2.4. Moreover, the mapping is performed
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only after the connection is established or failed, thus
not affecting the timely TCP handshake on the appli-
cation side. Second and more importantly, we develop
an efficient mapping algorithm that performs less proc
file parsing. Our mapping algorithm is based on the ob-
servation that for multiple concurrent socket-connect
threads, it is sufficient to let only one thread perform
the parsing. Other threads just check and/or sleep to
wait for the working thread to retrieve the mappings for
them. We choose the sleep period of 50ms which is
sufficiently large when compared with the parsing over-
head in Figure 5(a). The evaluation results show that
such a lazy mapping algorithm is very useful for sce-
narios like web browsing. For a total of 481 temporary
socket-connect threads in a web browsing scenario,
only 155 of them need to perform parsing. Moreover,
the algorithm helps avoid the mapping overhead in the
other 326 threads, i.e., achieving 67.8% mitigation rate
as shown in Figure 5(b). Besides improving the mapping
performance, it also helps reduce the CPU overhead.

Haystack [42] briefly mentions that they use cache to
minimize the mapping overhead. However, cache-based
mechanism could cause inaccurate packet-to-app map-
ping results. For example, both the Facebook app and
accessing Facebook by Chrome may use the same server
IP and port, but their mappings are different. This prob-
lem is more noticeable for advertisement modules since
the same library may be embedded in many different mo-
bile apps. Therefore, in order to obtain an accurate map-
ping, we use our own lazy mapping mechanism instead
of the traditional cache-based mechanism.

3.4 Tuning TCP Performance
Besides implementing the basic user-space TCP/IP stack
presented in §2.3, we have identified and tuned the fol-
lowing performance issues for fast packet relaying.
Maximum segment size (MSS) To maximize the
throughput of the internal connections, MopEye sets the
MSS option to 1460 bytes in the SYN/ACK packet and
sends 1500-byte IP packets to the apps.
Receive window size Another factor affecting TCP
throughput is the TCP receive window. MopEye assigns
the maximum of 65,535 bytes to each MopEye’s socket
write and read buffer. We could also use the TCP window
scale option [10] to further increase the throughput but
have not done so, because the existing receive window is
already big enough for achieving good performance and
a bigger window size will increase the buffer memory.
No congestion and flow control Since no packet loss
and reordering is expected in the VPN tunnel, MopEye
forwards the data packets continuously to the app with-
out waiting for the ACKs. Moreover, upon receiving a
FIN/RST packet, MopEye stops the packet forwarding
immediately.

Minimizing the use of expensive calls We try to min-
imize the use of expensive calls during the packet pro-
cessing. For example, we discover that the register()
call [1] for registering the socket selector can sometimes
be very expensive. MopEye therefore executes this call
in the socket-connect thread only after completing the
handshaking for the internal connection. Other examples
include never performing database operations in the main
thread and always avoiding the debug log output.

3.5 Fast Dispatching of Tunnel and Socket
Packets

3.5.1 Dispatching Packets to the VPN Tunnel
We observe that writing packets to the tunnel is not
always fast, partially because multiple writing threads
(e.g., MainWorker and individual socket-connect

thread) share only one tunnel. We use the experimen-
tal results obtained from two writing schemes in Table 1
to illustrate this problem.

• directWrite: Writing is performed whenever there
are packets to be sent to the tunnel.

• queueWrite: As illustrated in Figure 4, the packets
are first put in a queue. A separate writing thread is
used to output the packets. This scheme is currently
adopted by MopEye.

directWrite queueWrite oldPut newPut
Total 1,244 2,161 810 5,321

0⇠1ms 1,202 2,147 763 5,317
1⇠2ms 30 12 39 1
2⇠5ms 7 2 7 1
5⇠10ms 3 0 1 2
>10ms 2 0 0 0

Table 1: Delay of writing packets to the VPN tunnel un-
der four different writing schemes.

