
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

SmartCuckoo: A Fast and Cost-Efficient Hashing
Index Scheme for Cloud Storage Systems

Yuanyuan Sun and Yu Hua, Huazhong University of Science and Technology;
Song Jiang, University of Texas, Arlington; Qiuyu Li, Shunde Cao, and Pengfei Zuo,

Huazhong University of Science and Technology

https://www.usenix.org/conference/atc17/technical-sessions/presentation/sun

SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud
Storage Systems

Yuanyuan Sun, Yu Hua*, Song Jiang†, Qiuyu Li, Shunde Cao, Pengfei Zuo
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
†University of Texas, Arlington

*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract

Fast query services are important to improve overall per-
formance of large-scale storage systems when handling
a large number of files. Open-addressing cuckoo hash
schemes have been widely used to support query services
due to the salient features of simplicity and ease of
use. Conventional schemes are unfortunately inadequate
to address the potential problem of having endless
loops during item insertion, which degrades the query
performance. To address the problem, we propose a cost-
efficient cuckoo hashing scheme, named SmartCuckoo.
The idea behind SmartCuckoo is to represent the hashing
relationship as a directed pseudoforest and use it to
track item placements for accurately predetermining
the occurrence of endless loop. SmartCuckoo can
efficiently predetermine insertion failures without paying
a high cost of carrying out step-by-step probing. We
have implemented SmartCuckoo in a large-scale cloud
storage system. Extensive evaluations using three real-
world traces and the YCSB benchmark demonstrate
the efficiency and efficacy of SmartCuckoo. We have
released the source code of SmartCuckoo for public use.

1 Introduction

Efficient query services are critical to cloud storage
systems at various scales, especially when they process
a massive amount of data. According to the report
of International Data Corporation (IDC) in 2014, the
amount of information created and replicated will reach
44 Zettabytes in 2020 [49], and nearly 50% of cloud-
based services will rely on data in storage systems [21].
Moreover, in a recent survey of 1,780 data center
managers in 26 countries, over 36% of respondents face
two critical challenges, which are efficiently supporting
a flood of emerging applications and handling the rapidly
increasing data management complexity [2]. This
reflects a reality that we are generating and accessing
much more data than ever and this trend continues at
an accelerated pace. This data volume explosion has

imposed great challenge on storage systems, particularly
on their support on efficient data query services. In
various computing facilities, from small hand-held
devices to large-scale data centers, people are collecting
and analyzing ever-greater amounts of data. Users
routinely generate queries on hundreds of Gigabytes of
data stored on their local disks or cloud storage systems.
Commercial companies generally handle Terabytes and
even Petabytes of data each day [6, 10, 54].

It is becoming increasingly challenging for cloud
storage systems to quickly serve queries, which often
consumes substantial resources to support query-related
operations [51]. Cloud management systems usually
demand the support of low-latency and high-throughput
queries [7]. In order to address these challenges, query
services have received many attentions, such as top-k
query processing [23, 34, 37], security model for file
system search in multi-user environments [9], metadata
query on file systems [26, 38], Web search using multi-
cores in mobile computing [27], graph query processing
with abstraction refinement [52], energy saving for
online search in datacenters [50], efficient querying of
compressed network payloads [48], reining the latency
in tail queries [22], and scaling search data structures for
asynchronized concurrency [12].

An efficient hashing scheme is important for improv-
ing performance of query services. A hash table needs
to map keys to values and supports constant-time access
in a real-time manner. Hash functions are used to locate
a key to a unique bucket. While keys may be hashed
to the same bucket (the occurrence of hash collisions),
lookup latency can become higher with more collisions
in a bucket. Cuckoo hashing [43] is a fast and simple
hash structure with the constant-time worst-case lookup
(O(ln 1

ε)) and consumes (1+ ε)n memory consumption,
where ε is a small constant. Due to its desirable property
of open addressing and its support of low lookup latency,
cuckoo hashing has been widely used in real-world cloud
applications [13, 24, 28, 35, 46]. Cuckoo hashing uses
multiple (usually two in practice) hash functions for
resolving hash collisions and recursively kicks items

USENIX Association 2017 USENIX Annual Technical Conference 553

out of their current positions. Unlike standard hashing
schemes that provide only one position for placing an
item, cuckoo hashing provides multiple (usually two)
possible positions to reduce the probability of hash
collisions. To determine the presence of an item, the
cuckoo hashing will probe up to two positions, and the
worst-case lookup time is a constant.

However, the cuckoo hashing suffers from substantial
performance penalty due to the occurrence of endless
loops. Currently, the existence of endless loop is detected
only after a potentially large number of step-by-step
kick-out operations. A search for insertion position in
an endless loop turns out to be fruitless effort. In order to
deliver high performance and improve lookup efficiency,
we need to address two major challenges.

Substantial Resources Consumption. In an endless
loop, an insertion failure can only be known after
a large number of in-memory operations, and the
penalty can substantially compromise the efficiency
of cuckoo hashing schemes. When a hash table is
substantially occupied, many such loops occur, which
can substantially increase insertion costs.

Nondeterministic Performance. Cuckoo hashing
essentially takes a random walk to find a vacant bucket
for inserting an item since the knowledge on the path
for this walk is not obtained in advance [19, 33]. This
scheme does not leverage the dependencies among the
positions of items. Before walking sufficiently long on
the path, one can hardly know if an endless loop exists.
Moreover, the cuckoo hashing provides multiple choices
of possible positions for item insertion. The kick-out
operations need to be completed in an online manner.

Existing schemes have not effectively addressed the
two challenges. For example, MemC3 [16] uses a large
kick-out threshold as its default kick-out upper bound,
which possibly leads to excessive memory accesses and
reduced performance. Cuckoo hashing with a stash
(CHS) [29] addresses the problem of endless loops by
using an auxiliary data structure as a stash. The items
that introduce hash collisions are moved into the stash.
For a lookup request, CHS has to check both the original
hash table and the stash, which increases the lookup
latency. Furthermore, bucketized cuckoo hash table
(BCHT) [15,44, 45,55] allocates two to eight slots into a
bucket, in which each slot can store an item, to mitigate
the chance of endless loops, which however results in
poor lookup performance due to multiple probes.

In order to clearly demonstrate the performance
impact of endless loops, we measure the loop ratio in
CHS with three real-world traces (experiment details can
be found in Section 4.1). The loop ratio is defined as
the percentage of failed insertions due to the existence of
endless loops among all item insertions. Figure 1 shows
that more than 25% insertions walk into endless loops

at a load factor of 0.9 for the hash table, which leads
to substantial time and space overheads for carrying out
rehashing operations and allocating additional storage
space, respectively. The load factor is the ratio of the
number of occupancies to that of total buckets in the hash
table. To this end, we need to mitigate and even eliminate
the occurrence of endless loops to reduce the space and
time overheads.

��

��

��

��

��

��

��

��

��

��	
��
	�����

�����

������
�

�
�
�
�
��
�
��
�
	�

�

�

�

�

��

��

��

��

��

��

��

��

��

����������	

��	
��
	�����

�����

������
�

�
�
�
�
��
�
��
�
	�

�

�

Figure 1: The loop ratios in CHS with three traces.

