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Abstract
Container technology is being adopted as a mainstream
platform for IT solutions because of high degree of
agility, reusability and portability it offers. However,
there are challenges to be addressed for successful adop-
tion. First, it is difficult to establish the full pedigree
of images downloaded from public registries. Some
might have vulnerabilities introduced unintentionally
through rounds of updates by different users. Second,
non-conformance to the immutable software deployment
policies, such as those promoted by the DevOps prin-
ciples, introduces vulnerabilities and the loss of control
over deployed software. In this study, we investigate
containers deployed in a production cloud to derive a
set of recommended approaches to address these chal-
lenges. Our analysis reveals evidences that (i), images
of unresolved pedigree have introduced vulnerabilities
to containers belonging to third parties; (ii), updates to
live public containers are common, defying the tenet that
deployed software is immutable; and (iii), scanning con-
tainers or images alone is insufficient to eradicate vul-
nerabilities from public containers. We advocate for bet-
ter systems support for tracking image provenance and
resolving disruptive changes to containers, and propose
practices that container users should adopt to limit the
vulnerability of their containers.

1 Introduction
Containers are expanding their adoption in the IT
arena rapidly as evidenced by recent launches of IBM
Bluemix [20], Amazon ECS [10], Azure Container Ser-
vice [13] and Google Container Engine [16]. Reasons
are plentiful. The motto of ‘Build, Ship and Run’, easy
reusability of images, easy distribution of code, and sim-
plicity of pick and run all align well with the agility,
portability, visibility goals of modern software develop-
ment and DevOps principles [14, 26, 30]. Ultimately the
goal is to shorten the release cycles, and thus time-to-
market, as much as possible.

However, with mainstream adoption of containers,
new challenges emerge. Among them, we focus on the
following two that we believe are the most critical. First,
the ease of distribution and reuse of containers make it
difficult to fully understand the origin and pedigree of
images we use. Consider this scenario where two benign
development actions can lead to a serious security expo-
sure. A developer builds an image with the password-
based authentication enabled and pushes it to an image
registry. Another developer, unaware of this, pulls this
image and builds a database application on top, where
the database application adds a default user ID and a
password during its installation. This new image is now
pushed back to the registry. As a result of these indepen-
dent actions we end up with an image of a high-risk secu-
rity exposure that is ready to be pulled and deployed by
many unsuspecting users. Anyone can freely use this im-
age to deploy the same database application in the cloud,
and it could be one of yours as well. Unintended vul-
nerabilities could be introduced this way to an image and
can quickly spread in the cloud [8, 19].

A second challenge arises where the expectations from
the employed DevOps practices do not match reality with
containerized application deployments. Modern DevOps
practices advocate an “immutable architecture” model,
where all software, system and infrastructure require-
ments of an application are expressed as code. This gives
developers the ability to re-create the infrastructure and
applications in a repeatable and agile way. Containers,
with their ability to package all system and software re-
quirements, are a key enabler for this immutable archi-
tecture model. However, there is a commonly observed
mismatch, or drift, between the declared architecture and
the actually deployed application instances in the cloud.
This deviation stems from several factors such as in-
place updates (e.g., manual configuration change), dy-
namic configuration and application updates. Such drift
can introduce unexpected exposures and side effects on
deployed applications and can go unnoticed for a long
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time with only the image-centric validation processes.
In this paper we present real examples to these chal-

lenges based on our experiences with an internal, pro-
duction cloud. We demonstrate an actual case study on
the image provenance and its implications. We present
a detailed data analysis on the extent of the observed
drift in cloud, its root causes and mitigation techniques.
We demonstrate the value of automated and system-
atic scanning of container images and live instances to
address these challenges for emerging solutions in this
space [1, 9, 11, 12, 17, 18, 21, 29, 31]. We present key
insights derived from observing aggregate cloud data on
security, provenance and drift. Our analysis shows that
drift exists in less than 5% of our scanned containers, it
has diverse causes, and in some cases can lead to sig-
nificant vulnerabilities. Our analysis shows that image-
centric security solutions are insufficient, and continu-
ous scanning of images and live containers, coupled with
good DevOps practices are required to ensure high level
of cloud security.