According to Table 1, the queueWrite scheme per-
forms much better than the directWrite scheme. Among
a total of 1,244 samples in the directWrite testing, we en-
counter 42 large writing overheads (i.e., those larger than
1ms). The corresponding result for the queueWrite test-
ing is only 14 out of 2,161 samples. In particular, there
are five extremely large overheads (i.e., those larger than
5ms) in the directWrite samples, two of which are even
over 20ms. While there are still 14 overheads of 1⇠5ms
for queueWrite, they do not affect the performance of
MainWorker, because they are performed by the dedi-
cated TunWriter thread.

Although the queueWrite scheme significantly re-
duces the writing overhead, it introduces the overhead
of packet enqueuing. We find that a traditional enqueu-
ing scheme, denoted by oldPut, has large overheads.
Among the 810 oldPut samples in Table 1, 47 have
an overhead larger than 1ms. Our testing shows that
most of the overheads between 1⇠5ms are due to the
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queue’s wait-notify delay. When there are no pack-
ets in the queue, TunWriter goes to sleep by calling
queue.wait() and is woken up by queue.notify().
We design a new enqueuing algorithm, denoted by new-
Put, to mitigate such delays. The basic idea is to let
TunWriter perform more rounds of queue checking be-
fore going to wait(). Specifically, we design a sleep
counter to systemize this process:
• The counter is initialized to 0 and is reset to 0 each

time being woken up from wait().
• When there are no packets in the queue, the counter

increments for every round of checking and decre-
ments (e.g., dividing by 2) whenever detecting a
nonempty queue.

• TunWriter sleeps only when the counter reaches a
threshold.

The newPut column in Table 1 shows the effectiveness
of our algorithm. Out of the 5,321 samples, only four
contain 1⇠5ms overheads. Compared with the oldPut
scheme, the percentage of large overheads drops from
5.69% to only 0.075%. It is worth noting that the re-
maining two large overheads of 5⇠10ms are likely due
to thread competition. We also observe that such compe-
tition effect is significantly reduced, because the enqueu-
ing operation (at the microsecond level) is much faster
than tunnel writing (at the 0.1ms level).
3.5.2 Dispatching of Socket Packets
When MopEye relays packets to the external connection,
a delay overhead which could be up to several millisec-
onds comes from the VpnService.protect(socket)

method [18]. Before establishing socket connec-
tions with remote app servers, MopEye must call the
protect(socket) method to ensure that the socket
packets will be sent directly to the underlying network.
Without this method, the socket packets will be directed
back to the VPN tunnel, thus creating a data loop.

Our solution is to replace the socket-wide
protect() API with the application-wide
addDisallowedApplication() API. By adding
MopEye into the list of VPN-disallowed applications,
we do not need to invoke protect(socket) for each
socket client. Moreover, since MopEye just needs to
call addDisallowedApplication(mopeye) once, the
call is best invoked during the initialization of MopEye
to avoid impact on MainWorker. The limitation of this
solution is that addDisallowedApplication() is
newly introduced in Android 5.0. For older versions,
MopEye still has to call protect(socket). Our
mitigation method is to put protect(socket) in
each socket-connect thread. In this way, only the
performance of the SYN packet will be affected but
not the subsequent data. Furthermore, this issue will
be of less importance as more devices are upgraded to
Android 5.0+, currently with over 60% of devices [2].

4 Evaluation
In this section, we present two sets of evaluation results.
The first is on the measurement accuracy and overhead
of MopEye, and the second is a set of crowdsourcing
measurement results from 2,351 active users over nine
months.

4.1 Measurement Accuracy and Overhead
4.1.1 Measurement Accuracy

The first evaluation we perform is on the accuracy of
RTT measurement of MopEye. In addition to the stan-
dalone measurement, we also compare MopEye with
MobiPerf v3.4.0 (the latest version at the time of our
evaluation), which makes active network measurements
using the state-of-the-art Mobilyzer library [40]. For a
fair comparison, we use MobiPerf’s HTTP ping mea-
surement [37] because, like MopEye, it also uses SYN-
ACK for the RTT measurement. For each destination,
we use its raw IP address instead of the domain name so
that MobiPerf’s accuracy will not be interfered by DNS
queries. Moreover, each result is presented by the mean
of ten independent runs (MobiPerf does not provide de-
tailed results of each run). We also run tcpdump to pro-
vide the reference measurement results.