In this paper, we propose a cost-effective cuckoo
hashing scheme, named SmartCuckoo. SmartCuckoo
allows flexible configurations and fast item lookup, and
achieves much improved insertion performance. Our
work aims to answer the following questions: (1) Is
there a vacant bucket available for an item to be
inserted before starting kick-outs on a path? (2) How
to guarantee efficiency of the insertion and lookup using
a space-efficient and lightweight auxiliary structure?

SmartCuckoo leverages a fast and cost-efficient prede-
termination operation to help avoid unnecessary kick-out
process due to endless loops. This operation runs before
item insertion starts by using an auxiliary structure.
Moreover, an insertion failure can be identified without
any kick-out operations and manual setting of iteration
thresholds. SmartCuckoo can avoid the endless loops
of cuckoo hashing and deliver high performance. This
paper has made the following contributions.

Cost-effective Hashing Scheme. SmartCuckoo
retains cuckoo hashing’s advantage of space efficiency
and constant-time queries via open addressing. In
the meantime, SmartCuckoo is able to predetermine
insertion failures without the need of carrying out con-
tinuous kick-out operations, thus significantly reducing
the insertion latency and supporting fast lookup services.

Deterministic Performance. Conventional cuckoo
hashing schemes take many kick-out operations in their
insertion operations before detecting endless loops and
consuming substantial system resources. By categoriz-
ing insertions into different cases, SmartCuckoo helps
predetermine the result of a new insertion to avoid
the endless loop by leveraging the concept of maximal

554 2017 USENIX Annual Technical Conference USENIX Association

pseudoforest. SmartCuckoo hence makes insertion
performance more predictable.

System Implementations and Public use. We
have implemented all the components and algorithms
of SmartCuckoo and released the source code for
public use1. In order to evaluate the performance
of SmartCuckoo, we compared it with state-of-the-art
schemes, including CHS [29] as the evaluation baseline,
libcuckoo [36], as well as BCHT [15].

2 Background

This section presents the research background of the
cuckoo hashing and the pseudoforest theory. As a cost-
efficient hashing scheme, the cuckoo hashing utilizes
open addressing to improve lookup efficiency for large
datasets. In the cuckoo hashing, the relationship between
items and buckets can be described by a cuckoo graph,
where each edge represents a hashed item and its two
vertices represent the positions of the hashed item in the
hash directory.

Cuckoo hashing does not require dynamic memory
allocation, which can be efficiently exploited to provide
real-time query services. The cuckoo hashing is able
to support fast queries with worst-case constant-scale
lookup time due to its addressing open to multiple
positions for one item.

2.1 The Cuckoo Hashing

Cuckoo hashing [42, 43] is a dynamization of a static
dictionary. The hashing scheme resolves hash collisions
in a multi-hash manner.

Definition 1 Conventional Cuckoo Hashing. Let d be
the number of hash tables, and S be the set of keys. For
the case of d = 2, conventional cuckoo hashing uses two
hash tables, T1 and T2 with a size of n, and two hash
functions h1, h2: S→ {0, . . . ,n−1}. A Key k ∈ S can be
inserted in either Slot h1(k) of T1 or Slot h2(k) of T2, but
not in both. The two hash functions hi (i = 1 or 2) are
independent and uniformly distributed.

As shown in Figure 2, we use an example to illustrate
the insertion process in the conventional cuckoo hashing.
In the cuckoo graph, the start point of an edge represents
the actual storage position of an item and the end point
is the backup position. For example, the bucket T2[1]
storing Item b is the backup position of Item a. We intend
to insert the item x, which has two candidate positions
T1[0] and T2[5] (blue buckets). There exist three cases
about inserting Item x:

1https://github.com/syy804123097/SmartCuckoo.

• Two items (a and b) are initially located in the hash
tables as shown in Figure 2(a). When inserting Item
x, one of x’s two candidate positions (i.e., T2[5]) is
empty. Item x is then placed in T2[5] and an edge is
added pointing to the backup position (T1[0]).

• Items c and d are inserted into hash tables before
Item x, as shown in Figure 2(b). Two candidate
positions of Item x are occupied by Items a and d
respectively. We have to kick out one of occupied
items (e.g., a) to accommodate Item x. The kicked-
out item (a) is then inserted into its backup position
(T2[1]). This procedure is performed iteratively until
a vacant bucket (T2[3]) is found in the hash tables.
The kick-out path is x→ a→ b→ c.

• Item e is inserted into the hash tables before Item x,
as shown in Figure 2(c). There is no vacant bucket
available to store Item x even after substantial kick-
out operations, which results in an endless loop.
The cuckoo hashing has to carry out a rehashing
operation [43].

b

x

T1 T2
0

1

2

3

0

4

5

a h1(x)

h2(x)
(a) Vacant bucket(s).

c(b)

b(a)

(c)

d

T1 T2
a(x)

(b) Finite kicks.

c

b

e

d

T1 T2

x

a

(c) An endless loop.

Figure 2: The conventional cuckoo hashing data
structure.

A lookup operation probes two candidate positions
of an item. Buckets T1[0] and T2[5] will be probed for
searching Item x, as shown in Figure 2. If the queried
item is stored in the hash tables, it must be in one of its
two candidate positions.

When all candidate buckets of a newly inserted
item have been occupied, the cuckoo hashing needs to
iteratively carry out kick-out operations to identify a
vacant bucket, which possibly causes an endless loop and
an insertion failure, until a kick-out path is tried and a
threshold of steps on the path is reached without locating
a vacant position.

2.2 Pseudoforest Theory
A pseudoforest is an undirected graph in the graph theory
and each of maximally connected components, named
subgraphs, has at most one cycle [5,20]. In other words,

USENIX Association 2017 USENIX Annual Technical Conference 555

it is an undirected graph in which each subgraph has no
more edges than vertices. In a pseudoforest, two cycles
composed of consecutive edges share no vertices with
each other, and cannot be linked to each other by a path
of consecutive edges.

In order to show the difference of actual and backup
positions of items, we take into consideration the
direction of kick-out operations. In a directed graph,
each edge is directed from one of its endpoints to the
other. Each bucket in the hash tables stores at most one
item, and thus each vertex in a directed pseudoforest has
an outdegree of at most one. If a subgraph contains
a vertex whose outdegree is zero, it does not contain
a cycle and the vertex corresponds to a vacant slot.
Otherwise, it contains a cycle and any insertion into the
subgraph will walk into an endless loop [31].

Definition 2 Maximal Directed Pseudoforest. A maxi-
mal directed pseudoforest is a directed graph in which
each vertex has an outdegree of exactly one.