Overall, our contribution can be summarized as: (i)
Sharing of our experiences of analyzing the security
states of containers and images from a production-level
container cloud, (ii) Detailed drift analysis to understand
to what extent it occurs in the production cloud and what
the common characteristics are. Based on the analysis,
we describe comprehensive list of causes of drift, (iii)
Lessons and suggestions of approaches we should take
to continue to improve the safety of the container cloud.

2 Image & Container Checking
Our security scanning mechanism is fully integrated into
a production-level container cloud used internally. It is
automatically triggered upon new image pushes and new
container launches. It extracts various features such as
list of files with attributes, list of installed packages, OS
information, docker inspect, and docker history as pre-
sented in [22]. It then feeds the extracted features to
compliance and package vulnerability checkers, and per-
sists the output of these checkers into store for aggre-
gate and historical analysis. Images that users push come
from various sources. One major source is the public
docker hub. Another is the IBM’s official container im-
ages. Users may also choose to create their own images
from scratch and push them to the registry.

Compliance Checking: Compliance rules used in our
analysis are based on set of best practices recommended
by IBM internally to minimize the chances of compro-
mise. Complete list of rules we use in the scan is de-
scribed in Table 1. Rules are largely categorized into (i)
password restrictions (Rules 2B-D), (ii) file system in-
tegrity and (iii) remote access packages (Rules 9A-G).
Of particular interest is SSH-related rules - 9A, 9E, 9F
and 9G. For us these are considered critical rules because

ID Rules

1A Each UID must be used only once.
2B Maximum password age must be set to 90 days.
2C Minimum password length must be 8.

2D Minimum days that must elapse between user-
initiated password changes should be 1.

5A,B RD/WR access of root/.rhosts,.netrc only by root
5D,E Permission of /usr,/etc must be r-x or more restrictive.

5F The file /etc/security/opasswd must exist and the
permission must be rw——- or more restrictive.

5J Permission settings of /var for other
must be r-x or more restrictive.

5K Permission of /var/tmp must be rwxrwxrwt.

5L Permission setting of /var/log for other
must be r-x or more restrictive.

5M Permission check of /var/log/faillog
5N Permission check of /var/log/tallylog
5S Permission check of snmpd.conf

6D,E,F wtmp/faillog/tallylog must file exist.
8O no hosts equiv must be present
9A SSH server must not have been installed.
9B Telnet server must not have been installed.
9C Rsh server must not have been installed.
9D Ftp server must not have been installed.
9E SSH server must not be enabled.
9F SSH password authentication should not be enabled.
9G All passwords must not be weak.

Table 1: List of home-grown compliance rules.

SSH can often be an easy entry point for an attack. If
sshd runs on a container that has any user ID with weak
password, which is not uncommon, such container could
be cracked even with simple dictionary-based attacks.

Package Vulnerability Checking: Vulnerabilities in
software are announced via the National Vulnerability
Database (NVD) [24]. Each vulnerability is assigned
a unique id known as Common Vulnerability Exposure
(CVE) ID [15], and given a score to communicate the im-
pact of the vulnerability. In addition, it also lists specific
versions of the products affected by the given vulnerabil-
ity. Our vulnerability checker uses above information to
determine vulnerability status of images and containers.
Container images and running instances are scanned pe-
riodically to determine their vulnerabilities status. One
of the consequences of repeated scanning is an image
that has no vulnerabilities in a given scan, but may turn
out to be vulnerable later.

3 Image Security: Unsafe Pedigree
The foremost challenge of adopting the container cloud
identified earlier is the difficulty with grasping the full
history of what updates have been applied to the image
to be in current state. This means that the base image you
pull may contain unidentified vulnerabilities whether it
was crafted or inadvertent. Even worse, multiple series
of modifications and re-push by different users, includ-
ing yours, may jointly create unexpected vulnerabilities.
Thus, it is naive to expect that images would stay clean
even if users strictly follow best practice guidelines. In
this section we make a case for the importance of system-
atic and automated image scan to deal with such issues.
We drive our discussion using one actual scenario we en-
countered.
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Figure 1: Scenario of vulnerability spread

Case Study: Recently we have come across a puzzling
pattern in one of the analytics data. We were look-
ing at the list of about 50 containers that were classi-
fied as ‘high-risk’ that violated SSH-related rules 9A, 9F
and 9G. They all had SSH server running, password-
authentication enabled and the an ID with weak pass-
word. What was most peculiar was that the source im-
age names of all of them had common part, say “myapp-
srv” 1, as if they were all created by one owner. But all
of them belonged to different users. How can we explain
this phenomenon in which all different users launched
containers whose images seemed to have derived from
the same source at the same time?