Destinations
MopEye (mean, in ms) MobiPerf (mean, in ms)
tcp Mop d tcp Mobi d
dump Eye* dump Perf

Google 4.26 4 0 4.29 16.4 12.11

(216.58.221.132) 4.47 5.5 1.03 4.35 18.5 14.15
5.32 5 0 4.85 18 13.15

Facebook 36.55 37 0.45 36.39 59.5 23.11

(31.13.79.251) 36.55 37 0.45 36.72 55.2 18.48
38.54 38.5 0 46.10 63.2 17.10

Dropbox 284.85 284.5 0 361.76 409.7 47.94

(108.160.166.126) 390.94 391 0.06 388.94 411.5 22.56
513.78 513.5 0 395.87 475.2 79.33

* We round MopEye’s µs-level results to ms-level, e.g., 4.135ms to 4ms.
Table 2: Measurement accuracy of MopEye and MobiPerf.

Table 2 presents three sets of results for Google, Face-
book, and Dropbox, which experience RTTs on different
scales. The differences between the RTT measurement
of MopEye/MobiPerf and that of tcpdump are denoted
by d . The results clearly show that MopEye has a much
better accuracy than MobiPerf—MopEye’s measurement
deviates from that of tcpdump by at most 1ms, whereas
MobiPerf’s deviations range from 12ms to 79ms. By as-
sessing MobiPerf’s code5, we identify three factors re-
sponsible for MopEye’s higher accuracy, including using
the low-level socket call and the nanosecond-level times-
tamp method, and most importantly, putting the timing
function just before and after the socket call. We refer
interested readers to our previous poster version [48] for
more details.

5
http://tinyurl.com/PingTask, where HTTP ping starts from

the line 438.
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Throughput Baseline MopEye D Haystack D
Download 24.47 24.01 0.46 20.19 4.28

Upload 25.97 25.08 0.89 6.79 19.18
Table 3: The download and upload throughput overhead of
MopEye and Haystack.

4.1.2 Measurement Overhead
To measure the overhead introduced by MopEye, we first
measure the additional delay introduced to the connec-
tion establishment and data transmission in other apps
when MopEye is running. For the connection time, we
implement a simple tool that invokes connect() to mea-
sure the time taken with and without MopEye. For data
packets, we use the popular Ookla Speedtest app [16] to
measure the latency. Both experiments are repeatedly ex-
ecuted on a Nexus 4 running Android 5.0. With a 95%
confidence interval, the mean delay overhead of a round
of SYN and SYN/ACK packets is 3.26⇠4.27ms and that
of data packets is 1.22⇠2.18ms. Considering that the
median of all 714,675 LTE RTTs in our dataset is 76ms,
the delay overhead is acceptable.

Another important metric is the download and up-
load throughput overhead. We compare MopEye with
Haystack [42] v1.0.0.8 (the latest version at the time of
our evaluation), which uses the VpnService API to de-
tect privacy leaks in app traffic. For a fair comparison,
we do not enable Haystack’s TLS traffic analysis for all
its experiments. We use the Ookla Speedtest app as the
reference tool to measure the throughput with and with-
out MopEye/Haystack. All three experiments are repeat-
edly conducted in a dedicated WiFi network which pro-
vides very strong signal strength and stable throughput at
around 25Mbps for both download and upload links.

Table 3 presents the throughput results with D denot-
ing the difference from our baseline using Speedtest.
The results clearly show that MopEye achieves a much
better throughput performance than Haystack. Mop-
Eye’s throughput deviates from the baseline by less than
1Mbps, whereas that for Haystack ranges from 4Mbps
(for the download link) to 19Mbps (for the upload link).
In particular, we find that Haystack’s throughput de-
grades significantly (e.g., 11.63Mbps for the download
and 3.74Mbps for the upload) if we do not restart it for
the next run. Therefore, in order to obtain the Haystack
results in Table 3, we reset Haystack’s VPN interface be-
fore each test. We attribute our superior results to the
major challenges addressed in §3.