We name a subgraph whose number of vertices are
equal to its number of edges a maximal subgraph. A
maximal subgraph contains a cycle. Any subgraph in a
maximal directed pseudoforest is a maximal subgraph.
Figure 3(a) shows an example of a maximal directed
pseudoforest. There are three maximal subgraphs in
a maximal directed pseudoforest. In contrast, a non-
maximal directed pseudoforest has at least one non-
maximal subgraph, namely, has at least one vertex whose
outdegree is zero. As illustrated in Figure 3(b), the non-
maximal directed pseudoforest has three subgraphs, two
of which do not have any cycles. It can be transformed
to a maximal directed pseudoforest by connecting any
vertex whose outdegree is zero (the dotted circles in
Figure 3(b)) with any other vertex in the graph by adding
a new edge.

e

c

d

a

k

j
n

m

l

b
i

hf g

(a) Maximal.

e

c

d

a

k

j
n

mb

hf g Vacancyh1(k)

h2(k)

(b) Non-Maximal.

Figure 3: The Directed Pseudoforest.

We consider the cuckoo graph as a directed pseudo-
forest. Each vertex of the pseudoforest corresponds to
a bucket of the hash tables and each edge corresponds
to an item between two candidate positions of the item.
An inserted item hence produces an edge. According to
the property, a maximal subgraph has no room to admit
a new edge, which eventually causes an endless loop
when the directed edges are traversed. Such an endless

loop will not be encountered in a non-maximal subgraph,
which does not contain a cycle.

3 The SmartCuckoo Design

As a cost-efficient variant of cuckoo hashing, S-
martCuckoo maintains high lookup efficiency and im-
proves the insertion performance by avoiding unneces-
sary kick-out operations. It classifies item insertions
into three cases and leverages a directed pseudoforest
to represent hashing relationship, which is used to track
item placements for accurately predicting the occurrence
of endless loops. Conventional cuckoo hashing chooses
one of the candidate positions for an item’s placement
without considering whether it would walk into an
endless loop. Our design increases insertion efficiency
by tracking status of subgraphs to predict the insertion
walk outcome. Hence, SmartCuckoo intelligently selects
insertion positions for the item to be inserted. In
addition, we also illustrate the execution of operations
in SmartCuckoo, including item insertion and deletion.

3.1 The Directed Pseudoforest Subgraph
Inserted items in cuckoo hashing form a cuckoo
graph. We represent the cuckoo graph as a directed
pseudoforest, which can reveal the path, consisting of
directed edges, of kick-out operations for insertion.
Hence, the directed graph can be used to track and tell
endless loops in advance to avoid them.

Successful item insertion depends on finding a vacant
bucket for storage. To this end, one of candidate
buckets of an item to be inserted must belong to a
subgraph containing one vertex whose outdegree is
zero, corresponding to a vacant slot. Hence, detecting
vacancies in a subgraph is crucial in the insertion
operation of cuckoo hashing. Knowing the path of a
sequence of kick-out operations for an item’s insertion
before the insertion is carried out will help to identify and
avoid an endless loop. In our design, we characterize the
cuckoo hashing as a directed graph, in which a bucket
is represented as a vertex and an item is represented
as an edge between two candidate positions of an
item. SmartCuckoo stores at most one item in each
bucket, and each item has a unique backup position.
Accordingly, each edge has a start point representing
the actual storage position of the item and an end point
representing the backup one. In the directed graph,
each vertex corresponds to a bucket and each edge
corresponds to an item. Because items stored in a
hash table are always not more than the buckets, the
number of vertices is not smaller than that of edges
in the directed graph. Therefore, there is at most one
cycle existing in a subgraph. Hence, according to the

556 2017 USENIX Annual Technical Conference USENIX Association

property of the directed pseudoforest, the directed graph
used to characterize item placements in SmartCuckoo is
a directed pseudoforest.

Furthermore, we have the following observation.
When inserting a new item into a non-maximal directed
subgraph of a pseudoforest, it will be stored in one of
its candidate buckets, and then one kicked-out item will
be stored in the vacant bucket corresponding to the last
vertex of a directed cuckoo path. If one attempts to insert
the item into a maximal directed pseudoforest, an endless
loop will inevitably occur. Each vertex in a directed
pseudoforest has an outdegree of one, except those with
an outdegree of zero representing vacant buckets located
at the ends of the directed paths in the non-maximal
subgraphs. In a maximal directed pseudoforest, each
vertex has an outdegree of one and no vertex can be
the destination on the path of kick-out operations to
store the item for insertion. That is, an endless loop is
encountered.

The observation inspires us to design a strategy on the
selection of a path leading to a vacant position for item
insertion. Vertices of ourdegree of zero, which represent
vacant positions (buckets) in the directed pseudoforest,
are produced by prior item insertions. To reach a vacant
vertex in a directed pseudoforest for inserting an item,
at least one of the item’s candidate buckets must be in
a subgraph containing a vacant position. Figure 3(b)
illustrates the process of inserting Item k. Its two
candidate positions are currently occupied by Items a and
d (green vertices) and are in a subgraph without vacant
positions. Its insertion would encounter an endless loop
and fail, though there exist two vacancies (red vertices) in
the pseudoforest. Because only non-maximal subgraphs
contain vacant positions, the success of an insertion of
an item relies on whether at least one of its candidate
positions is in a non-maximal subgraph.

New item insertions can be classified into three cases,
i.e., v + 2, v + 1, and v + 0. As each item is represented as
an edge in the pseudoforest, different placements of the
item will increase the graph’s vertex count differently (by
two, one, or zero).

3.2 Three Cases of Item Insertions

In the implementation of conventional cuckoo hashing,
an insertion failure is not known until a kick-out path
is tried and a threshold of steps on the path is reached
without locating a vacant position. The lack of a
priori knowledge in the traditional implementations often
leads to walking into endless loops with substantial time
and resources spent on fruitless tries. To obtain the
knowledge on endless loops in SmartCuckoo, we classify
item insertions according to the number of additional
vertices added to the directed pseudoforest.

In a directed pseudoforest, each edge corresponds to
an inserted item, and each vertex corresponds to a bucket.
Hence, for each item to be inserted into the hash tables,
the number of edges is incremented by one. However,
the increase of vertex count (v) has three cases, namely,
the cases of v+0, v+1, and v+2. In the last two cases,
the new item can be successfully inserted, which will be
explained. Here we first discuss the status of the directed
pseudoforest in the case of v+0.

3.2.1 The Case of v+0

When inserting an item without increasing vertex count,
two vertices corresponding to two candidate buckets of
the item should have existed in the directed pseudoforest,
which leads to five possible scenarios, as illustrated in
Figure 4.

• Two candidate buckets of Item x1, shown as blue
buckets in Figure 4(a), exist in the same non-
maximal directed subgraph A. Either bucket can be
selected to have a successful insertion as the kick-
out operations will always reach a vacant position
in the subgraph. As shown in Figure 4(a), Item
x1 is directly inserted into Bucket T2[3] and creates
a new edge from Bucket T2[3] to Bucket T1[0],
which is the backup position of Item x1. After
the insertion of Item x1, the original non-maximal
directed subgraph A is transformed into a maximal
directed subgraph A′, which does not have a vacant
position to admit a new item.