To find an answer we started with searching the
Docker Hub for the image that contained “myappsrv”.
We found a candidate, but lacked description. The
‘docker inspect’ output had the postgres start up com-
mands as the entry point. And, several ports (tcp 22,
5432, 7276, 7286, 9080, 9443) were open. List of pack-
ages installed in the image also indicated that it was a
postgresql database with SSH server. With further inves-
tigation we eventually learned that this image was used
in an online course. Students were instructed to pull, cus-
tomize and launch a container from it.

Figure 1 illustrates the spread process. The instructor
pulls the image that already had a postgres server with
a default ID of ‘postgres’ with weak password. Without
knowing the existence of this ID, he installs SSH server
packages. This image is pushed to the registry and ad-
vertised to all the online students. Students pull it and
launch containers of their own, resulting in large number
of high-risk containers. The instructor was unaware that
the original image had an ID with weak password. Also,
when installing the SSH server, the intention was to al-
low only the key-based authentication. In the config file,
this line was commented out as this.

# P a s s w o r d A u t h e n t i c a t i o n yes

However, if it is commented out the default behavior of
sshd is to enable it. It is easy to be misled to believe that
the password authentication is disabled. As a result of all
of these, high-risk containers came to life.

1Actual name not revealed for a security reason.
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Figure 2: Our definition of drift

Discussion: It is worthwhile making a few points from
this case study. First, vulnerabilities can creep in through
accumulation of innocuous updates and it is difficult to
foresee. Second, we started out with noticing a common
pattern in image names across group of vulnerable con-
tainers. This exemplifies the advantage of analyzing the
aggregate data as a whole which may lead to useful in-
formation that eventually reveals the root cause. Based
on the observation we make the following statement. En-
suring the safety of the container cloud should not solely
be dependent on users behaving in responsible manner.
We must rely on the automated solutions that perform se-
curity scans frequently and analyze the data as a whole.

4 Container Security: Drift Analysis
Here, we analyze the data collected from production-
level container cloud, used internally, to understand the
drift behavior. The data is collected from two instances
of the container cloud operating independently of each
other for about two week period in Oct, 2016.

The questions we are interested in are: Does drift ex-
ist? If so, how many containers exhibit the drift? Be-
tween the compliance and vulnerability, which is the
cause of drift? In compliance, which rules in specific are
causing the drift? Does drift always increase, or is there
a case where it decreases as well and what are they?

4.1 Definition of Drift
We specifically consider the drift in terms of the com-
pliance violations and vulnerabilities found. The drift
in compliance is defined as the difference between the
number of compliance rules violated in a running con-
tainer and in its corresponding image. Likewise the drift
in vulnerability is defined as the difference of the num-
ber of vulnerable packages. Other tools (such as Salt [2]
and Puppet [3]) may use the drift to mean specifically the
configuration changes between two states.

Figure 2 illustrates the time aspect of comparison in
determining the drift. The upper horizontal arrow indi-
cates the life span of an image. From the moment it is
pushed, it is scanned for the compliance and vulnerabil-
ity. A push of newer version also triggers a new scan.
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Figure 3: Proportion of containers having drifts.
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Figure 4: Drift break-down into compliance and vulnerability.

There are scans, labeled as ‘rescan’, that are not trig-
gered by a push. Rescans are to ensure that results are
up-to-date with respect to the updated compliance rules
and vulnerable package definitions. The lower horizontal
arrow represents the lifespan of a container.

We compare the scan results between ti and t j to obtain
the drift, denoted as D(ti, t j). D(tk, t j) is dismissed be-
cause tk might contain new updates that are independent
of the container and, thus, making it difficult to identify
true divergence of states. Also, D(th, t j) is inappropriate
since it may miss D(ti, th) that occurs at the launch time.