4.1.3 Resource Consumption Overhead
We now summarize the resource consumption overhead
of MopEye and Haystack with a Nexus 6 playing a high-
definition YouTube video for around one hour. Accord-
ing to Table 4, MopEye’s resource consumption over-
head is lower than that of Haystack in terms of CPU, bat-
tery, and memory. In particular, the CPU overhead with
Haystack is over 9%, mainly because Haystack has to

Scenario Resource Overhead
MopEye Haystack

Playing a 58-minute CPU 2.74% 9.56%
high-definition (1080p) Battery 1% 2%

YouTube video Memory 12MB 148MB
Table 4: The resource overhead of MopEye and Haystack.

(a) By user. (b) By app.
Figure 6: Number of measurements performed by each
user/app that contribute to at least 100 measurements.

keep executing the VPN read() regardless there are app
packets to be relayed or not. Moreover, we argue that the
1% battery overhead of MopEye is not contributed only
by MopEye, because, with MopEye enabled, YouTube is
no longer considered using the network interface by the
system battery benchmark.

4.2 Crowdsourcing Measurement Results
Our MopEye deployment on Google Play has attracted
4,014 user installs from 126 countries since May 2016.
In this section, we first describe the dataset used in
this paper and then present our measurement analysis to
underline the value of MopEye’s opportunistic per-app
measurement.
4.2.1 Dataset Statistics
By deploying MopEye for over ten months, to the best
of our knowledge, we have collected the first large-scale
per-app measurement dataset. Our analysis in this paper
is based on the MopEye data received between its launch
on 25 May 2016 and 3 January 2017. Our dataset cov-
ers a wide spectrum of devices, countries, and apps, and
includes over 5 million RTT measurements.
User/Device coverage: The dataset includes a total of

2,351 devices that performed at least one measure-
ment. Figure 6(a) shows the number of measure-
ments performed by 1,037 devices each of which
conducted at least 100 measurements. Although
most of them are in the range of 100–1K, 462
of them (45%) contribute from 1K to more than
10K measurements each. This shows a signifi-
cant number of consistently active users. More-
over, these user devices cover 922 different phone
models, manufactueres of which include Samsung,
HTC, LG, Motorola, Huawei, XiaoMi, and others.
This evidences that MopEye can support a wide
range of Android phones in the market.
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Figure 7: Distribution of the top 20 MopEye user countries.
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Figure 8: Locations of conducting the MopEye measurement.

Country distribution: Users in our dataset come from
114 countries worldwide. Figure 7 shows the distri-
bution of the top 20 user countries, including the
United States (790 users), United Kingdom (116
users), India (70 users), and Italy (68 users). More-
over, Figure 8 plots 6,987 geographical locations
where the MopEye measurements were conducted.
The figure visually shows that our dataset covers a
large populated area, notably the North America,
Europe, India, coastal regions of South America,
Southeast Asia, and the Pacific Rim.

Applications measured: This dataset includes mea-
surement on 6,266 apps. Figure 6(b) shows the dis-
tribution of the number of RTT measurements per-
formed by each app that contributes at least 100
measurements, with a total of such 1,549 apps. Sim-
ilar to Figure 6(a), most of them contribute 100–1K
measurements, and 424 of them have between 1K
and more than 10K measurements. The most pop-
ular (in terms of the number of times being mea-
sured) apps include social networking apps such
as Facebook, Instagram, and WeChat, and system
built-in apps such as YouTube and Google Play.

Measurements collected: The dataset contains a total
number of 5,252,758 RTT measurements. Among
them, 3,576,931 are measurements for TCP connec-
tions used by the apps, and the remaining 1,675,827
are for DNS measurements. Altogether they cover
106,182 destination IP addresses, 35,351 destina-
tion server domains, 2,427 destination server ports,
and 943+ DNS servers. The most accessed do-
main is graph.facebook.com with 142,873 con-
nections.

(a) All apps’ raw RTTs. (b) Top 424 apps’ median RTTs.
Figure 9: CDF plots of apps’ raw RTTs and median RTTs.