• Two candidate buckets of Item x2 are in two
different non-maximal directed subgraphs B and
C, respectively, as shown in Figure 4(b). In this
scenario, the insertion operation will also be a
success, because each of two non-maximal directed
subgraphs offers a vacant bucket. Item x2 is located
in Bucket T1[5] and constructs a new directed edge
from Bucket T1[5] to Bucket T2[3] in the directed
pseudoforest, which merges the two subgraphs, B
and C, into a new non-maximal directly subgraph
(BC) with one vacant vertex (T2[3]).

• One candidate bucket of Item x3 is in the non-
maximal directed subgraph E and the other is in
the maximal directed subgraph D, as shown in
Figure 4(c). If the item enters the hash table from
Bucket T1[2], an endless loop is encountered in
the maximal directed subgraph D and unnecessary
kick-out operations are carried out. However, if
Item x3 enters the hash table at Bucket T2[6], the
item insertion will be a success after a number of
kick-out operations (simply kicking out Item g to
Bucket T1[5] in the example shown in Figure 5(a)).

USENIX Association 2017 USENIX Annual Technical Conference 557

Accordingly, two subgraphs D and E are merged
into a new maximal directed subgraph (DE), which
does not have any vacant buckets.

• Two candidate buckets of Item x4 are separated
into two maximal directed subgraphs (F and G),
as shown in Figure 4(d). Because there doesn’t
exist any vacant buckets in any of the subgraphs,
the insertion of the new item (x4) will always walk
into an endless loop, illustrated in Figure 5(b). This
is the worst scenario for an insertion in conventional
cuckoo hashing implementations.

• Two candidate buckets of Item x5 are in the
same maximal directed subgraph (H), as shown
in Figure 4(e). Similar to the previous scenario,
the insertion will turn out to a failure after
numerous kick-outs in an endless loop, as shown in
Figure 5(c).

c

b

d

T1 T2

0

1

2

3

4

5

a

6

7

x1

A

(a) One non-maximal.

c

b

d

T1 T2

a

f

g

x2

B

C

(b) Two non-maximal.

b

d

T1 T2

a

f

g

x
3

e

D

E

c

(c) One maximal and
one non-maximal.

c

b

d

T1 T2

a

f i

g

x4

h

e

0

1

2

3

4

5

6

7

F

G

(d) Two maximal.

c

b

T1 T2

e

x
5

d

a H

(e) One maximal.

Figure 4: Five scenarios for Case v+0.

3.2.2 The Cases of v+1 and v+2

The v + 1 represents the case where the number of
vertices in the directed pseudoforest is increased by 1
after insertion of an item. As shown in Figure 6(a),
in this case one of two candidate positions of Item
x6 corresponds to an existing vertex in the directed
pseudoforest. The other will be a new vertex after the
item’s insertion. That is, this candidate bucket in the

T1[2]T1[2]

T2[3]T1[0]

T2[1]

T2[6]

T1[2]

Empty bucket

Item x3

h1(x3)

h2(x3)

(a) One maximal and
one non-maximal.

T1[5]

T2[7]T1[7]

T2[6]

T2[3]

T1[0]

Item x4

h1(x4)

h2(x4)

T2[1]

T1[2]

(b) Two maximal.

T1[0]

T2[1] T1[2]

T2[5]

T2[3]

Item x5

h1(x5) h2(x5)

(c) One maximal.

Figure 5: Buckets that are accessed during kick-out
operations.

hash table has not been represented by any vertices in the
pseudoforest. Item x6 is then placed in this position, and
a new edge connecting the new vertex with the existing
vertex is added into the subgraph I of the directed
pseudoforest.

In the case of v + 2, both candidate positions of an
item to be inserted have not yet been represented by
any vertices in the pseudoforest. Accordingly, they
are unoccupied. The item can be inserted in any of
the two available positions. Accordingly, two vertices,
each corresponding to one of the positions, are added
into the pseudoforest. Furthermore, an edge from the
vertex corresponding to the position where the item is
actually placed to the other corresponding to its backup
position is also added. The two vertices and the new edge
constitute a new subgraph (K), which is a non-maximal
directed one. This case is illustrated in Figure 6(b),
where the two vertices are Buckets T1[5] and T2[4], and
the new edge is from Bucket T1[5] to Bucket T2[4] after
Item x7 is inserted at Bucket T1[5].

c

b

d

T1 T2
0

1

2

3

0

4

5

a

x6

I

(a) v+1.

c

b

d

T1 T2
a

x7

J

K

(b) v+2.

Figure 6: The cases of v+1 and v+2.

558 2017 USENIX Annual Technical Conference USENIX Association

3.3 Predetermination of An Endless Loop

According to Section 3.2, if we know in advance which
case an item insertion belongs to, we can predetermine
whether any of the item’s candidate positions is on an
endless loop. This is achieved by tracking status of
subgraphs, which is either maximal directed or non-
maximal directed. If a candidate position is in a maximal
directed subgraph, it is on an endless loop. Otherwise, it
is not on an endless loop.

During an item insertion operation, for each of its
candidate positions, we need to find out which one or
two subgraphs of a directed pseudoforest it belongs to.
To this end, we apply the Find operation for a given
candidate position to determine the subgraph it belongs
to. In addition, if two candidate positions of an inserted
item belong to two subgraphs, an edge will be introduced
between the subgraphs and the two subgraphs need to
be merged. To this end, a Union operation is required
to merge them. To enable Find and Union operations
in SmartCuckoo, we assign each subgraph a unique
ID. Each member vertex of the subgraph records the
ID in its corresponding bucket. When two subgraphs
are merged into a new one, instead of exhaustively
searching for member vertices of one or two of the
original subgraphs on the hash tables to update their
subgraph ID, we introduce trees of the IDs. In a tree for
merged subgraphs, the IDs at the buckets representing
the subgraphs before the merging are leaf nodes and the
ID of the new subgraph is the parent. The new subgraph
is likely to be merged again with another subgraph and
has its parent. In the end, the ID at the root of the tree
represents the subgraph merged from all the previous
subgraphs.

In order to determine the status of a subgraph in the
pseudoforest, we track its edge count and vertex count.
A subgraph is a maximal directed one if its edge count is
equal to its vertex count. In this case, the subgraph does
not have any room to admit new edges. Otherwise, the
edge count is smaller than vertex count, and the subgraph
is a non-maximal directed one.

In summary, we can predetermine the outcome of an
item insertion based on the statuses of related subgraphs
in each of the three cases the insertion belongs to.

• v + 2: When the two candidate positions (a
and b) of Item x have not yet been represented
by any vertices in a directed pseudoforest, the
insertion will create a new subgraph, which is non-
maximal directed. Therefore, the new Item x can be
successfully inserted. Moreover, the vertex count of
the subgraph is 2, and the edge count is 1.

• v + 1: This case is detected after running
Find(a) and Find(b) and finding out that one of

the candidate positions corresponds to an existing
vertex in a subgraph and the other has not yet been
represented by any vertex. In this case, no matter
which status the subgraph is on, the insertion will
be a success due to the introduction of a new vertex.
Both the vertex count and the edge count of the
subgraph are increased by 1.