4.2 Analysis and Highlights of Findings
We find that drifts do exist in the production containers
and the magnitude is less than 5%. As shown in Figure 3,
4.9% and 3.0% of the containers exhibit drifts in both
Site A and B, respectively. The existence of drifts, even
as small as 5%, is intriguing because ideally the drift is
not expected to occur. One harmless cause of the drifts
would be the increased number of vulnerable packages
in containers not because they actually increased, but be-
cause the list of known vulnerable packages grew over
time. This raises a question as to how many drifts fall
under such category. Also, the site difference of 1.9%
seems to be meaningful to deserve a closer look. To find
the explanation, we look at the break-down of drift.

Figure 4 is the diagram of drifts broken down into
compliance and vulnerability. The existence of compli-
ance drifts tells us that there are other types of drifts
than the ones due to the growing definition of vulnera-
ble packages. What is common for both sites is that vul-
nerability drifts dominates. However, the proportion of
vulnerability vs. compliance drifts shows notable differ-
ence. Site A has much smaller ratio of compliance drifts
(13.9%) than the Site B (50.5%). This may be the indi-
cation that the characteristics of the containers from both

Site A Site B

Vulnerability Increased 913 93.2% 295 48.1%
Decreased 24 2.4% 194 31.6%

Compliance
Increased 72 7.3% 223 36.4%

Unchanged 2 0.2% 13 2.1%
Decreased 62 6.3% 74 12.1%

Table 2: Drift categorization in terms of the direction of
changes. Percentage is based on the total drifts per site.

Site A Site B
Rule Count Pct Rule Count Pct
9A 34 47.2% 1A 134 60.1%
1A 25 34.7% 2B 95 42.6%
9F 24 33.3% 2C 90 40.4%
2B 18 25.0% 2D 50 22.4%
2C 18 25.0% 9A 19 8.5%
2D 6 8.3% 5L 11 4.9%
9G 4 5.6% 9F 8 3.6%
5S 1 1.4% 5S 1 0.4%

9G 1 0.4%

Table 3: Compliance rules violated in drift cases. Refer to
Table 1 for the description of rule codes.

are intrinsically different in regard to compliance rules.
Also, it is interesting that the absolute number of vulner-
ability drifts at Site A is twice as many as that of Site B.
Note that it does not necessarily imply that containers at
Site B are more secure. This means that the vulnerability
status does not change across the instantiation as much
irrespective of how secure the images and containers are.

Table 2 provides the break-down of drifts in terms of
whether the drift count increases or decreases. One ex-
ample of a decrease is when the user logs in and man-
ually patches vulnerable packages in the container. Ac-
cording to the Table 2, significant portion (31.6%) of the
vulnerability drift at Site B is in the ‘Decreased’ cat-
egory. This contrasts with Site A’s number which has
only 24 (2.4%). In case of the compliance drift, the pro-
portion of the ‘Increased’ category for Site B is much
larger than that of Site A. Table 3 explains the cause of
the difference. It is because of the high proportion of
violations of rule 1A (60.1%) which is twice as large
in proportion compared to Site A(34.7%). In addition,
password-related rules, 2B-D, rank high in the table for
Site B whereas SSH-related rules, 9A and 9F, are towards
top of the list for Site A. It is interesting to see that, at Site
B, violations of password rules occur more than the vio-
lation of SSH rules to the running containers. Similarly,
the reverse holds for the Site A. Table 4 also shows the
composition of rules that are fixed. We can see that there
is a tendency of fixing SSH-related violation within con-
tainers at Site B. Although site differences exist, majority
of the drifts are due to the changes of vulnerability status.
Also, data shows that ‘in-place’ updates to the contain-
ers, both benign and disruptive, are taking place.

Focus on SSH rules: In this part we specifically study
the drift of SSH related rules among the rules in Table 1.
Compliance to the SSH related rules is of particular in-
terest because it is one of the most exploited vulnerabil-
ities [4, 5, 6, 7]. Once compromised, the consequence
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Site A Site B
Rule Count Pct Rule Count Pct
2C 28 45.2% 9A 33 44.6%
9G 26 41.9% 9F 32 43.2%
2B 26 41.9% 9G 30 40.5%
9F 19 30.6% 2D 25 33.8%
9A 8 12.9% 2B 12 16.2%
5B 1 1.6% 2C 11 14.9%

5S 1 1.4%

Table 4: Non-compliances fixed in drifts. (Rules in Table 1)
Category Site A Site B