4.2.2 Per-app Measurement Analysis
We now present the 3,576,931 per-app measurement re-
sults, which characterize the network performance expe-
rienced by different apps under different network types
and ISPs in the wild. We envision ways of using the anal-
ysis results to improve the mobile network performance.
For example, we reported our measurement results of
WeChat to help Tencent (developer of the WeChat app)
solve a misconfiguration problem [48].

Overall results. We first present the overall app per-
formance in our dataset by plotting the distribution of
apps’ raw and median RTTs in Figure 9. Figure 9(a)
shows the CDF plot of all 6,266 apps’ raw RTTs, in
which we further distinguish between WiFi and cellu-
lar access. Overall, the performance experienced by mo-
bile users is good with a median RTT of 65ms (i.e., the
value at the 0.5 line in Figure 9(a)). Moreover, ⇠40%
of the RTTs are below 50ms and ⇠60% of the RTTs
are below 100ms. However, we can still observe ⇠20%
of them suffering from relatively long RTTs (>200ms),
and ⇠10% at exceedingly long RTT (>400ms). In this
dataset, WiFi shows superior performance than that on
cellular networks. The median RTTs for WiFi, cellular
networks (including 2G, 3G, and LTE), and LTE alone
are 58ms, 84ms, and 76ms, respectively.

Figure 9(b) plots the median RTT distribution of 424
apps that have more than 1K measurements each (see
Figure 6(b)). We choose the median over the mean
value because the median is less affected by RTT out-
liers. The dataset also has enough measurements for each
app, making the median a reliable measure. The figure
shows that more than 70% of the apps experience less
than 100ms in their RTTs. However, there are ⇠10% of
the apps suffering from more than 200ms of RTT.

Representative apps’ performance. We next study
the network performance of representative apps that are
frequently used in our daily life. Table 5 lists 16 such
apps in five categories. For each app, we present its to-
tal number of RTT measurements and the median RTT.
Most of these apps exhibit very good network perfor-
mance. For example, Instagram, WeChat, Google Play
Store, YouTube, and Amazon have a median RTT below
60ms. We also notice that the median RTT of Whatsapp
is larger than 100ms. Next we present two case studies
in more depth.
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Category Apps # RTT Median RTT

Social

Facebook 215,769 61ms
Instagram 38,640 50.5ms

Weibo 28,905 43ms
Twitter 11,407 56ms
WeChat 61,804 36ms

Commu- Facebook Messenger 42,408 42ms
nication Whatsapp 32,372 133ms

Skype 16,264 76ms

Google

Google Play Store 100,115 48ms
Google Play services 60,805 37ms

Google Search 35,858 45ms
Google Map 19,996 38ms

Video YouTube 99,895 32ms
Netflix 28,302 33ms

Shopping Amazon 18,313 59ms
Ebay 16,114 70ms

Table 5: Network performance of 16 representative apps.

Case 1: The vast majority of *.whatsapp.net do-
mains do not perform well in many networks. What-
sapp employs a total of 334 whatsapp.net domains as
its server domains, but the median RTT of all these do-
main traffic is as high as 261ms. Specifically, the me-
dian RTTs for all, except three, are larger than 200ms.
The median RTTs for those three domains (starting with
mme, mmg, or pps) are less than 100ms. According to
our analysis, the three domains are deployed in the Face-
book CDN, whereas the other 331 domains are with
SoftLayer Technologies, a server hosting provider. Fur-
thermore, we analyze the median RTTs on these 331
whatsapp.net domains in 20 most accessed networks
(11 WiFi and 9 LTE networks) that have at least 100 mea-
surements each. The results show that only two networks
can achieve less than 100ms of RTT (77.5ms for a WiFi
network and 56ms for the Verizon 4G network), six net-
works in the 100–200ms interval, eight networks in be-
tween 200ms and 300ms, and four networks with RTTs
over 300ms. Moreover, our manual Ping tests from Sin-
gapore and Hong Kong to those domains report a latency
of ⇠250ms. All of the above show that there is much
room for Whatsapp to improve their whatsapp.net net-
work performance.