• v + 0: In this case, both candidate positions are
vertices in subgraphs. To know the outcome of the
insertion, we need to determine the status of the
subgraphs. Only if at least one of the subgraphs is
non-maximal, the insertion is a success. Otherwise,
the insertion would fail after walking into an endless
loop. The edge count of the corresponding subgraph
is increased by 1.

3.4 Implementations of Operations
In the Section, we describe how two common hash
table operations, namely insertion and deletion, are
supported in SmartCuckoo, as its implementation of
lookup operation is essentially the same as that in
conventional cuckoo hashing.

3.4.1 Insertion

We use B[∗] to represent the item in the bucket.
Algorithm 1 describes the steps involved in the insertion
of Item x. First, we determine the case the insertion
belongs to and increases corresponding vertex count (v),
as described in Algorithm 2. The t value indicates one of
the three cases (v+2, v+1, and v+0) for the insertion.
In the cases of v+ 1 and v+ 2, Item x can be directly
inserted, as described in Algorithm 3. If the insertion
case is v+ 0, we use Algorithm 4 to determine which
of the following five scenarios about corresponding
subgraph(s) applies: (1) one non-maximal, (2) two non-
maximal (Lines 4-6), (3) one non-maximal and one
maximal (Lines 7-13), (4) two maximal, and (5) one
maximal. SmartCuckoo avoids walking into a maximal
directed subgraph. Due to no loops, SmartCuckoo is
able to efficiently reduce the repetitions in one path, thus
reducing insertion operation latency.

3.4.2 Deletion

An item can only be stored in one of the candidate
positions of the hash tables. During the deletion
operation, we only need to probe the candidate positions
and, if found at one of the positions, remove it from
the position (Lines 3-4). Deleting an item from the
hash tables is equivalent to removal of an edge in
the corresponding subgraph, which causes the subgraph
to be separated into two subgraphs. We assign each

USENIX Association 2017 USENIX Annual Technical Conference 559

Algorithm 1 Insert(Item x)
1: a← Hash1(x)
2: b← Hash2(x) /*Two candidate positions of Item x*/
3: t← Determine-v-add(a,b)
4: if t == v+2 then
5: Assign a unique ID to the new subgraph
6: Union(a,b)
7: DirectInsert(x,a,b)
8: Return Ture /*Finish the insertion*/
9: else if t == v+1 then

10: Union(a,b)
11: DirectInsert(x,a,b)
12: Return True /*Finish the insertion*/
13: else
14: InDirectInsert(x,a,b)
15: end if

Algorithm 2 Determine-v-add(Hash a, Hash b)
1: if neither a nor b have yet existed in the pseudoforest then
2: Return v+2
3: else if both a and b have existed in the pseudoforest then
4: Return v+0
5: else
6: Return v+1
7: end if

of the two subgraphs a new ID, and update the IDs
of each member vertex of the two subgraph in their
corresponding buckets (Lines 5-6). In addition, the
vertex count and edge count of the two subgraphs are
updated. Algorithm 5 describes how the pseudoforest is
maintained in the deletion of Item x.

4 Performance Evaluation

4.1 Experimental Setup

The server used in our experiments is equipped with an
Intel 2.8GHz 16-core CPU, 12GB DDR3 RAM with a
peak bandwidth of 32GB/s, and a 500GB hard disk. The
L1 and L2 caches of the CPU are 32KB and 256KB,
respectively. We use three traces (RandomInteger [40],
MacOS [3, 47], and DocWords [4]), and the YCSB
benchmark [11] to run the SmartCuckoo prototype in
the Linux kernel 2.6.18 to evaluate its performance. In
addition, SmartCuckoo is implemented based on CHS.

RandomInteger: We used C++’s STL Mersenne
Twister random integer generator [40] to generate items,
which are in the full 32-bit unsigned integer range and
follow a pseudo-random uniform distribution.

MacOS: The trace was collected on a Mac OS X
Snow Leopard server [3,47]. We use fingerprints of files
as keys to generate insertion requests. The fingerprints
are obtained by applying the MD5 function on the file

Algorithm 3 DirectInsert(Item x, Hash a, Hash b)
1: /*a and b are two candidate positions of Item x*/
2: if B[a] is empty then
3: B[a]← x /*Insert Item x into the empty bucket*/
4: else
5: B[b]← x
6: end if

Algorithm 4 InDirectInsert(Item x, Hash a, Hash b)
1: /*Determine type of the corresponding subgraphs*/
2: if one non-maximal then
3: Kick-out(x,B[a])
4: else if two non-maximal then
5: Kick-out(x,B[a])
6: Union(a,b)
7: else if one non-maximal and one maximal then
8: if the subgraph containing a is non-maximal then
9: Kick-out(x,B[a])

10: else
11: Kick-out(x,B[b])
12: end if
13: Union(a,b)
14: else
15: Rehash()
16: end if

contents.
DocWords: This trace includes five text collections

in the form of bag-of-words [4]. It contains nearly
80 million items in total. We take advantage of the
combination of its DocID and WordID as keys of items
to be inserted into hash tables.

We compare SmartCuckoo with CHS (cuckoo hashing
with a stash) [29] as the Baseline, libcuckoo [36],
and BCHT [15] schemes. Specifically, for BCHT , we
implemented its main components, including four slots
in each bucket. For libcuckoo, we use its open-source
C++ implementation [1], which is optimized to serve
write-heavy workloads.

4.2 Results and Analysis
We present evaluation results of SmartCuckoo and com-
pare them with those from the state-of-the-art cuckoo
hash tables in terms of insertion throughput, lookup
throughput, and the throughput of mixed operations.

4.2.1 Insertion Throughput

Figure 7 shows the insertion throughputs of Baseline,
libcuckoo, BCHT , and the proposed SmartCuckoo with
the RandomInteger workload. With the increase of the
load factor, we observe that SmartCuckoo significantly
increases insertion throughput over Baseline by 25% to
75%, libcuckoo by 65% to 75%, and over BCHT by

560 2017 USENIX Annual Technical Conference USENIX Association

Algorithm 5 Deletion(Item x)
1: a← Hash1(x)
2: b← Hash2(x) /*Two candidate positions of Item x*/
3: if x == B[a] or x == B[b] then
4: Delete x f rom the corresponding position
5: Assign two unique IDs to two new subgraphs respec-

tively
6: U pdate subgraph ID
7: U pdate vertex and edge count
8: Return True
9: else

10: Return False
11: end if

40% to 50%. Conventional cuckoo hash tables, including
Baseline, libcuckoo, and BCHT , essentially take a
random walk to find a vacant bucket for inserting an
item without a priori knowledge on the path, which leads
to unnecessary operations and the extended response
time. In particular, in addition to the impact of endless
loops, libcuckoo suffers from frequent use of locking for
consistent synchronization in its support of concurrent
accesses. BCHT uses multi-slot buckets to mitigate the
occurrence of endless loops. However, it requires a
search in at least one candidate bucket for an available
slot to carry out an insertion, which compromises its
insertion throughput. In contrast, SmartCuckoo classifies
item insertions into three cases to predetermine outcome
of an insertion, so that an insertion failure can be known
without actually performing any kick-out operations to
significantly save insertion time. This performance
advantage is particularly large with a hash table of a high
load factor.