No SSH, Password become weak 1 1.3% 1 1.2%
SSH installed 31 39.2% 19 23.5%
SSH installed with weak password 3 3.8%
Password become weak 1 1.3%
Sum 36 45.6% 20 24.7%
Password become strong 21 26.6% 26 32.1%
Password Auth disabled 13 16.5% 2 2.5%
No SSH, password become strong 1 1.3%
SSH gets removed 8 10.1% 33 40.7%
Sum 43 54.4% 61 75.3%
Total 79 100% 81 100%

Table 5: Classification of SSH-related compliance rule drifts.

could be deadly. But, in many cases this vulnerability is
exposed out of neglect, and most of the attacks can be
prevented even with small awareness.

Table 5 summarizes the findings related to the SSH
rules. It classifies the SSH-related drifts into 8 cate-
gories and presents the statistics. Proportion of contain-
ers with drifts of SSH rules are about 0.4% for both Site
A (79/20K) and Site B (81/20K). The upper half of the ta-
ble represents drift categories that negatively impacts the
SSH vulnerabilities. The lower half shows the drifts that
strengthen it. Although magnitude differs, there exist
drifts that increase the SSH vulnerabilities in both sites.
The risk becomes the highest when all three SSH rules
are violated whether it was through manual human ac-
tions or automated scripts. Our data do not contain direct
information of how these SSH-related drifts happened.
But, we strongly suspect that many are due to manual
install or password change via SSH login. Overall, our
study suggests that the security scanning of images only
is insufficient to eliminate the vulnerabilities. Since se-
curity status changes while containers are running, it’s
critical that containers be scanned periodically.

4.3 Discussion
Why does disruptive drift happen? While indus-
try thinking coalesces around the belief that containers
should be immutable [25], our findings have shown that
containers deployed in a cloud drift from their original
configuration. Drift occurs for several reasons.
• Update via Remote Shell Access: Users of Docker con-
tainers are able to login into their containers and exe-
cute local commands that alter the state of the contain-
ers. Containers offer two shell access modalities: native
Docker daemon commands (e.g., exec, attach) and user
installed remote shell servers (e.g., SSH login).
• Automated Software Update: Owing to a long history
of bug and vulnerability discovery in software long after

they ship, software often install with default options to
automatically install updates as they become available.
As developers build container images they often neglect
to changing such defaults.
• Software configured at runtime: To aid with usability,
popular server applications offer Web admin front ends
that allow novice and expert users alike to change their
configurations long after they have been deployed.

What can we do about drift? Both the systems and
container user communities must work together to re-
alize the promise of an immutable infrastructure. Sys-
tems must provide better mechanisms to version and
track changes and automate detection of drift from de-
sired container state. Container users must also adopt
practices that lead to immutability.
• Systems support: Disallowing changes altogether on
containers is untenable. Applications, even if stateless,
often write cache data or logs to the local file system.
First we should track all changes made to containers and
give users visibility into these changes [23]. Second, sys-
tems must recognize benign changes to the container file
systems and memory from undesired changes.
• Best practices: Users must adopt practices that con-
tribute to immutable infrastructures. The first step is to
discontinue bad habits from the time-sharing era of log-
ging in to manually effect changes. DevOps practices
require changes to exist as versioned code that is sys-
temically validated before delivery to production envi-
ronments. Delivery is the replacement of the live con-
tainer with a new instance containing versioned code.

Some configurations are bound to the application at
run time and cannot be built into the container image.
One such example is environment specific variables such
as the hostname of a service that the container software
depends on. For these configurations, developers must
rely on configuration management systems that track
changes rather than manually feeding the container with
arguments in an ad-hoc manner [27, 28]

5 Conclusion
In this paper, we first established the importance of
DevOps as a standard software delivery practice for
container-based micro-service architecture. And as an
underlying principle DevOps requires security assurance
over the pedigree of images along with operational im-
mutability for containers instantiated from these images.
To substantiate the extent to which these principles are
currently violated, we presented our study on analysis
of images and containers in production-level container
cloud. We also discussed common characteristics and
causes of drifts. Thus, there is an increasing need to have
a regulatory protocol and enforcement engine in the plat-
form to curb such non-conformity to ensure security and
success of DevOps.
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