Case 2: Jio, India’s largest 4G ISP, fails to provide
acceptable performance to many app domains. In the
course of analyzing the Whatsapp case, we find that Jio
provides poor performance to many app server domains.
Among all the ten 4G ISPs with more than 10K mea-
surements, Jio is the only one that has a median RTT
larger than 100ms. The median RTT of its 76,717 RTT
measurements is as high as 281ms. Considering that the
median RTT of its DNS measurements is only 59ms,
the root cause lies very likely in its LTE core network.
Moreover, our analysis of 115 domains (that have 100+
measurements each) in Jio finds that only 19 domains’
median RTTs are less than 100ms, whereas the median
RTTs of 67 domains are over 200ms, 57 domains over
300ms, and 24 domains even over 400ms. We further
confirm that Jio’s poor performance is not due to the per-
formance of the app servers. It is because out of the 71

(a) All results. (b) Cellular results.
Figure 10: CDF plots of DNS measurement results.

domains that have 100+ measurements each in both Jio
and non-Jio LTE networks, 63 of them have much bet-
ter latency (138ms less than Jio on average) with non-Jio
LTE networks.

4.2.3 DNS Measurement Analysis
Next we analyze the 1,675,827 DNS measurements re-
ceived from 943+ WiFi and cellular DNS servers.

Overall results. Figure 10(a) shows the CDF plot of
all measured DNS RTTs. According to the overall distri-
bution, the DNS performance for mobile networks in the
wild is good with a median of 42ms, and around 80% of
DNS RTTs are less than 100ms. The DNS RTTs are in
fact much better than the per-app performance by com-
paring Figure 10(a) with Figure 9(a). For example, 80%
of per-app RTTs are less than 200ms, two times higher
than DNS. This is probably because ISPs usually deploy
local DNS servers. Additionally, we notice that WiFi’s
DNS RTTs are consistently lower than the overall results
with a median of only 33ms; whereas that of cellular net-
works is 61ms. This indicates that the first-hop perfor-
mance of WiFi is generally better than cellular networks.

We plot the detailed results for 2G, 3G, and 4G cel-
lular networks in Figure 10(b). The CDF plots show
clearly the performance difference among the three.
More specifically, the median DNS RTT of 4G is 56ms;
whereas that of 3G and 2G are as high as 105ms and
755ms, respectively. Most of the devices in our measure-
ment use 4G—around 80% of DNS RTTs come from 4G.
This also explains why the CDF plot for 4G DNS RTTs
is close to that of all cellular RTTs.

Major 4G ISPs’ DNS performance. We now take a
closer look at the DNS performance of major 4G ISPs.
Table 6 lists the performance of 15 LTE operators that
have most DNS RTTs in our dataset. First, we notice
that there is no clear correlation between the country
and DNS performance. For example, the performance
of most American ISPs, three Hong Kong ISPs, and two
Malaysia ISPs are similar. Second, the majority of 4G
ISPs provide good DNS performance with the median
RTTs in 40-60ms. The only three outliers are the good-
performer Singtel, and the poor-performers Cricket and
U.S. Cellular. To gain a better understanding, we further
study these three ISPs along with Verizon, a representa-
tive of other ISPs.
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ISP Name Country # RTT Median RTT
Verizon America 80,227 46ms
Jio 4G India 52,397 59ms
AT&T America 51,421 53ms
Singtel Singapore 34,609 27ms

Boost Mobile America 21,854 50ms
Sprint America 20,878 51ms

3 HK (China) 14,354 53ms
MetroPCS America 13,282 60ms
T-Mobile America 9,084 45ms
CMHK HK (China) 5,820 50ms
Celcom Malaysia 4,120 56ms

CSL HK (China) 3,099 61ms
Cricket America 2,822 93ms
Maxis Malaysia 2,419 40ms

U.S. Cellular America 1,988 76ms

Table 6: DNS performance of 15 LTE 4G operators.

Figure 11: CDF plots for DNS performance of four LTE ISPs.