�

���

�

���

�

���

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

����������	

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 7: Insertion throughputs with RandomInteger.

Figure 8 shows insertion throughputs of the vari-
ous cuckoo hash tables with the MacOS workload.
Compared with conventional hash tables, SmartCuckoo
obtains an average of 90% throughput improvement over
Baseline at a load factor of 0.9, and 75% over libcuckoo,
as well as 25% over BCHT .

Figure 9 illustrates the insertion throughputs with the

�

���

�

���

�

���

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

����������	

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 8: Insertion throughput with MacOS.

DocWords workload. With the increase of the load
factor, SmartCuckoo increases insertion throughput over
Baseline by 33% to 77%, libcuckoo by 60% to 75%, and
over BCHT by 35% to 44%.

�

���

�

���

�

���

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

���������	

���	
��	

�
������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 9: Insertion throughput with DocWords.

4.2.2 Lookup Throughput

In the evaluation of lookup performance of the four hash
tables (Baseline, libcuckoo, BCHT , and SmartCuckoo),
we generate the workload of all-lookup queries from
each of the real-world traces. First, we extract lookup
queries from a trace and use the remaining insertion and
deletion queries in the trace to populate a hash table.
Second, we selectively issue lookup queries, in the order
of their appearance in the original trace, to the hash table.
For a workload of lookup queries for only existent keys,
we skip those for non-existent keys. For a workload of
lookup queries for only non-existent keys, we skip those
for existent keys. Each workload contains one million
queries.

We examine the lookup throughputs of Baseline,
libcuckoo, BCHT , and SmartCuckoo with the Ran-
domInteger workload, which are shown in Figure 10.
We observe that SmartCuckoo and Baseline achieve
almost the same lookup throughput due to similar
implementation of lookup operation. When all of the
keys in the lookup queries are existent in the table,

USENIX Association 2017 USENIX Annual Technical Conference 561

SmartCuckoo improves the lookup throughputs by 30%
and 5% over those of libcuckoo and BCHT , respectively.
When none of the keys are in the table, all candidate
positions (slots in BCHT) for a key have to be accessed.
In particular, BCHT searches eight slots (four slots per
bucket in the experiment setup) in two candidate buckets
for each key, resulting in the reduced throughput.

���

���

���

�
��	
��

 ��������� ���� �����������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

���

���

���

�

���� ��

��	
��

 ��������� ���� �����������

����������	
�	�
������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 10: Lookup throughput with RandomInteger.

Figure 11 shows the lookup throughputs with the
MacOS workload. Similarly, the throughput of S-
martCuckoo is about 30% and 6% higher than that
of libcuckoo and BCHT , respectively, with lookups of
only existent keys. If all of the keys are non-existent,
the improvements become 45% and 10%, respectively.
Figure 12 shows the lookup throughputs with the
DocWords workload, revealing similar performance
trend.

�

���

�

���

����	
�� 	
�
�
��� ���� �������
���

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

�

���

�

���

���� ��

����	
�� 	
�
�
��� ���� �������
���

����������	
�	�
������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 11: Lookup throughput with MacOS.

�

���

�

���
����	
�� 	
�
�
��� ���� �������
���

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

�

���

�

���

���� ��

����	
�� 	
�
�
��� ���� �������
���

����������	
�	�
������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 12: Lookup throughput with DocWords.

4.2.3 Throughput of Workload with Mixed Queries

We use YCSB [11] to generate five workloads, each
with ten million key-value pairs, following the zipf
distribution. Each key in the workloads is 16 bytes and
each value is 32 bytes. The distributions of different
types of queries in each workload are shown in Table 1.

Table 1: Distributions of different types of queries in
each workload.

Workload Insert Lookup Update
YCSB-1 100 0 0
YCSB-2 75 25 0
YCSB-3 50 50 0
YCSB-4 25 75 0
YCSB-5 0 95 5

Figure 13 shows the throughputs of SmartCuckoo
and other hash tables in comparison for running each
of the YCSB workloads. With the decrease of the
percentage of insertions in the workloads, throughputs of
all the cuckoo hash tables increase due to expensive kick-
out operations during execution of insertion operations.
With the workloads containing insert queries (the first
four in Table 1), SmartCuckoo consistently produces
higher throughput than the other three cuckoo hash
tables, specifically by 25% to 70% than Baseline, by
25% to 55% than libcuckoo, and by 10% to 50% than
BCHT . SmartCuckoo takes advantage of its ability
of predetermining the occurrence of endless loops to
avoid a potentially large number of step-by-step kick-
out operations. The fifth workload does not have any
insert queries. Instead, it does have a small percentage
of update query, whose cost is similar to that of lookup
if updating existent keys and is equivalent to that of
insert if updating non-existent keys. Because most
queries are for existent keys, SmartCuckoo and Baseline
achieve nearly the same performance due to their similar
implementation of lookup operation.

For each of the YCSB workloads that has 10 million
key-value pairs with 16B keys and 32B values, the
minimal space for holding the data in the cuckoo
hash table is (16 + 32) ∗ 10M = 458MB. Any space
additional to this minimal requirement to hold auxiliary
data structure for higher performance is considered as the
hash table’s space overhead. With its use of a lightweight
pseudoforest, SmartCuckoo has a space overhead of
about 20% of the minimal requirement in the YCSB
workloads. This is in line with that of the other three
hash tables (Baseline, libcuckoo, and BCHT).

5 Related Work

Cuckoo Hashing Structures. SmartCuckoo is a variant
of the cuckoo hashing, which supports fast and cost-

562 2017 USENIX Annual Technical Conference USENIX Association

���

���

���

�

���

�	
��
��

�
�������

����

��	��������

�
��
�
�
�
��
	

�
�
��

��
��
��
�
�
�

�

���

���

���

���

�

���

������ ������ ������ ������ ������

���������

�	
��
��

�
�������

����

��	��������

�

�
�

�
�
�
�
��
�
�
�
��
	

�
�
��

��
��
��
�
�
�

Figure 13: Throughput of mixed operations with YCSB.

efficient lookup operation. Cuckoo hashing [42, 43]
is an open-addressing hashing scheme that provides
each item with multiple candidate positions in the hash
table. Studies of cuckoo hashing via the graph theory
provide insightful understanding of cuckoo hashing’s
advantages and limitations [14, 32]. Cuckoo Graph
is proposed to describe the hashing relationship of
cuckoo hashing [32]. Cuckoo filter [17] uses the
cuckoo hash table to enhance Counting Bloom filter [18]
for supporting insertion and deletion operations with
improved performance and space efficiency. Horton
table [8] is an enhanced bucketized cuckoo hash table
to reduce the number of CPU cache lines that are
accessed in each lookup. In contrast, we investigate the
characteristics of the directed cuckoo graph describing
the kick-out behaviors. The proposed SmartCuckoo
leverages the directed pseudoforest, a concept in graph
theory, to track item placements in the hash table for
predetermining occurrence of endless loops.

Content-based Search. NEST [24] uses cuckoo
hashing to address the load imbalance issue in the tra-
ditional locality-sensitive hashing (LSH) and to support
approximate queries. HCTrie [41] is a multi-dimensional
structure for file search using scientific metadata in file
systems, which supports a large number of dimensions.
MinCounter [46] allocates a counter for each bucket to
track kick-out times at the bucket, which mitigates the
occurrence of endless loops during data insertion by
selecting less used kick-out routes. SmartCuckoo aims at
avoiding unnecessary kick-out operations due to endless
loops in item insertion.

Searchable File Systems. Many efforts have been
made to improving performance of large-scale search-
able storage systems. Spyglass [34] is a file metadata
search system, based on hierarchical partitioning of
namespace organization, for high performance and
scalability. Smartstore [23] reorganizes file metadata
based on file semantic information for next-generation
file systems. It provides efficient and scalable complex
queries and enhances system scalability and function-
ality. Glance [25] is a just-in-time sampling-based

system to provide accurate answers for aggregate and
top-k queries without prior knowledge. Ceph [39, 53]
uses dynamic subtree partitioning to support filename-
based query as well as to avoid metadata-access hot
spots. SmartCuckoo provides fast query services for
cloud storage systems.

6 Conclusion and Future Work

Fast and cost-efficient query services are important to
cloud storage systems. Due to the salient feature of
open addressing, cuckoo hashing supports fast queries.
However, it suffers from the problem of potential endless
loops during item insertion. We propose a novel
cost-efficient hashing scheme, named SmartCuckoo,
for tracking item placements in the hash table. By
representing the hashing relationship as a directed
pseudoforest, SmartCuckoo can accurately predetermine
the status of cuckoo operations and endless loops. We
further avoid walking into an endless loop, which always
belongs to a maximal subgraph in the pseudoforest. We
use three real-world traces, i.e., RandomInteger, MacOS,
and DocWords, and the YCSB benchmark to evaluate the
performance of SmartCuckoo. Extensive experimental
results demonstrate the advantages of SmartCuckoo over
state-of-the-work schemes, including cuckoo hashing
with a stash, libcuckoo, and BCHT .

SmartCuckoo currently addresses the issue of endless
loop for cuckoo hash tables using two hash functions. It
is well-recognized that using more than two hash func-
tions would significantly increase operation complexity
and is thus less used [13, 56]. A general and well-known
approach is to reduce the number of hash functions
to two using techniques such as double hashing [30].
As a future work, we plan to apply the approach of
SmartCuckoo on hash tables using more than two hash
functions. In addition, we will also study the use of
SmartCuckoo in cuckoo hash tables with multiple slots
in each bucket.

Acknowledgments

This work was supported by National Key Research and
Development Program of China under Grant 2016YF-
B1000202 and State Key Laboratory of Computer
Architecture under Grant CARCH201505. Song Jiang
was supported by US National Science Foundation under
CNS 1527076. The authors are grateful to anonymous
reviewers and our shepherd, Rong Chen, for their
constructive feedbacks and suggestions.

References
[1] Libcuckoo library. https://github.com/efficient/libcuckoo.

USENIX Association 2017 USENIX Annual Technical Conference 563

[2] Symantec. 2010 State of the Data Center Global Da-
ta. http://www.symantec.com/content/en/us/about/media /pdf-
s/Symantec DataCenter10 Report Global.pdf (Jan. 2010).

[3] Traces and Snapshots Public Archive.
http://tracer.filesystems.org (July 2014).

[4] Bag-of-words data set. http://archive.ics.uci.edu/ml/datasets
/Bag+of+Words (Mar. 2008).

[5] ÀLVAREZ, C., BLESA, M., AND SERNA, M. Universal
Stability of Undirected Graphs in the Adversarial Queueing
Model. In Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures (2002), ACM, pp. 183–
197.

[6] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, I., ET AL. A View of Cloud Computing.
Communications of the ACM 53, 4 (2010), 50–58.

[7] BELL, G., HEY, T., AND SZALAY, A. Beyond the Data Deluge.
Science 323, 5919 (2009), 1297–1298.

[8] BRESLOW, A. D., ZHANG, D. P., GREATHOUSE, J. L.,
JAYASENA, N., TULLSEN, D. M., XU, L., CAVAZOS, J.,
ALVAREZ, M. A., MORALES, J. A., AGUILERA, P., ET AL.
Horton Tables: Fast Hash Tables for In-Memory Data-Intensive
Computing. USENIX Association, pp. 281–294.

[9] BÜTTCHER, S., AND CLARKE, C. L. A Security Model for Full-
Text File System Search in Multi-User Environments. In Proc.
FAST (2005).

[10] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R., PANDYA,
R., AND THELIN, J. Orleans: Cloud Computing for Everyone.
In Proc. SOCC (2011), ACM, p. 16.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking Cloud Serving Systems with
YCSB. In Proc. SoCC (2010), ACM, pp. 143–154.

[12] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search
Data Structures. ACM SIGARCH Computer Architecture News
43, 1 (2015), 631–644.

[13] DEBNATH, B. K., SENGUPTA, S., AND LI, J. ChunkStash:
Speeding up Inline Storage Deduplication using Flash Memory.
In Proc. USENIX ATC (2010).

[14] DEVROYE, L., AND MORIN, P. Cuckoo hashing: Further
analysis. Information Processing Letters 86, 4 (2003), 215–219.

[15] ERLINGSSON, U., MANASSE, M., AND MCSHERRY, F. A Cool
and Practical Alternative to Traditional Hash Tables. In Proc.
WDAS (2006).

[16] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. MemC3:
Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proc. NSDI (2013).

[17] FAN, B., ANDERSEN, D. G., KAMINSKY, M., AND MITZEN-
MACHER, M. D. Cuckoo Filter: Practically Better Than Bloom.
In Proc. CoNext (2014), ACM, pp. 75–88.

[18] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Transactions on Networking (TON) 8, 3 (2000), 281–
293.

[19] FRIEZE, A., MELSTED, P., AND MITZENMACHER, M. An
Analysis of Random-Walk Cuckoo Hashing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2009, pp. 490–503.

[20] GABOW, H. N., AND WESTERMANN, H. H. Forests, frames,
and games: Algorithms for matroid sums and applications.
Algorithmica 7, 1 (1992), 465–497.

[21] GANTZ, J., AND REINSEL, D. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.
IDC iView: IDC Analyze the Future 2007 (2012), 1–16.

[22] HSU, C.-H., ZHANG, Y., LAURENZANO, M. A., MEISNER, D.,
WENISCH, T., MARS, J., TANG, L., AND DRESLINSKI, R. G.
Adrenaline: Pinpointing and Reining in Tail Queries with Quick
Voltage Boosting. In Proc. HPCA (2015), IEEE, pp. 271–282.