Figure 11 presents the DNS RTT distribution of the
four selected ISPs with the Verizon plot as the base-
line. The plots show that Singtel has an outstanding first-
hop performance with 5,084 DNS RTTs less than 10ms
(14.7% of its total RTTs), whereas Verizon has less than
1% of its DNS RTTs below 10ms. This is mainly because
Singtel has deployed the latest upgrade of LTE, Tri-band
4G+ [21], countrywide [12]. On the other hand, the DNS
performance of Cricket and U.S. Cellular clearly is worse
than the baseline. In particular, the minimum RTTs of
Cricket and U.S. Cellular are around 43ms, much higher
than the best performance of Singtel and Verizon. They
are probably using the pre-4G or near-4G implementa-
tions, because we find that around half of their DNS
RTTs (64% of Cricket and 45% of U.S. Cellular) are still
from non-LTE networks.

Key Takeaway: MopEye enables a large-scale deploy-
ment of per-app measurements in the wild, which help
understand and diagnose the network quality of app
providers and mobile networks at different granularity.

5 Related Work
Many measurement tools have been proposed to under-
stand mobile network performance. They could be clas-
sified into crowdsourcing measurement apps (e.g., [30,
28, 25, 40]) and controlled testbeds (e.g., [47, 35, 24]).
They study 3G/4G networks’ RRC (Radio Resource
Control) state dynamics [41, 28, 44], analyze the behav-
iors of cellular networks [27, 49, 33, 29], measure mobile
network performance and reliability [40, 35, 22, 23, 45],
and perform other measurements [37, 38]. MopEye be-
longs to the domain of crowdsourcing measurements.
Using the VpnService API to perform passive network

measurement, MopEye is the first app that provides per-
app network performance on unrooted phones without
user intervention. With MopEye, we also provide the
first report of large-scale per-app network measurements.

Recently, researchers are interested in utilizing the
VpnService API for different purposes. Nearly all of
them focus on detecting privacy leakage [26] by relaying
and intercepting mobile apps’ traffic either in the smart-
phone [46, 42] or at a remote VPN server [36, 43]. Two
recent works [34, 39] use a remote VPN server to iden-
tify traffic differentiation and optimize traffic volume in
cellular networks. MopEye is different from all these
related works in that we leverage the VpnService API
for per-app network performance measurement. Indeed,
MopEye is the first and the only one on the market that
provides per-app measurement for end users. Moreover,
our solutions for tackling the delayed VPN read problem
(§3.1) and mitigating the VPN protect() delay (§3.5.2)
can benefit all VPN-based apps, such as OpenVPN [9].

Due to the traffic-interception capability of Vpn-

Service APIs, it is important for VPN-based apps to
preserve users’ privacy in their design. Unfortunately,
many VPN apps on the market fail to do so according
to a recent study [31]. The majority of them use re-
mote VPN servers for traffic relay, but not always in a
secure fashion (e.g., no encryption for the tunnel to VPN
servers, or no tunneling for DNS traffic). In contrast, our
MopEye adopts the local phone-side traffic forwarding
scheme, without additional risks associated with VPN
servers, such as leaking user traffic. Further, unlike Pri-
vacyGuard [46] and Haystack that perform traffic content
inspection, MopEye makes no such attempt, let alone the
TLS interception performed by those two. This may be
an important factor contributing to a much higher num-
ber of MopEye installs than Haystack, which reached
only 1.5K installs by the end of March in 2017 [4].

6 Conclusion
In this paper we proposed MopEye, a novel measure-
ment app to monitor per-app network performance on
unrooted smartphones. By leveraging the VpnService

API on Android to intercept all network traffic, MopEye
was able to opportunistically measure each app for its
network RTT without network overhead and user inter-
vention. We overcame a number of challenges to achieve
a fast packet relaying and an accurate measurement in
MopEye. We have deployed MopEye to Google Play
for an IRB-approved crowdsourcing study for over ten
months. By collecting and analyzing the first large-scale
per-app measurement dataset, we discovered a number
of new findings on the per-app and DNS network perfor-
mance experienced by real users in the wild. We plan to
further improve MopEye (e.g., supporting more metrics
beyond RTT), and release more analysis results for app
developers and ISPs to optimize their performance.
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