[23] HUA, Y., JIANG, H., ZHU, Y., FENG, D., AND TIAN,
L. Smartstore: A New Metadata Organization Paradigm with
Semantic-Awareness for Next-Generation File Systems. In Proc.
SC (2009), ACM.

[24] HUA, Y., XIAO, B., AND LIU, X. Nest: Locality-aware
Approximate Query Service for Cloud Computing. In Proc.
INFOCOM (2013), IEEE, pp. 1303–1311.

[25] HUANG, H. H., ZHANG, N., WANG, W., DAS, G., AND
SZALAY, A. S. Just-in-Time Analytics on Large File Systems.
IEEE Transactions on Computers 61, 11 (2012), 1651–1664.

[26] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R.,
SATYANARAYANAN, M., GANGER, G. R., RIEDEL, E., AND
AILAMAKI, A. Diamond: A Storage Architecture for Early
Discard in Interactive Search. In Proc. FAST (2004), pp. 73–86.

[27] JANAPA REDDI, V., LEE, B. C., CHILIMBI, T., AND VAID, K.
Web Search Using Mobile Cores: Quantifying and Mitigating the
Price of Efficiency. In Proc. ISCA (2010), pp. 314–325.

[28] KIRSCH, A., AND MITZENMACHER, M. The Power of Qne
Move: Hashing Schemes for Hardware. IEEE/ACM Transactions
on Networking 18, 6 (2010), 1752–1765.

[29] KIRSCH, A., MITZENMACHER, M., AND WIEDER, U. More
Robust Hashing: Cuckoo Hashing with a Stash. SIAM Journal
on Computing 39, 4 (2009), 1543–1561.

[30] KNUTH, D. E. The Art of Computer Programming: Sorting and
Searching, vol. 3. Pearson Education, 1998.

[31] KRUSKAL, C. P., RUDOLPH, L., AND SNIR, M. Efficient
parallel algorithms for graph problems. Algorithmica 5, 1 (1990),
43–64.

[32] KUTZELNIGG, R. Bipartite Random Graphs and Cuckoo
Hashing. In Fourth Colloquium on Mathematics and Computer
Science Algorithms, Trees, Combinatorics and Probabilities
(2006), Discrete Mathematics and Theoretical Computer Science,
pp. 403–406.

[33] LAM, H., LIU, Z., MITZENMACHER, M., SUN, X., AND
WANG, Y. Information Dissemination via Random Walks in d-
Dimensional Space. In Proc. SODA (2012), SIAM, pp. 1612–
1622.

[34] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: Fast, Scalable Metadata Search for
Large-Scale Storage Systems. In Proc. FAST (2009), pp. 153–
166.

[35] LI, Q., HUA, Y., HE, W., FENG, D., NIE, Z., AND SUN,
Y. Necklace: An Efficient Cuckoo Hashing Scheme for Cloud
Storage Services. In Proc. IWQoS (2014), IEEE, pp. 153–158.

[36] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND FREEDMAN,
M. J. Algorithmic Improvements for Fast Concurrent Cuckoo
Hashing. In Proc. EuroSys (2014), ACM.

[37] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZIS, G., AND CAMBLE, P. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality. In Proc. FAST
(2009), pp. 111–123.

[38] LIU, L., XU, L., WU, Y., YANG, G., AND GANGER, G. R.
SmartScan: Efficient Metadata Crawl for Storage Management
Metadata Querying in Large File Systems. Parallel Data
Laboratory (2010), 1–17.

564 2017 USENIX Annual Technical Conference USENIX Association

[39] MALTZAHN, C., MOLINA-ESTOLANO, E., KHURANA, A.,
NELSON, A. J., BRANDT, S. A., AND WEIL, S. Ceph as a
scalable alternative to the Hadoop Distributed File System. login:
The USENIX Magazine 35, 4 (2010), 38–49.

[40] MATSUMOTO, M., AND NISHIMURA, T. Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[41] OHARA, Y. HCTrie: A Structure for Indexing Hundreds of
Dimensions for Use in File Systems Search. In Proc. MSST
(2013), IEEE, pp. 1–5.

[42] PAGH, R., AND RODLER, F. Cuckoo hashing. In Proc. ESA
(2001), Springer, pp. 121–133.

[43] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[44] POLYCHRONIOU, O., RAGHAVAN, A., AND ROSS, K. A.
Rethinking SIMD Vectorization for In-Memory Databases. In
Proc. SIGMOD (2015), ACM, pp. 1493–1508.

[45] ROSS, K. A. Efficient Hash Probes on Modern Processors. In
Proc. ICDE (2007), IEEE, pp. 1297–1301.

[46] SUN, Y., HUA, Y., FENG, D., YANG, L., ZUO, P., AND CAO,
S. MinCounter: An Efficient Cuckoo Hashing Scheme for Cloud
Storage Systems. In Proc. MSST (2015), IEEE.

[47] TARASOV, V., MUDRANKIT, A., BUIK, W., SHILANE, P.,
KUENNING, G., AND ZADOK, E. Generating Realistic Datasets
for Deduplication Analysis. In Proc. USENIX ATC (2012),
USENIX Association, pp. 261–272.

[48] TAYLOR, T., COULL, S. E., MONROSE, F., AND MCHUGH, J.
Toward Efficient Querying of Compressed Network Payloads. In
Proc. USENIX ATC (2012), USENIX Association, pp. 113–124.

[49] TURNER, V., GANTZ, J. F., REINSEL, D., AND MINTON,
S. The digital universe of opportunities: Rich data and the
increasing value of the internet of things. Framingham (MA):
IDC (2014).

[50] VAMANAN, B., SOHAIL, H. B., HASAN, J., AND VIJAYKU-
MAR, T. TimeTrader: Exploiting Latency Tail to Save Datacenter
Energy for Online Search. In Proc. MICRO (2015), ACM,
pp. 585–597.

[51] WANG, C., REN, K., YU, S., AND URS, K. M. R. Achieving
Usable and Privacy-assured Similarity Search over Outsourced
Cloud Data. In Proc. INFOCOM (2012), IEEE, pp. 451–459.

[52] WANG, K., XU, G., SU, Z., AND LIU, Y. D. GraphQ:
Graph Query Processing with Abstraction Refinement-Scalable
and Programmable Analytics over Very Large Graphs on a Single
PC. In Proc. USENIX ATC (2015), USENIX Association,
pp. 387–401.

[53] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D.,
AND MALTZAHN, C. Ceph: A Scalable, High-Performance
Distributed File System. In Proc. OSDI (2006), USENIX
Association, pp. 307–320.

[54] WU, S., LI, F., MEHROTRA, S., AND OOI, B. C. Query
Optimization for Massively Parallel Data Processing. In Proc.
SOCC (2011), ACM.

[55] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-KV: A Case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores. Proceedings of the
VLDB Endowment 8, 11 (2015), 1226–1237.

[56] ZUO, P., AND HUA, Y. A Write-friendly Hashing Scheme for
Non-volatile Memory Systems. In Proc. MSST (2017).

USENIX Association 2017 USENIX Annual Technical Conference 565

